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Integrated analysis of mRNA and miRNA
profiles revealed the role of miR-193 andmiR-
210 as potential regulatory biomarkers in
different molecular subtypes of breast cancer
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Abstract

Background: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of
microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined
predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative
of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential
regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad
range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated.

Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and
miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and
T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by
unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped
according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was
investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies
included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to
determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively.

Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative
subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential
regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10DmRNA expression inversely
correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients,
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respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were
CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3.

Conclusions: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different
molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation.
Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways
for aggressive breast cancers
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Background
Breast cancer (BC) is the most commonly occurring
malignancy in women worldwide with more than 2 mil-
lion new cases diagnosed in 2018 [1]. BC is character-
ized by high levels of intra and inter-tumor heterogeneity
that impact several levels, including variation in histo-
logical features, together with differences in response to
treatment and to patient survival outcomes [2]. An under-
standing of inter-patient differences is crucial for relating
breast cancer biology to new targeted therapeutics. Vari-
ations in the expression of established prognostic and
predictive biomarkers togther with hormone receptor sta-
tus remains a challenge for clinical management and use
of targeted therapies [3].
Previous studies based on global gene expression analy-

ses have provided additional insights into the complexities
of BC therapeutics. Perou et al. [4, 5] initially classified
breast tumors into four molecular subtypes based on their
gene expression profiles. The known intrinsic molecular
subtypes of breast cancer were extensively characterized,
and showed significant differences in their incidence, rel-
ative risk factors, prognosis and treatment sensitivity [6,
7]. Themost recent guidelines have supported a classifica-
tion based on five molecular subtypes: luminal A, luminal
B, luminal B HER2 positive, HER2-enriched and triple
negative. Additionally, RNA-based multigene expression
assays have been developed to define other molecular
subtypes showing some evidence of clinical utility [8, 9].
However, there are distinct limitations with classifica-
tion schemes solely based on gene expression. Moreover,
the reproducibility of these methods has been questioned
[10, 11], drawing attention to the necessity for the identi-
fication of new types of biomarkers that can more rigor-
ously distinguish between the various molecular subtypes
of BC.
Recent findings have drawn attention to the role

microRNAs (miRNAs) may play as novel biomarkers and
their future potential as therapeutic targets in cancer
[12–14]. MiRNAs are particularly promising due to their
molecular stability, their ease of detection by non-invasive
methods and their ability to provide improved subtype
classification [12–14]. MiRNAs are a class of small non-
coding regulatory RNAs that are involved in controlling

gene expression at the posttranscriptional level [15, 16].
These regulatory transcripts are short, single-stranded
RNA sequences (approximately 19–23 nucleotides) that
are able to modulate gene expression and mediate a vari-
ety of physiological processes. They have direct involve-
ment in several diseases and are known to play an impor-
tant role in cancer [17, 18]. In BC, several miRNAs have
been reported to be involved in prognosis, metastasis
and response to therapy [19, 20]. However, details of
the molecular mechanisms underlying the regulation of
miRNA expression in breast cancer are not fully under-
stood.
In this study, we investigated the global expression pro-

files of miRNA from breast cancer cell lines and TCGA
datasets derived from different molecular subtypes of BC
to identify miRNAs candidates associated with specific
molecular subtypes. In parallel, we performed an integra-
tive analysis of mRNA profiles to identify any putative
miRNA targets for a deeper understanding the regula-
tory impact of miRNAs on the cancer biology of BC. The
expression of downstream genes affected by regulatory
miRNAs may influence important key molecular path-
ways that could serve as targets for cancer therapy. We
selected genes involved in general transcription and reg-
ulation processes that could also affect apoptosis and cell
proliferation as both pathways hold therapeutic promise
in BC. Finally, we further investigated the functional roles
of the selected miRNAs for a better understanding of
their role in BC. Further studies are needed to gain more
insights into miR-193 and miR-210 targets and their asso-
ciated signaling pathways.

