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Abstract

Macroautophagy (hereafter referred to as autophagy) is a evolutionarily conserved pathway in 

which proteins and organelles are delivered to the lysosome for degradation. In neurons, 

autophagy was originally described as associated with disease states and neuronal survival. Over 

the last decade, however, evidence has accumulated that autophagy controls synaptic function in 

both the axon and dendrite. Here, we review this literature, highlighting the role of autophagy in 

the pre- and postsynapse, synaptic plasticity, and behavior. We end by discussing open questions in 

the field of synaptic autophagy.
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I. Introduction

Research over the past 40 years has defined roles for protein synthesis in neuronal plasticity 

and brain function [1]. Recently, however, the controlled degradation of proteins and 

organelles has also been appreciated to play critical roles in neurotransmission [2]. These 

steps occur via the degradation of specific cytosolic proteins through the ubiquitin / 

proteasome pathway and by multiple pathways that lead to degradation within the lysosome 

[3].
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Christian De Duve, who with Alex Novikoff, co-discovered the lysosome, introduced the 

term autophagy to describe how “portions of a cell somehow find their way inside the cell’s 

own lysosomes and are broken down” [4]. De Duve also coined the terms lysosome, 

endocytosis / endosome, phagocytosis/ phagosome, / autophagosome and peroxisome [5].

De Duve’s definition of autophagy encompasses the breakdown of any of a cell’s own 

components within the lysosome, but even in 1963 it was clear that proteins, lipids, and 

organelles could use multiple mechanisms of entry into the lysosomal lumen.

In the endosomal-lysosomal degradation pathway, membrane, lumenal or formerly 

extracellular components that were endocytosed are delivered to lysosomes by fusion with 

endosomes. In this highly regulated pathway, extracellular proteins and intrinsic proteins on 

the cell surface are internalized into small vesicles and sorted through a series of 

intermediate vesicular structures. Some components may be recycled to other membranes, 

while others that reach a late endosome can fuse with a lysosome that is capable of 

proteolysis and can degrade proteins in both the endosomal membrane and lumen [6,7].

A relatively newly discovered autophagic pathway is known as chaperone-mediated 
autophagy (CMA) [8], in which cytosolic proteins are bound by the chaperone Hsc70 and 

delivered to the lysosomal membrane, where they are unfolded and transported into the 

lysosomal lumen by a membrane protein, Lamp2A [9]. Proteins within the lumen are then 

exposed to lysosomal proteases and degraded. While a great deal of research has identified 

cytosolic proteins that play roles in synapses to be degraded by CMA including alpha-

synuclein [10] and tau protein [11], there has been little research on CMA at synapses in 

contrast to in cell bodies.

In endosomal microautophagy (eMI), cytosolic proteins are similarly bound by Hsc70, but 

are internalized into small vesicles within endosomes which subsequently fuse with 

lysosomes for degradation [12]. These structures may also participate in producing 

exosomes secreted from the neurons, and so may participate in signaling and disease spread. 

As multivesicular bodies are very common in synapses and axons, these are likely to be 

important for synaptic turnover, and early evidence suggests that eMI may play a role in 

presynaptic function [13,14].

At this writing, most research has been conducted on roles for macroautophagy (which by 

convention will be called autophagy in this review), a process that can degrade cytosolic 

proteins, lipids and organelles. This form of autophagy has been particularly tractable 

because it involves the participation of large double membrane vesicles, termed 

autophagosomes, that fuse with lysosomes for degradation that can be examined by 

microscopy and because it can be manipulated by modulating the activity of genes initially 

characterized in yeast that are responsible for steps in the pathway.

Here, we will first review the molecular machinery involved in autophagy in mammalian 

cells. We will then briefly describe the history of the discovery of autophagy in neurons and 

explore how the machinery that mediates autophagy in dividing cells has been adapted to 

ensure appropriate autophagic protein degradation in post-mitotic neurons.
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Recent work has highlighted a potential role for autophagy in the regulation of synaptic 

transmission, plasticity and behavior. These studies indicate that autophagy plays some roles 

that can be revealed simply by blocking specific steps in the pathway, while others that 

require both blockade and a triggering additional factor, particularly via cellular stress 

responses [15–18]. Both classes of synaptic autophagic function may regulate pre- and 

postsynaptic functions during normal neuronal development and in disease. We conclude 

with three outstanding questions that we feel are critical for the field to address to deepen 

our understanding of the role of autophagy in controlling neurotransmission.

II. Molecular Machinery of Autophagy

The molecular machinery that controls autophagosome formation, maturation and fusion 

with lysosomes were originally described in yeast by Yoshinori Ohsumi and colleagues [19]. 

Autophagy in mammalian cells is controlled by both proteins that are homologous to the 

yeast autophagy (atg) proteins and additional mammalian-specific components [20].