Methods
Cell culture and RNA isolation
Seven human BC cell lines from different molecular sub-
types and one breast normal cell were utilized, as fol-
lows: luminal (MCF-7, MCF-7/AZ and T47D), HER2
(BT20 and SK-BR3), triple negative (Hs578T e MDA-
MB-231) and normal control cell (HB4A). All the cells
were obtained from the American Type Culture Collec-
tion (ATCC; Manassas, VA, USA) and were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and 1% peni-
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cillin/streptomycin solution (Gibco, Invitrogen), at 37°C
and 5% CO2 atmosphere. Cell lines authentication was
performed using in-house kit for Short tandem repeat
(STR) fragments profiling by the Molecular Diagnostics
at the Barretos Cancer Hospital as previously reported
[21]. Mycoplasma detection and control is determined
every 15 days of culture. Total RNA was extracted by Tri-
zol™(Invitrogen) according to the manufacturer’ instruc-
tions, with an additional overnight precipitation step at
-20°C with isopropanol (Merck). RNA quantification and
purity were carried out in a Qubit quantitation platform
(Invitrogen) and RNA integrity was assessed by microflu-
idic electrophoresis using a 2100 Bioanalyzer with RNA
6000 nanochips (Agilent Technologies, Santa Clara,
CA, USA). Samples presenting 260/280 and 260/230
ratios of 1.8-2.0 and RNA integrity number (RIN) ≥9.0
were used.

mRNA andmicroRNAmicroarrays
Hybridizations of mRNAs and miRNAs were performed
as previously reported by our group [22–24]. The oligo
microarrays technology used for gene expression assays
was the SurePrint G3 Human Gene Expression v3 8x60K
oligo microarrays (G4851C, Agilent Technologies) and
the Human miRNAMicroarray Kit (V3) (8x15K-G4471A,
Agilent Technologies) was used to assess the expression
of miRNAs. For both microarrays, the total RNA amount
(200 ng) and the one color (cyanine-3, Cy3) Quick Amp
labeling kit (Agilent) was used. The hybridization steps
varied according the manufacturer’ instructions, with 17
hours at 65°C for mRNA and 24 hours at 55°C for miRNA
microarrays. Images were acquired using an Agilent DNA
microarray scanner with SureScan technology (Agilent
Technologies).

Microarray data analysis
The raw microarray expression data were obtained using
the Feature Extraction software v.12.0 (Agilent Tech-
nologies) and submitted to the R environment to be
analyzed using dedicated packages from Bioconductor
[25, 26]. Median signals were used as intensity values
in both microarrays. Normalization was performed using
the quantile method with the limma package [27]. To
identify the miRNAs differentially expressed between the
BC cell lines and control cells we performed a rank prod-
ucts analysis considering both P-value and pfp (positive
false predictions) ≤0.05 and also ANOVA (p ≤0.01 with
Bonferroni correction) for multiple conditions [28, 29].
Analysis of potential mRNA-miRNA interactions was per-
formed using bidirectional analysis of mirDIP, i.e. the lists
of both differentially expressed molecules were consid-
ered in the analysis [30]. The target genes were inde-
pendently selected by all the algorithms provided by this
platform using the selection criteria of occurrence com-

mon to at least four algorithms. We only considered the
top 1% of target genes, including those identified by the
Cancer Gene Index data (NCI) as candidates for being
involved in breast cancer. To further determine how the
selected genes could be associated with breast cancer and
themolecular pathways related to these genes, we used the
plugin ReactomeFI on Cytoscape version 3.6.0 [31, 32].

TCGA patient’s selection and validation
Validation of potential miRNA expression, mRNA-
miRNAs interactions and targets that were predicted by
our microarray data analysis of BC cell lines was car-
ried out using TCGA databases level 3 [33]. The TCGA
data repository had samples containing miRNA sequenc-
ing, derived from 1198 patient tumors. According to
the TCGA guidelines, the datasets used present no lim-
itations or restrictions at the moment. All clinical and
associated molecular data were retrieved using RTCGA
and FirebrowseR packages [34, 35]. The patient tumors
were stratified according to their molecular subtypes
(luminal, HER2 or triple negative) using the informa-
tion available regarding the molecular status of ER, PR
and HER2 and Ki-67 markers. Only concordant mark-
ers between HER2 immunohistochemistry and FISH
were used. Patients with missing biomarker data for at
least one miRNA were also excluded. Patients could be
classified for luminal (n = 279), HER2 (n = 54) and
triple-negative (n = 123). Data from the histologically
normal breast tissue adjacent to the tumor (NT; n =
57) of the same patients were used as normal control
group.

Transient transfection of microRNA inhibitors and
quantiative real-Time PCR
The hsa-mir-210 and hsa-miR-193a-3p miRCURY LNA™
microRNA inhibitors (Exiqon) were transfected into
BT20/MDA-MB-231 and BT20/MCF-7 cells, respectively,
using INTERFERin (Polyplus Transfection), according to
the manufacturer’s protocol. Cells without treatment with
inhibitors (NC group) and transfected with miRCURY
LNA™microRNA antisense Control A (Exiqon) (Scramble
group) were used as negative controls of the transfection.
The miRNA expression before and after transfection pro-
cedures were assessed by RT-qPCR. Reverse transcription
to the sequence of miR-193a-3p and miR-210 was per-
formed with total RNA (10 ng) using TaqMan® Small RNA
Assays (Thermo Fisher Scientific) according to the manu-
facturer’s protocol. The PCR reaction with a final volume
of 10 μl was performed at 95°C for 10 min, 40 cycles of
95°C for 15 sec and 60°C for 1 min. The reactions were
performed in triplicate using a 7900HT Fast Real-Time
PCR System (Applied Biosystems, Thermo Fisher Scien-
tific). The analyses were performed using R statistical
computing environment according to the 2-�Ct method
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[25, 36]. The small non-coding nucleolar RNA RNU48
provided in the TaqMan® Control MicroRNA Assay kit
(Thermo Fisher Scientific.) was used as housekeeping for
the analysis.

Cell proliferation, viability, cytotoxicity and apoptosis
assays
Cell proliferation assays were carried out by xCELLi-
gence RTCA DP Instrument (Roche Applied Science,
Rotkreuz, Switzerland), using the corresponding E-Plate
(Roche Applied Science). The experiments were per-
formed following the manufacturer’s protocol. The xCEL-
Ligence system transforms automatically the impedance
of electron flow caused by cells in a cell index (CI) value
according to the formula CI = (impedance at time point
n-impedance in the absence of cells) / nominal impedance
value [37]. For the proliferation assay, concentrations of
8x103 for all BC transfected cells were used and the CI
value was monitored for 5 days, as previously reported
[38]. The ApoTox-Glo Triplex Assay (Promega) was used
to determine the cell viability, cytotoxicity, and apoptosis
in transfected cells. Cells were seeded into 96-well culture
plates and transfected as described above. After treat-
ment, cells were incubated with 100 μL fresh cell culture
medium. At 24 h after transfection start, 20 μL viabil-
ity/cytotoxicity reagent was added to the cells. Following
incubation for 1h, fluorescence was measured with the
microplate multimode reader Varioskan™ (Thermo Fisher
Scientific) at 495 nm for quantification of cell viability and
at 535 nm for determination of cytotoxicity. Afterward,
100 μL Caspase-Glo 3/7 Reagent was added to each well.
Following incubation for 30 min, luminescence was fur-
ther measured. The apoptosis process was also assayed by
flow cytometry as previously described [39]. Cells trans-
fected with miR-193, miR-210 inhibitors, or negative con-
trols were plated onto a six-well plate at a density of 1x106
cells/ well, allowed to adhere for at least 24 h and serum
starved for 12 h. Cells were resuspended in the appropri-
ate binding buffer, stained with FITC-conjugated Annexin
V (BD Biosciences, San Jose, CA, USA) and propidium
iodide (PI) at room temperature for 15 min and subse-
quently analyzed by flow cytometry in a BD FACSCanto
II (BD Biosciences). Percentage of early (annexin V-FITC
positive, PI negative) and late (annexin V-FITC positive,
PI positive) apoptotic cells were determined by quadrant
analysis of annexin V-FITC/PI plots using the software
BD FACSDiva (BD Biosciences) following the manufac-
turer’s recommended protocol. A total of 2x104 cells were
evaluated in flow cytometry assays.

Transwell migration and invasion assays
The transwell migration assay were performed using tran-
swell chambers (8-μm pore size; Corning, USA). Briefly,
8x105 cells were plated in serum-free medium onto the

upper compartment of the chamber. Medium contain-
ing 10% FBS was added to the lower compartment as a
chemo-attractant, followed by an incubation of 24 h at
37°C. Then, the porous inserts were removed and the cells
that had migrated were fixed, stained and counted (mag-
nification of x200). The experiments were all repeated at
least three times. Cell imaging was analyzed by ImageJ
software [40]. Cell invasion assay in negative controls and
transfected cells was performed using a 24-well BD Bio-
coat Matrigel Invasion Chambers (BD Biosciences), with
the same conditions as described for the migration assays.

Statistical analysis
The results of all in vitro experiments, provided as con-
tinuous data, are expressed as the means ± standard
deviations (SD) from three independent experiments. Sta-
tistical comparisons were calculated using Student’s t-test
or one-way ANOVA (Analysis of variance) with post-hoc
Tukey test for multiple comparisons and P ≤0.05 was con-
sidered. All the analyses were carried out using the R
environment (version 3.2.3) [25].