In yeast and dividing mammalian cells, autophagy is strongly activated by nutrient or serum 

starvation and can be divided into distinct stages: (1) induction, (2) expansion, (3) 

maturation (Figure 1).

Autophagy is induced following nutrient or serum deprivation via the activity of the 

metabolic kinases, mTOR [21] and AMPK [22]. mTOR inhibits and AMPK activates the 

kinase ULK1, in complex with Atg13 and FIP200 [23–27]. ULK2, a ULK1 homolog in 

mammalian cells, may also control autophagy but it is presently unclear whether these 

kinases are redundant [24,28]. ULK complex activation leads to the phosphorylation of 

Beclin-1 and activation of the class iii phosphoinositol-3-kinase (PI3K), Vps34 [29,30]. The 

PI3K activity of Vps34 is critical both for endocytic activity [31,32] and autophagy [30] and 

is directed to a particular pathway by its interacting proteins. For example, when partnered 

with Atg14, Vps34 activity stimulates autophagy [33], and ULK1-dependent 

phosphorylation of Beclin-1 specifically activates Vps34 activity when Vps34 is complexed 

with Atg14 and Ambra1 [29].

Vps34 activity induces autophagy via local synthesis of phosphoinositol-3-phosphate (PI3P). 

The precise sites of PI3P synthesis and initial formation of the autophagic membrane may be 

at the endoplasmic reticulum [34–36], but contributions from plasma membrane [37], 

mitochondria [38], or recycling endosomes [39–42] are also involved. Subsequent 

recruitment of PI3P binding proteins, such as DFCP1 [34] and WIPI1-4 [39,43–45], initiate 

an enzymatic cascade that leads to the assembly of the autophagosomal membrane.

Expansion of the autophagosome membrane is driven by two ubiquitin-like conjugation 

systems. In the first, Atg12 is conjugated to Atg5 by the E1-like enzyme, Atg7, and the E2-

like enzyme, Atg10 [46]. The Atg5-12 conjugate subsequently interacts with Atg16L1 [47]. 

In the second pathway, Atg8 is processed by the protease, Atg4 [48], and subsequently 

conjugated to phophatidylethanolamine (PE) by Atg7 and the E2-like enzyme, Atg3 [46]. 

Atg8 with PE conjugation requires the E3-like activity of Atg5-12 complexed with Atg16L1 

[49,50].
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Mammals have numerous Atg8 homologs, including the LC3 and GABARAP families [51]. 

The conjugated form of LC3 is referred to below as LC3-II and the unmodified protein is 

referred to LC3-I. Vesicles containing Atg9, a transmembrane protein, then fuse with the 

growing autophagosome and provide an additional membrane source [52].

How are proteins and organelles selected for autophagic degradation [53]? Upon nutrient 

deprivation, bulk cytosolic proteins can be sequestered into autophagosomes and degraded to 

increase the availability of amino acids [54–56]. Alternatively, proteins and organelles can 

be selectively degraded by binding to autophagy cargo adapters such as p62 [57,58], NBR1 

[59], Tax1BP1 [60], optineurin [61] and NDP52 [62–65]. Proteins may contain an LC3-

interacting motif that promotes binding to LC3 and sequestration within the autophagosome, 

such as Dishevelled-2 [66–68]. Proteins and organelles that are targeted for selective 

degradation can also be modified by post-translational modifications such as ubiquitination 

or acetylation, which mediate interactions with autophagy cargo proteins such as p62 [69].

Following cargo sequestration, autophagosomes close and are trafficked retrogradely to the 

perinuclear region, where most late endosomes and lysosomes are localized [70–72]. 

Retrograde trafficking of autophagosomes occurs on microtubules in a dynein-dependent 

manner [70]. Autophagosomes are linked to dynein via a Rab7, RILP, and OPR1L complex 

[73,74] and in the absence of these factors, mature autophagosomes accumulate. 

Interestingly, actin-dependent autophagosome transport has also been demonstrated, 

although this does not occur during starvation-induced autophagy [75]. Following retrograde 

transport, autophagosome fusion with lysosomes depends on the Qa SNARE, synataxin 17; 

the Qbc SNARE, SNAP29; and the R SNARE, VAMP8 [76]. This process also depends on 

the HOPS complex [77–79] and the autophagosome adapter PLEKHM1 [78]. The lysosomal 

GTPase Arl8 also controls autophagosomal and endosomal fusion with lysosomes [80–84] 

via recruitment of the HOPS complex [82] and lysosomal positioning [80]. The fusion of 

autophagosomes with lysosomes leads to degradation of autophagic cargo.

III. Autophagy in Neurons and Neurites

The initial studies of autophagy by De Duve, Novikoff and others were in dividing cells. 

Neurons have long been known to possess lipofuscin, neuromelanin, and in ceroid 

lipofuscinosis disorders, ceroid pigments, that are accumulated within autophagosomes [85]. 