Results
Identification of differentially expressed microRNAs in
breast cancer cell lines and tissues
We identified a global miRNA profile using a panel of
breast cancer cell lines from luminal (MCF-7, MCF-7/AZ
and T47D), HER2 overexpressed (BT-20 and SKBR3),
triple negative subtypes (MDA-MB-231 and Hs578T) and
normal epithelial breast cancer cell line (HB4A). The
flowchart of the study design is shown in Additional file 1:
Figure S1A. Different transcripts derived from the same
miRNAs based on our microarrays analysis were grouped
together using the median. Ninety-one unique miRNAs
were considered to be differentially expressed following
several filtering steps in our analyses (Fig. 1). These cri-
teria included a stringent multi-test analysis (ANOVA p
≤0.01 with Bonferroni correction), followed by filtering
using a non-parametric test (rank products p ≤0.05 and
pfp ≤0.05) selecting miRNAs with a fold change ≥2.0
in comparison to the normal HB4A cell line. Analysis of
these 91 differentially expressed miRNAs showed that 32
were upregulated in comparison with the control cell line
(Table 1). Biological information regarding these 32 miR-
NAs are displayed in Table 1. Since the miRbase version of
microarrays is 12.0, the nomenclature from most updated
version until now (v. 22.0), together with microRNA val-
idation information, are also provided (Table 1). We then
performed further functional assays on two miRNAs that
were selected because they were upregulated in more than
one BC molecular subtype (Additional file 1: Figure S1B).
The miR-210 was upregulated in both the triple negative
and in the HER2+ subtypes, while miR-193 was differen-
tially expressed in the HER2+ and luminal subtypes. One
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Fig. 1 Hierarchical clustering analysis of breast cancer cell lines and normal HB4A cells. Unsupervised hierarchical cluster analysis representing the
92 miRNAs expressed in breast cancer cell lines versus normal HB4A cells

representative cell lines of each subtype, MDA-MB-231,
BT-20 and MCF-7, respectively, were selected for fur-
ther evaluations (Additional file 1: Figure S1B). Analysis
of expression levels in the TCGA BC datasets confirmed

that miR-210 and miR-193 were the highest ranking miR-
NAs, with expression levels that were significantly corre-
lated with their respective associated molecular subtypes
(triple-negative and HER2+ for miR-210 and miR-193 for
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Table 1 Deregulated miRNA in breast cancer cell lines compared to normal HB4A cells

Microarray ID Probe sequence MIMAT ID miRbase (rel. 22) Validation information [*]

hsa-miR-141 CCATCTTTACCAGACA MIMAT0000432 hsa-miR-141-3p experimental; cloned

hsa-miR-141* TCCAACACTGTACTGGAA MIMAT0004598 hsa-miR-141-5p experimental; cloned

hsa-miR-148a ACAAAGTTCTGTAGTGCACT MIMAT0000243 hsa-miR-148a-3p experimental; cloned, Northern

hsa-miR-149 GGGAGTGAAGACACGGAG MIMAT0000450 hsa-miR-149-5p experimental; cloned

hsa-miR-182 AGTGTGAGTTCTACCAT MIMAT0000259 hsa-miR-182-5p experimental; cloned

hsa-miR-183 AGTGAATTCTACCAGTGCCA MIMAT0000261 hsa-miR-183-5p experimental; cloned

hsa-miR-183* TTATGGCCCTTCGGT MIMAT0004560 hsa-miR-183-3p experimental; cloned

hsa-miR-193a-3p ACTGGGACTTTGTAGGC MIMAT0000459 hsa-miR-193a-3p experimental; cloned

hsa-miR-193b AGCGGGACTTTGAGGG MIMAT0002819 hsa-miR-193b-3p experimental; array-cloned, cloned

hsa-miR-200a ACATCGTTACCAGACAGT MIMAT0000682 hsa-miR-200a-3p experimental; cloned

hsa-miR-200a* TCCAGCACTGTCCGGT MIMAT0001620 hsa-miR-200a-5p experimental; cloned

hsa-miR-200b TCATCATTACCAGGCAG MIMAT0000318 hsa-miR-200b-3p experimental; Northern, cloned

hsa-miR-200b* TCCAATGCTGCCCAG MIMAT0004571 hsa-miR-200b-5p experimental; cloned

hsa-miR-200c TCCATCATTACCCGG MIMAT0000617 hsa-miR-200c-3p experimental; cloned, Northern

hsa-miR-200c* CCAAACACTGCTGGGTA MIMAT0004657 hsa-miR-200c-5p experimental; cloned

hsa-miR-203 CTAGTGGTCCTAAACATT MIMAT0000264 hsa-miR-203a-3p experimental; cloned

hsa-miR-205 CAGACTCCGGTGGAAT MIMAT0000266 hsa-miR-205-5p experimental; cloned

hsa-miR-210 TCAGCCGCTGTCACAC MIMAT0000267 hsa-miR-210-3p experimental; cloned, Illumina

hsa-miR-26a AGCCTATCCTGGATT MIMAT0000082 hsa-miR-26a-5p experimental; cloned, Northern

hsa-miR-26b ACCTATCCTGAATTACTTGA MIMAT0000083 hsa-miR-26b-5p experimental; cloned, Northern

hsa-miR-34a ACAACCAGCTAAGACACTGC MIMAT0000255 hsa-miR-34a-5p experimental; cloned

hsa-miR-34a* AGGGCAGTATACTTGCTG MIMAT0004557 hsa-miR-34a-3p experimental; cloned

hsa-miR-363 TACAGATGGATACCGTGCA MIMAT0000707 hsa-miR-363-3p experimental; array-cloned, cloned

hsa-miR-365 ATAAGGATTTTTAGGGGCATTA MIMAT0000710 hsa-miR-365a-3p experimental; cloned, array-cloned

hsa-miR-375 TCACGCGAGCCGAAC MIMAT0000728 hsa-miR-375-3p experimental; cloned

hsa-miR-425 TCAACGGGAGTGATCGTG MIMAT0003393 hsa-miR-425-5p experimental; cloned

hsa-miR-429 ACGGTTTTACCAGACAGTA MIMAT0001536 hsa-miR-429 experimental; cloned

hsa-miR-652 CACAACCCTAGTGGC MIMAT0003322 hsa-miR-652-3p experimental; Microarray, SAGE, cloned

hsa-miR-9* ACTTTCGGTTATCTAGCTT MIMAT0000442 hsa-miR-9-3p experimental; cloned

hsa-miR-934 CCAGTGTCTCCAG MIMAT0004977 hsa-miR-934 experimental; cloned

hsa-miR-96 AGCAAAAATGTGCTAGTGCCA MIMAT0000095 hsa-miR-96-5p experimental; cloned

hsa-miR-99a CACAAGATCGGATCTACGG MIMAT0000097 hsa-miR-99a-5p experimental; cloned

According to miRbase

luminal and HER2+). The expression level of miR-210 was
significantly increased in BC tumors in comparison to the
normal controls (Fig. 2). Similarly, the expression of miR-
193 was also upregulated in BC when compared to the
normal epithelial cells, HB4A (Fig. 2). Collectively, our
results indicate that miR-210 is upregulated in BC and let
us hypothesize that downregulation by silencing assays of
this miRNA could have an effect on the cells of different
molecular subtypes.

Target prediction and enrichment analysis
We used a mRNA microarray to screen for aberrant
expression of mRNAs in the same BC cells used for

our initial miRNA assays. The candidate genes were first
screened using several miRNA target prediction engines
provided by mirDip data repository, and then the top
differentially expressed target mRNAs for miR-210 and
miR-193 were selected. KEGG pathway enrichment anal-
ysis was obtained for the predicted mRNAs (Table 2).
This analysis showed that the following pathways: Direct
p53 effectors, signaling by interleukins, PI3K-Akt signal-
ing, generic transcription pathway,FoxO signaling path-
way, hippo signaling pathway and regulation of nuclear
SMAD2/3 signaling could all be associated with these tar-
get miRNAs, after filtering for breast neoplasia, according
to ReactomeFI analysis. The mRNA targets identified in
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Fig. 2 Validation of the selected microRNAs (hsa-miR-193a-3p and hsa-miR-210) expression in TCGA data. The log of the normalized expression
values of miRNA data of TCGA from patients of different molecular subtypes were compared to expression levels from normal breast tissue samples.
Mean ± SD are shown; *P ≤0.01

the selected pathways were evaluated according to their
differential expression in the TCGA data and the genes
that showed the same profile were selected. Between
them, the genes TNFRSF10C/D and CCND1 were the top
ranked and are highlighted in bold in Table 2.