Nevertheless, to our knowledge, the initial reports in neurons of autophagosomes (also 

known as autophagic vacuoles) were in two mid-1970s electron microscopy reports of 

pathological specimens from the brain of Huntington’s disease patients [86,87]. The latter 

study stressed a highly increased abundance of lipofuscin in the neurons, astrocytes and 

microglia of these patients, and conjectured that this was due to insufficient autophagy, an 

impression supported by many subsequent studies in human tissue and animal models. This 

same study further noted enlarged mitochondria devoid of cristae and suggested that this 

could be due to deficient autophagy associated with Huntington’s disease, as borne out by 

later research by Marianne DiFiglia and colleagues [88]. Cultured striatal neurons with 

mutant huntingtin gene were found to form prominent autophagosomes when stressed by 

dopamine-mediated oxidative stress [89], predicting one theme of this review: in synapses, 

some effects of autophagy become apparent under conditions of cellular stress. Mechanistic 
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studies by Ana Maria Cuervo and collaborators indicated that in the case of huntingtin 

mutations that this could result from a lack of appropriate autophagic cargo recognition [90].

In addition to the lipofuscin pigment, work by Luigi Zecca and collaborators has shown that 

the neuromelanin pigment of substantia nigra and locus coeruleus neurons is encased with 

autophagic organelles that apparently do not degrade these contents [85,91], leading to an 

initial focus in the field on neuronal autophagy as a product of disease and normal aging 

related stress [92]. Subsequent studies by Randy Nixon, Anne Cataldo and colleagues 

revealed the presence of neuronal autophagic vacuoles in tissue from Alzheimer’s patients 

and other disorders [93–95] and further work by Anne Tolkovsky, David Rubinsztein, 

Zhenyu Yue, Richard Youle and many others have extended the observation of aberrant 

autophagy to a wide variety of associated neuronal disorders [96–98].

The presence of autophagic organelles in neurites and synapses awaited identification by 

Peter Hollenbeck [99], who observed retrograde axonal transport and lysosomal delivery of 

fluorescent cargo by autophagic vacuoles in cultured sympathetic neurons. This study 

suggested, in contrast to the other studies of the era, that autophagy might be associated with 

synaptic activity and may occur independently from disease or aging-oriented stress.

It took a long time for Hollenbeck’s pioneering observation to be appreciated by the field at 

large. One reason is that in dividing cells, autophagy was typically initiated by nutrient 

deprivation [54–56]. While nutrient deprivation and starvation is a potent trigger for 

autophagic degradation in non-neuronal cells, it has little effect in most populations of 

central neurons [100]. An exception is in the hypothalamus [101,102], a brain region that is 

critical for the maintenance of energy homeostasis [103], where autophagy senses energy 

balance to control neuronal activity (see below). Another reason may be that the 

autophagosomes, particularly in neurites, may be relatively short-lived and transported 

rapidly.

An experimental tool that has vastly changed the study of autophagy in synaptic 

transmission is the use of fluorescently tagged LC3 to specifically label autophagosome 

membrane in living cells. A study from Erica Holzbaur and colleagues introduced an elegant 

model in which autophagosomes were primarily generated in the distal processes of neurons 

and then trafficked toward the cell body to fuse with lysosomes in proximal processes and 

the cell body [104–106]. Live imaging GFP-LC3 puncta in primary cultures of dorsal root 

ganglia (DRG) suggested that autophagosome formation occurs almost exclusively within 

the axon tip. This may not be surprising, as DRG neurons differ from most CNS axons in 

that they do not make en passant synapses but instead have a single release site from the 

distal axon [106]. Similar imaging studies in synaptically mature primary hippocampal 

neurons yielded a more complex picture, with autophagosome formation occurring 

predominantly in distal processes but also in the cell body and more proximally in dendrites 

and axons [106]. Shehata et al reported the activity-dependent formation of autophagosomes 

in dendrites of primary hippocampal neurons [15]. Similar findings suggesting distal 

formation of autophagosomes have been reported in C. elegans [107]. These data suggest 

that autophagosome formation occurs within pre- and post-synaptic compartments and 
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provide a means for retrograde transport of autophagic cargo from distal regions of the 

neuron to the cell body for degradation.

What specifies the location of autophagosome formation in neurons? Holzbaur and Maday 

proposed that PI3P synthesis occurs distally within axons, as DFCP1 puncta, which mark 

sites of PI3P synthesis and nascent autophagosome formation, were located distally in 

neuronal processes [106]. In C. elegans, Colon-Ramos and colleagues identified Atg9 

trafficking events within the distal axon as being required for spatial organization of 

autophagosome formation [107]. Whether additional (neuron-specific) regulators are 

involved in orchestrating autophagosome formation and maturation within these highly 

complex cells remains to be seen.