Functional in vitro assays
As a first approach to investigate the functional signifi-
cance of miRNAs that are downregulated in BC, cell lines
representative of specific BC subtypes were transiently
transfected with inhibitors of miR-210, miR-193, or neg-
ative control. Transfection efficiencies of miR-210 and
miR-193 in BC cells was confirmed by RT-qPCR and only
the assays encompassing ≥70% of inhibition were further
evaluated. To determine whether the reduction of expres-
sion of both miRNAs could modify BC cells behavior,
cells of different subtypes were transfected with specific
inhibitors and then effects on viability, cytotoxicity and
apoptosis were measured. No changes were observed in
cell viability for either miRNA in comparison to cells
transfected with the negative controls (Additional file 2:
Figure S2). Conversely, inhibition of both miRNAs did
not decrease the percentage of cytotoxicity in the times
analyzed (Additional file 3: Figure S3). The analysis of
apoptosis did not show any changes either (Additional
file 1: Figure S4). Since some cell lines, such as MCF-7 do
not express caspase 3 [41], additional experiments were
conducted to evaluate apoptosis by the Annexin V and
propidium iodide staining methodology. No significant

differences were found for levels of apoptosis after miR-
210 and miR-193 transfections in comparison to controls
(Additional file 5: Figure S5) and this led us to rule out the
occurrence of viability, cytotoxicity and especially apop-
tosis. Through the TNFRSF10C and TNFRSF10D mRNA
expression was inversely correlated with expression lev-
els of miR-193 and miR-210 in breast cell lines and breast
cancer patients, respectively. Since these targets mRNAs
are known inhibitors of apoptosis, these results suggest
that they could potentially inhibit the apoptosis initiation
mechanisms after selected miRNA silencing.

Alterations in proliferation, invasion andmigration
Our results revealed alterations in cell proliferation and in
different time points for both miRNAs in all cells evalu-
ated. The most evident effects were associated with cell
proliferation after miR-210 silencing in triple negative
subtype cell line MDA-MB-231. In silico analyses (see
Table 2) predicted RUNX3 as a target of miR-210. These
results showed involvement of RUNX3 whose expression
was inversely correlated for this miRNA. Downregula-
tion of miR-210 expression in MDA-MB-231 cells signif-
icantly increased cell proliferation, as demonstrated by
xCELLigence assays (Fig. 3). These data suggest that miR-
210 could affect cell proliferation in triple-negative BC
cells. No effect was observed for migration and invasion
analysis in all BC cells of different molecular sub-
types studied (Additional file 6: Figure S6 and Addi-
tional file 7: Figure S7). Taken together, these data show
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Table 2 Top pathways of miRNA targets predicted by mirDIP analysis

Pathway FDR-corrected P-value Genes

Direct p53 effectors 2,54E-14 TRRAP,SERPINE1,CREBBP,CASP10,SERPINB5,HTT,IGFBP3,HIC1,MCL1

TNFRSF10C,TNFRSF10B,TNFRSF10D,BCL6,SP1,MDM2,BCL2L1,PTEN

APAF1,MET,TP53INP1,E2F1,BAK1,PML,APC,CCNK,EPHA2,LIF,SMARCA4

TP73,PRMT1,FOXA1,EP300,HGF,TSC2,NDRG1,CAV1,VCAN

Signaling by Interleukins 2,54E-14 FRS2,GATA3,HIF1A,PSMF1,IL22RA1,COL1A2,JAK2,DUSP6,DUSP7,NRAS

ALOX5,STAT6,STAT1,STAT3,DAB2IP,CSF1,IRS2,RORA,FGF1,SQSTM1

HSP90B1,SOCS3,SOCS1,MCL1,KL,BCL6,NF1,BCL2L1,FLT3,KSR1,NRG1

TNFRSF1B,PIK3CA,MET,CRK,NOD2,ANGPT1,CRKL,SOX2,BTRC,AKAP9

STAT5B,LIF,PTK2,SMARCA4,GRB2,SYK,OSMR,IL1A,KIT,RHOU,MAP3K3

OSM,CCND1,HGF,LIFR,POU2F1,IL7,FGFR1,CXCL2,MMP9,YWHAZ,CBL

ERBB4,PTK2B,MAPK1,NCAM1,CAMK2G,KRAS

PI3K-Akt signaling pathway 5,83E-13 AKT2,MYB,PRKCA,NGFR,COL1A2,JAK2,NRAS,CSF1,FGF1,HSP90B1,BCL2L11

MCL1,CDK6,MDM2,BCL2L1,FLT1,ITGB3,PTEN,PIK3CG,VWF,ITGA2,PIK3CA

ITGA6,MET,EIF4E,ANGPT1,PPP2R1B,EPHA2,LPAR1,LPAR3,PTK2,GRB2

BRCA1,SYK,OSMR,KIT,SGK1,RXRA,OSM,IGF1R,CCND2,CCND1,HGF,TSC2

TSC1,IL7,FGFR1,PDPK1,YWHAZ,RBL2,LAMA4,THBS2,THBS1,MAPK1,KRAS

Generic Transcription Pathway 5,83E-13 SERPINE1,GLS,MED1,BARD1,CREBBP,NR2F1,CASP10,TEAD1,NCOR2,NCOR1

RARA,PPARA,RICTOR,RORA,CTGF,YY1,IGFBP3,NOTCH2,NOTCH1,TNFRSF10C

TNFRSF10B,ESRRG,TNFRSF10D,BCL6,SP1,MDM2,PIN1,PTEN,APAF1,GLS2

TP53INP1,E2F1,E2F4,PML,CCNK,CCNC,CHEK1,RUNX2,ATM,TP73,BRCA1

NCOA2,PRMT1,KIT,SGK1,RXRA,NR3C1,EP300,TSC2,TSC1,FANCD2,NDRG1

SMAD2,TFAP2A,TFAP2C,SMAD4,SMAD3,ESR1,NR4A3,THRB,PDPK1,YWHAZ

RBL2,RBL1,NR2C1,MTA2,MAPK14,MAPK11

FoxO signaling pathway 5,83E-13 AKT2,CREBBP,PLK1,NRAS,STAT3,IRS2,BCL2L11,BCL6,MDM2,PTEN,PIK3CG

PIK3CA,CSNK1E,GRB2,ATM,PRMT1,SGK1,IGF1R,CCND2,CCND1,EP300

SMAD2,SMAD4,TGFB2,SMAD3,PDPK1,TGFBR1,RBL2,MAPK8,MAPK1

MAPK14,MAPK10,MAPK11,KRAS

Hippo signaling pathway 6,85E-11 SERPINE1,PRKCZ,FZD1,TEAD1,WNT7A,FGF1,CTGF,DVL1,NF2,BMPR2,APC

SOX2,RASSF1,PPP2R1B,BTRC,CSNK1E,TP73,CTNNB1,WWC1,CCND2,CCND1

WNT5A,SMAD2,SMAD4,TGFB2,SMAD3,BMP6,DLG1,AXIN2,YWHAZ,TGFBR1

LATS1,TCF7L2

Regulation of nuclear 2,51E-06 SERPINE1,GATA3,CREBBP,COL1A2,NCOR1,CBFB,SP1,RUNX3,RUNX2,RUNX1

SMAD2/3 signalin NCOA2,NR3C1,EP300,SMAD2,SMAD4,SMAD3,ESR1

In bold are the genes with validation according to differential expression in the TCGA data

that both miRNAs presented effect in proliferation of
all cells at different times and miR-210 presented the
higher effect of the proliferation on triple negative cells
in vitro.

Discussion
Breast cancer (BC) is a heterogeneous malignancy with
complex biology that influences the choices of targeted
therapies [3]. This disease is presently characterized as
comprising five main intrinsic molecular subtypes [9].
However, in spite of the extensive characterization of BC,

novel biomarkers are still needed to provide more com-
prehensive molecular classification of BC for improved
precision medicine.
There are an abundance of reports elucidating the

mechanisms and roles of miRNAs as novel and stable
biomarkers involved in a broad range of tumors, includ-
ing BC [42, 43]. In this work, our experimental design
allowed us to select for miRNAs that may play a reg-
ulatory role within the established molecular subtypes
of BC. We performed a screening in BC cell lines and
TCGA patients that demonstrated the involvement of
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Fig. 3 Real-time proliferation analysis using xCELLigence system. The miRNA inhibition time is indicated by arrows. a Silencing of miR-193 in BT-20
cells; b Silencing of miR-210 in BT-20 cells; c Silencing of miR-193 in MCF-7 cells; d Silencing of miR-210 in MDA-MB-231 cells

miR-193 and miR-210 in different molecular subtypes of
BC. Moreover, we observed that miR-210 plays a regu-
latory role in BC proliferation after its inhibition, espe-
cially in the most aggressive triple negative MDA-MB-231
cells.
Previous studies have identified miR-210 with high