The identification of autophagosomes and their regulated formation and trafficking, in 

neurons without ongoing pathology suggests that autophagy may play a role in the 

regulation of neurotransmission. To address this, transgenic mice lacking required autophagy 

genes could be used to identify changes in behavior and neurophysiology associated with 

loss of autophagy. Unfortunately, whole-body, constitutive knockout of many autophagy 

genes yield perinatal lethality [108]. Furthermore, the consequences of autophagy loss in the 

CNS could not be disambiguated from the effect of loss of autophagy in other organs.

Fundamental contributions to elucidating roles for autophagy in neurons were made by 

Hara, Komatsu and colleagues in the mid-2000’s who addressed this issue by generating 

mice with conditional alleles of Atg5 or Atg7 that could be knocked out in genetically-

defined cell types following expression of Cre recombinase [109,110]. CNS-specific 

knockout of Atg5 or Atg7 yielded similar age-dependent neurodegeneration, accumulation 

of cytoplasmic proteinaceous inclusions and motor dysfunction. These phenotypes were 

similar in both mouse lines, indicating that as in yeast, Atg5 and Atg7 function at similar 

steps in the mammalian CNS. These transgenic mouse lines have become critical tools that 

have enabled the identification of cell-type specific roles for autophagy in the CNS (see 

below).

IV. Autophagy and neurotransmission

Throughout the remainder of this review, we discuss the reciprocal roles of autophagic 

protein degradation in neurotransmission

1. Autophagy in synaptic development

As we and others have recently reviewed the role of autophagy in synaptic development, we 

limit our review of this topic to two particular studies specifically relevant to the role of 

autophagy in neurotransmission [111,112].

In C. elegans, clustering of postsynaptic GABAA receptors in muscle depends on 

presynaptic GABA release [113]. In the absence of presynaptic innervation by GABAergic 

terminals, GABAA receptors are diffusely localized on the plasma membrane of the muscle. 

Interestingly, however, the absence of both GABAergic and cholinergic inputs leads to 

endocytosis and degradation GABAA receptors via autophagy [16], while deletion of 
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autophagy in non-innervated muscles rescues deficits in neurotransmission. These data 

provide initial evidence that transmembrane postsynaptic receptors are degraded via 

autophagy, in an endocytosis-dependent manner. Notably, one family of mammalian Atg8 

homologs, the GABARAPs, are critical for anterograde trafficking of GABAA receptors 

[114,115], suggesting that autophagy-associated proteins are critical regulators of 

biosynthesis and degradation of these receptors.

In addition to its role in degradation of neurotransmitter receptors during development, 

autophagy is also critical for the maturation of synaptic morphology. In Drosophila, 

developmental loss of autophagy decreases neuromuscular junction (NMJ) size, while 

enhancing neuronal autophagy by overexpression of Atg1, a homolog of ULK1, leads to an 

increased number of synaptic sites [116]. In contrast, however, autophagy is required for 

dendritic spine pruning during mouse cortical development [117] and plays a critical role in 

axon pathfinding in the developing CNS [118–120], indicating that autophagy has been 

adapted for a range of synaptic mechanisms.

Finally, the lysosomal GTPase Arl8 [121,122] contributes to the delivery of active zone and 

synaptic vesicle precursor proteins within non-degradative lysosome-like vesicle in 

Drosophila, C. elegans and in mammalian neurons [123–125]. Whether delivery of these 

components involves lysosomal degradation or intersects with autophagy remains to be seen.

Little is known how neuronal autophagy regulates synaptic structure. Autophagic 

degradation of neurotransmitter receptors or neurotransmitter release (see below) may 

contribute to activity-dependent synaptic development. Similarly, autophagic degradation of 

mitochondria or endoplasmic reticulum, organelles that regulate synapse development in 

part due to their position in neurites [126,127] may be critical for the establishment and 

maturation of synaptic contacts. Experiments in which the degradation of specific 

autophagic cargo are disrupted during CNS development will be required to distinguish 

between these mechanisms.

2. Autophagy and neurotransmitter release

Autophagosome formation at presynaptic terminals suggests that autophagy shapes 

neurotransmitter release. Our lab provided early evidence of a cell-autonomous role for 

autophagy in neurotransmitter release [128]. We took advantage of the fact that dopamine 

(DA) release can be directly measured using cyclic voltammetry, in contrast to the release of 

other neurotransmitters which depends on postsynaptic recordings of receptor activation, to 

unambiguously demonstrate that DA neurons lacking autophagy release more DA following 

electrical stimulation. This was a clear result of the role of autophagy in axons, as opposed 

to a role in cell bodies, as DA somata were not present in the brain slice preparation we 

used. Ultrastructural analysis of DA axons in the absence of autophagy revealed enlarged 

presynaptic terminals, and changes in the morphology and number of synaptic vesicles. 