expression in a variety of tumor cells under hypoxic con-
ditions [44, 45]. This miRNA also exhibits oncogenic
properties and its upregulation has been recently identi-
fied on multiple human cancers, such as colorectal, bone
metastatic prostate, ovarian and lung cancer, among oth-
ers [46–49]. ThemiR-210 experimentally validated targets
have provided new insights about miR-210 functional
roles, including regulation of mitochondrial metabolism,
cell cycle control, angiogenesis, apoptosis, and DNA dam-
age repair [44, 50]. It has also been identified as a serum
marker in several types of cancer, which suggests that
miR-210 could be a biomarker for early detection in
metastatic tumors [51]. In BC, miR-210 expression seems
to be correlated with VEGF expression, indicating a possi-

ble role in tumor angiogenesis [52]. A recentmeta-analysis
has described miR-210 as upregulated in most studies
[53]. With respect to the expression of miR-210 in BC
cell lines, Shi et al. [54] compared the transcriptome of
MCF-7 and MDA-MB-231 cells using next generation
sequencing, showing that the expression of miR-210 in the
triple negative MDA-MB-231 cell line can be four times
higher than luminal MCF-7. In concordance with this
finding, we used MDA-MB-231 and BT-20 in our func-
tional assays because of higher expression of miR-210 in
these cells. This miRNA was also upregulated in triple-
negative breast cancer patients and was also correlated
with a poor prognosis and metastasis [55–57].
Among the mRNA targets of miR-210 that we identi-

fied, the RUNX3 gene was recently identified as a direct
target in endothelial cells, affecting proliferation, migra-
tion and invasion processes on them [58]. In BC, this gene
was initially described as a tumor suppressor and related
to estrogen receptor signaling [59, 60]. However, there is
also evidence of its effect on triple-negative breast can-
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cer cell proliferation, as induced by miRNAs [61]. These
obsevations support the findings that alterations on the
expression of this target, as potentially correlated with
miR-210, could be candidate regulatory miRNA affecting
BC cell proliferation, with implications especially for the
most aggressive triple negative subtype.
The other regulatory miRNA candidate we identified

by a combination of global expression analysis and func-
tional assays was miR-193a-3p. This miRNA has been also
described in a broad range of tumors, such as lung, col-
orectal, gastric, ovarian cancer, among others [62]. Among
validated targets for this microRNA, the PTEN gene was
associated in gastric cancer and renal cell carcinoma
[63, 64] and ERBB4 in lung cancer [65], suggesting that
regulation by miR-193 could act as a tumor suppressor.
Other specific functional targets associated with miR-
193a-3p include pathways that impact cell proliferation,
invasion, migration andmetastasis [62]. In breast cancer, a
member of miR-193 family, the miR-193b, directly targets
estrogen receptor (ER) suppressing the cancer cell growth
[66]. This observation agrees with our findings regarding
increase of proliferation in MCF-7 cells of luminal sub-
type. Furthermore, a significantly decreased expression in
miR-193b was observed in triple negative BC cell lines in
comparison to non-triple negative and normal cells [67],
in concordance with our findings that there was higher
expression of miR-193 in luminal and HER-2+ BC cells.
Between the top mRNAs with anti-correlated expression
to miR-193 we identified, the CCND1 to be associated
with cell proliferation as a direct target in melanoma,
prostate, ovarian and even in breast cancer [68–71].
Our results also demonstrated there was no apoptotic

activity after the silencing of both miRNAs. However, we
found strong evidence that the overexpression of TRAIL
decoy receptors TNFRSF10D and TNFRSF10C could be
related to miR-210 and miR-193 downregulation, respec-
tively. TRAIL molecules are members of TNF family
and can induce apoptosis selectively in cancer cells, and
they are considered as promising anticancer agents [72,
73]. The TRAIL apoptotic process occurs by its binding
to death receptors but the competitive interaction with
decoy receptors 1 (DcR1/TRAILR3/TNFRSF10C) and 2
(DcR2/TRAILR4/TNFRSF10D) can induce an inhibitory
effect [72]. The overexpression of TNFRSF10Dwas shown
to be able to protect cells against apoptosis and its expres-
sion was associated with BC risk [74, 75]. Furthermore,
aberrant promoter methylation of TRAIL decoy receptors
can be affected by DNMT3A which can be a direct target
of microRNAs [76, 77].
Thus, in this study we identified amolecular signature of

miRNAs in BC cell lines and explored the expression and
functional role of two promising regulatory biomarkers:
miR-210 and miR-193 that could affect mRNA expression
in different molecular subtypes.

Conclusion
Collectively our findings show that twomiRNAs (miR-210
and miR-193) as associated with specific BC molecu-
lar subtypes and may be mediating expression of genes
involved in pathways of clinical relevance in BC. Further
studies are necessary to validate their targets and clinical
utility.
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