These data implicated autophagy in the homeostasis of synaptic vesicles and 

neurotransmitter release machinery.

Recent work from Ackermann, Garner and colleagues further implicates autophagy in the 

clearance of damaged synaptic vesicles. Synaptic vesicles undergo rapid cycles of release 
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and reformation, and this has been hypothesized to lead to damage to synaptic vesicle 

associated proteins [129]. To address whether autophagy is involved in the clearance of 

synaptic vesicle proteins, Hoffman et al fused supernova, a protein which creates reactive 

oxygen species (ROS) in response to light [130], to synaptotagmin, synapsin or 

synaptophysin and demonstrated that ROS-induced damage leads to autophagosome 

formation within the activated presynaptic terminal and degradation of synaptic vesicle-

associated proteins [131]. Activation of autophagy was required to counteract the damage 

caused by ROS on neurotransmitter release and synaptic vesicle endocytosis. These data 

suggest that autophagy contributes to synaptic homeostasis by degrading damaged synaptic 

vesicles on demand.

Does normal physiological activity also induce presynaptic autophagy? High-frequency 

stimulation of the Drosophila NMJ induces autophagosome formation within the presynaptic 

terminal, suggesting that autophagy may be required for the maintenance of presynaptic 

machinery during stimuli with elevated energy demands [132]. In combination, these data 

provide tantalizing evidence that autophagy is critical for the regulation of neurotransmitter 

release via a contribution to synaptic vesicle quality control.

Additional insights into the dynamics of presynaptic autophagy have arisen from 

experiments aimed at defining the role of presynaptic proteins in the control of autophagy. 

Synaptojanin is a lipid phosphatase that induces synaptic vesicle endocytosis via the 

dephosphorylation of PI(4,5)P2. The SAC1 domain of synaptojanin has recently been 

implicated in the maturation of autophagosomes at the presynaptic terminal in Drosophila 
[133]. EndophilinA, another protein involved in synaptic vesicle endocytosis, has recently 

been found to promote presynaptic autophagy by recruiting autophagy-associated proteins to 

highly curved membranes [132]. Finally, the presynaptic proteins Bassoon and Piccolo 

suppress presynaptic autophagy by sequestering Atg5 [134]. In the absence of Bassoon and 

Piccolo, synaptic vesicle pools are depleted and synaptic sites are lost via activation of 

autophagy. These data suggest not only that autophagy plays important roles in presynaptic 

function, but also that presynaptic proteins contribute to autophagic function within the 

axon.

3. Autophagy and postsynaptic functio

Autophagy further controls synaptic transmission via postsynaptic mechanisms. Loss of 

autophagy in cortical pyramidal neurons or using nestin-cre to knockout autophagy 

throughout the nervous system leads to elevated levels of components of the postsynaptic 

density such as PSD-95, SHANK3, and PICK1 [102,117]. Furthermore, in a mouse model 

of Fragile X syndrome, elevations in PSD95 and the immediate early gene, Arc, can be 

rescued by activation of autophagy [135]. Whether these proteins are sequestered into 

nascent autophagosomes formed into the dendrite or their levels are affected by autophagy 

through an alternative mechanism remains unknown. The ability of autophagy to degrade 

postsynaptic scaffolding proteins provides a possible mechanism through which autophagy 

could control synapse morphology and the efficacy of synaptic transmission.

Autophagy also contributes to the degradation of neurotransmitter receptors. In addition to 

the degradation of GABAA receptors during C. elegans development [16], chemically-
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induced long-term depression activates autophagic degradation of the AMPA receptor, 

GluR1 [15]. The mechanism by which autophagy contributes to GluR1 degradation and 

whether this is endocytosis-dependent, remains unknown.

4. Autophagy and synaptic plasticity

Changes in the strength of synaptic transmission, termed synaptic plasticity, are thought to 

represent a cellular correlate of learning and memory. Disrupted synaptic plasticity has been 

reported in mouse models lacking autophagy; however, much of the mechanism through 

which autophagy regulates synaptic plasticity remains unknown.

Long-term potentiation appears to be regulated by autophagy in some cases. Glatigny et al 

demonstrated that pharmacological inhibition of autophagy with Spautin-1 blocks theta burst 

stimulation-induced LTP in CA1 [136]. Nikoletopoulou and colleagues suggest that ongoing 

autophagy in the hippocampus is suppressed by brain-derived neurotrophic factor (BDNF) to 

permit LTP [102]. Autophagy may also play a role in long-term depression (LTD), as 

impaired autophagy has been implicated in exaggerated hippocampal mGluR-LTD in a 

mouse model of Fragile X syndrome [135].

Autophagy may contribute to synaptic plasticity in several ways. First, autophagy may 

actively degrade AMPA receptors to reduce synaptic strength during LTD [15]. Second, 

autophagy may degrade other synapse-associated proteins required for reorganization of the 

postsynaptic membrane during plasticity [102,117,135]. Autophagy may further regulate the 

levels of cytosolic calcium within the pre- or post-synaptic elements via degradation of 

mitochondria or endoplasmic reticulum [98,126]. It should also be noted that several kinases 

that regulate autophagic activity, including mTOR, Akt, and AMPK, are involved in synaptic 

plasticity [137,138], although whether these kinases act through autophagy to modulate 

synaptic plasticity remains a key question.

5. Autophagy contribution to behavior

The contribution of autophagy to brain function has also been explored through cell-type 

specific knockouts of autophagy genes.

a. Hypothalamus and energy homeostasis—The role of autophagy in 

hypothalamic control of food intake and energy homeostasis has been extensively studied. 

The arcuate nucleus of the hypothalamus (ARC) controls food intake in response to the 

status of an organism’s energy store [103]. Two neuronal populations in the ARC, Agouti-

related peptide (AgRP)-expressing (ARCAgRP) and pre-opiomelanocortin (POMC)-

expressing (ARCPOMC), oppositely control feeding [139–142]. ARCPOMC neurons release 

α-MSH, a cleavage product of POMC [143], which stimulates Melanocortin-4 Receptors 

(MC4R) on neurons in the paraventricular hypothalamus (PVH) [144–146], and other brain 

regions, to inhibit feeding. AgRP, which is also released in the PVH by ARCAgRP neurons, 

is an antagonist of the MC4R and stimulates feeding [140,147]. Circulating hormones such 

as leptin, insulin and ghrelin, and extracellular levels of glucose and lipids alter ARC neuron 

firing to elicit feeding behavior or satiety [103]. These extrinsic cues activate intracellular 

biochemical cascades. In particular, mTOR and AMPK activity within ARC neurons control 
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firing rates and neuropeptide release to affect feeding in response to energy status [148–

151]. Thus, neurons of the ARC represent a critical central node in energy homeostasis.

As described above, autophagy is tightly regulated by the coordinated activity of AMPK and 

mTOR. In contrast to most of the CNS, fasting induces autophagic activity in the 

hypothalamus [101,102]. To define the role of autophagy in ARC neurons and central 

control of energy homeostasis, Kaushik et al conditionally deleted the required autophagy 

protein Atg7 in ARCAgRP neurons using the Cre-LoxP system [101]. Mice lacking Atg7 in 

ARCAgRP neurons (which promote feeding) had lower body weight and fat mass relative to 

controls suggesting a deficit in ARCAgRP neuron function as these neurons promote feeding. 

One mechanism through which ARCAgRP neurons promote feeding in response to food 

deprivation is to increase the expression of AgRP mRNA. Kaushik et al reported that in mice 

lacking Atg7 in ARCAgRP neurons, fasting failed to induce an increase in AgRP expression. 

They concluded that intact autophagy is required for the fasting-induced mobilization of free 

fatty acids (FFA) from lipid droplets, a process known as lipophagy [152], and that FFA 

signalling normally activates AgRP mRNA expression by ARCAgRP neurons. These results 

elegantly demonstrate a cell-type specific role for autophagy in the central control of energy 

homeostasis.

In contrast to ARCAgRP neurons, conditional deletion of Atg7 in ARCPOMC neurons leads to 

increased body weight. Bouret and colleagues reported that this effect correlated with 

decreased axonal arborization of ARCPOMC neurons and innervation of target regions such 

as the PVH [153]. Both the Bouret and Lee groups demonstrated that autophagy was 

required in ARCPOMC neurons for a normal response to leptin: systemic or intracerebral 

administration of leptin did not suppress feeding in mice lacking autophagy in ARCPOMC 

neurons [153,154]. This lack of appetite suppression was associated with increased 

circulating leptin levels, further suggesting a state of relative leptin resistance. The precise 

mechanism, however, through which autophagy regulates ARCPOMC axonal outgrowth or 

biochemical response to leptin remains obscure. Furthermore, autophagy also contributes to 

the cellular response to neuropeptide Y, another key contributor of feeding within the 

hypothalamus [155].

AMPK also mediates fasting-induced synaptic plasticity within the ARC [156]. Whether 

changes in AMPK activity affect autophagic flux within the ARC and whether autophagy 

contributes to fasting-induced and AMPK-dependent synaptic plasticity in the ARC remains 

unknown. Although some AMPK targets, such as p21-associated kinase (PAK), are 

implicated in fasting-induced synaptic plasticity, it is not clear if PAK modulates autophagy 

in the ARC [156]. While lipophagy is implicated in feeding behavior, identification of 

additional potentially relevant autophagic targets required for fasting-induced plasticity, such 

as neurotransmitter receptors or mitochondria, requires further investigation.

b. Hippocampus and spatial memory—Recent reports highlight a role for autophagy 

in hippocampus-dependent behavioral tasks. Glatigny et al demonstrated that knockdown of 

the required autophagy proteins Beclin-1, FIP200, and Atg12 in the hippocampus reduced 

novel object recognition and contextual fear conditioning [136]. This effect was similar 

when the shRNA was expressed under the control of a neuron-specific promoter or a general 
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promoter suggesting that loss of neuronal autophagy led to these behavioral phenotypes. 

This group then used pharmacological tools to acutely manipulate autophagy and found that 

autophagy inhibition in the hippocampus, using Spautin-1, during but not after, the training 

phase of the contextual fear conditioning task reduced freezing during a probe trial while 

stimulation of autophagy during, but not after the training phase, increased freezing during 

the probe trial. These results suggest that hippocampal autophagy is required for the 

formation of contextual and object recognition memories.

A decrease in hippocampal autophagy also mediates hippocampal dysfunction in a mouse 

model of Fragile X syndrome (FXS). Suzanne Zukin and colleagues found reduced 

autophagy in hippocampal neurons lacking Fmr1, a model for FXS [135]. Reduction of 

mTOR signaling in hippocampal region CA1 rescued novel object recognition in FXS mice 

and this was dependent on the required autophagy protein Atg7. Thus, at least a subset of 

behavioral phenotypes in FXS mice arise from a deficit in hippocampal autophagy.

V. Speculation and future directions

1. Basal vs induced autophagy—One key remaining question in the study of 

neuronal autophagy is the distinction between ongoing basal autophagy and autophagy 

induced by extrinsic factors including cellular stress or synaptic input. Deletion of the 

required autophagy proteins Atg5 and Atg7 throughout the CNS leads to widespread 

changes in behavior, formation of cellular inclusions and eventual neurodegeneration 

[17,18]. These reports, along with the observation of relatively high basal levels of 

autophagosome biogenesis in neuronal cultures, supports a model in which ongoing 

autophagic activity is required for normal neuronal homeostasis and survival in the CNS 

[99,106]. This hypothesis seems particularly attractive because neurons are post-mitotic and 

unable to dilute toxic or damaged proteins and organelles by cell division, and may 

contribute to why autophagic dysfunction is found in many neurodegenerative diseases 

[157]. In contrast, however, recent findings that autophagic degradation can be induced on 

rapid (minute) timescales [131] and by neuronal activity [15] suggest that autophagy may in 

some cases provide a permissive or downstream role in the control of neuronal plasticity.

Defining the relative importance of basal autophagy versus activity-dependent inducible 

autophagy for neuronal function remains an important open issue. Furthermore, whether the 

targets of autophagic degradation are altered during induced autophagy, or whether the rate 

of autophagy alone changes is unknown. These questions are presently challenging to 

address, as cell-type specific manipulation of autophagic activity generally necessitates 

genetic approaches that occur over long timescales and lead to compensatory responses in 

vesicle trafficking pathways that may obscure the responses to autophagy disruption. 

Furthermore, while rapid pharmacological manipulation of autophagic responses can be 

accomplished with newly developed compounds, many of these target kinases upstream of 

autophagy, such as Vps34 and ULK1, that have pleiotropic effects on cellular pathways. The 

advent of temporally specific, genetically encoded regulators of autophagic activity will 

more easily permit dissection of basal versus inducible autophagy in the CNS.
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2. Substrate specificity—While early studies of autophagy were often interpreted to 

demonstrate that cytosolic macromolecules were non-selectively sequestered into autophagic 

vacuoles [54–56], more recent work has found that specific proteins or damaged organelles 

can be selectively degraded by autophagy [53]. In neurons, this specificity may be 

particularly important as the requirements for synaptic plasticity are distinct between brain 

regions and across developmental stage. It seems likely that autophagy may selectively 

degrade a subset of proteins within particular neuronal populations or during specific 

developmental stages. Such specificity could be achieved through: 1) selective expression of 

adapter proteins that only sequester a subset of possible autophagic cargo, 2) regulated post-

translational modification of autophagic cargo which directs substrates for autophagy only 

under specific conditions, 3) a yet-to-be described recycling pathway that removes 

sequestered cargo from mature autophagosomes prior to fusion with the lysosome. 

Identifying the list of autophagic substrates in specific cell types or during specific 

developmental time points could be achieved using either genetic or biochemical 

approaches. Eliminating autophagy with temporal specificity in distinct cell types would 

lead to the accumulation of cell-type specific autophagy substrates. Alternatively, new 

proteomics tools that label autophagosome associated proteins in distinct cell-types could be 

used to define autophagic cargo biochemically [158]. These approaches will provide insight 

into the dynamics of autophagic degradation within neurons and how autophagy contributes 

to synaptic function.

3. Intersection with endolysosomal system—Finally, it is critical to elucidate the 

relationship between the endosomal system and autophagy within neurons. These two 

cellular pathways are deeply interconnected in terms of their molecular regulation 

[79,159,160] and because late endosomes and mature autophagosomes fuse prior to fusion 

with lysosomes and cargo degradation [161–167]. Interestingly, early steps in both 

autophagy and endocytosis are both regulated by Vps34 [159], endophilin [132] and 

synaptojanin [133], suggesting that these shared regulators may coordinate a balance 

between these two pathways. Second, Atg9, a transmembrane protein involved in early 

autophagosome biogenesis, is moreover present on endocytic vesicles that fuse with nascent 

autophagic membranes, suggesting that endosomes potentially act as a membrane source to 

growing autophagosomes [40,42,52]. Later steps in the maturation of both endosomes and 

autophagosomes depend on the same proteins including Rab7 [160,168,169] and the same 

proteins have been found to be degraded by the endolysosomal system and autophagy (see 

[15]).

The connection between autophagy and endocytosis presents experimental and conceptual 

challenges. First, many experimental perturbations that affect autophagy may either also 

directly disrupt endocytosis, such as PI3K inhibition [30–32], or cause compensatory 

changes in the endolysosomal pathway and be responsible for the observed phenotypes. 

Combined pharmacological and genetic manipulations, genetic complementation and 

convergent phenotypes from distinct manipulations of each pathway would strengthen 

conclusions that one pathway is directly involved in the process of interest.

Second, implicating autophagy per se in the degradation of membrane proteins is difficult. 

As a key class of autophagy substrates that can be degraded by autophagy to control 
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neurotransmission [15,16], identifying the precise mechanism of their degradation by 

autophagy represents a key conceptual question. For example, while Shehata et al 

demonstrated that GluR1 degradation during chemical long-term depression (chem-LTD) 

depends on expression of the required autophagy protein Atg7 [15]. GluR1 degradation 

during chem-LTD depends on endocytosis and endolysosomal trafficking/degradation 

[15,170–172]. Whether GluR1 truly enters bona fide autophagosomes or whether Atg7 plays 

a distinct role in the endolysosomal degradation of GluR1 during chem-LTD remains 

unknown. This participation of both pathways is a strong possibility considering that 

endosomal fusion with autophagosomes to form amphisomes may provide a key final step in 

the degradation of endosomal contents. In contrast, GABAA receptor degradation at the 

NMJ in C. elegans depends on autophagy and these receptors are observed in LC3-positive 

vesicles [16]. Key experiments defining the localization putative autophagic substrates 

would enhance our understanding of the mechanisms of autophagy at synapses.

VI. Conclusion

Here, we have reviewed the accumulating evidence that autophagic protein degradation 

plays an important role in both disease-associated and non-pathogenic states within the CNS 

and contributes to synaptic transmission, plasticity and behavior. The reports that autophagy 

contributes to presynaptic homeostasis and postsynaptic function suggest that neurons have 

coopted an evolutionarily conserved stress response pathway to meet its needs in both 

synaptic compartments. We look forward to a deeper understanding of the mechanism 

through which autophagy acts at the synapse and contributes to synaptic function that we are 

sure will soon emerge.
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Highlights

• The molecular machinery of autophagy is evolutionarily conserved from yeast 

to mammals.

• Neuronal autophagy occurs in the pre- and post-synaptic compartments.

• Autophagy controls neurotransmitter release, receptor trafficking, and 

synaptic plasticity.

• Neurons have coopted a ubiquitous cellular stress response pathway to 

regulate neurotransmission.
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Figure 1. Schematic representation of the mechanisms of autophagy.
Autophagy induction is driven by mTOR and AMPK. These metabolic kinases stimulate 

PI3P synthesis which recruits the PI3P binding proteins DFCP1 and WIPI1-4 to a membrane 

source. The activity of the Atg conjugations systems and Atg9+ vesicles expand the 

autophagic membrane. Once the membrane closes, the autophagosome matures, traffics to 

the perinuclear area and fuses with lysosomes. Late endosomes can fuse with closed 

autophagosomes to form amphisomes. Cargo is not depicted for simplicity.

Lieberman and Sulzer Page 25

J Mol Biol. Author manuscript; available in PMC 2021 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Aspect of neurotransmission that are regulated by autophagy.
Autophagy can control neurotransmission both pre- and postsynaptically. In the presynapse, 

autophagy controls synaptic vesicle (SV) homeostasis and release as well as mitochondrial 

function. Postsynaptically, autophagy controls excitatory neurotransmission by degrading 

AMPA receptors and GABAA receptors. The absence of autophagy disrupts synaptic 

plasticity that is dependent on metabotropic glutamate receptors. Finally, autophagy 

modulates neuropeptide signaling, synapse formation and synaptic pruning; the locus of 

action is unknown in these cases.
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