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Abstract

Background: Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into
questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can
introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single
nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects
each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the
respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which
allowed us to investigate the effect of the bioinformatics analysis strategy separately from the sequencing
platform’s impact.

Results: The number of detected variants/variant classes per individual was highly dependent on the experimental
setup. We observed a statistically significant overrepresentation of variants uniquely called by a single setup,
indicating potential systematic biases. Insertion/deletion polymorphisms (indels) were associated with decreased
concordance compared to single nucleotide polymorphisms (SNPs). The discrepancies in indel absolute numbers
were particularly prominent in introns, Alu elements, simple repeats, and regions with medium GC content.
Notably, reprocessing sequencing data following the best practice recommendations of GATK considerably
improved concordance between the respective setups.

Conclusion: We provide empirical evidence of systematic heterogeneity in variant calls between alternative
experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic
data with harmonized pipelines when integrating data from different studies.

Keywords: Next-generation sequencing (NGS) technologies, Platform-biases, Healthy aging, Illumina, Wellderly,
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Background
From sequencing over variant calling to subsequent stat-
istical analysis – variation can be introduced at any step
of the genomics workflow. Each sequencing technology
produces its own imprint of systematic biases, imposing
one of the most crucial bottlenecks in genomics re-
search. Sequencing is susceptible to high- and low-GC
regions, as well as long homopolymer runs. Repetitive
regions were also a main cause of uncertainty when
assessing trio-samples for inconsistent mendelian errors
[1]. Furthermore, Lam and colleagues demonstrated the
discrepancy in sequencing accuracy between platforms
based on one particular individual, revealing tens of
thousands of platform-specific calls [2]. Another critical
factor that can contribute to the variance between stud-
ies is the usage of heterogenous bioinformatic pipelines.
To this end, several studies have been conducted. For
example, O’Rawe et al. sequenced exomes and whole ge-
nomes from 15 individuals. Subsequent bioinformatics
analysis with different pipelines found generally low con-
cordance between data sets [3]. In 2015, three studies
analyzed the NA12878 sample from the 1000 Genomes
Project with slightly alternate setups and pipelines, yield-
ing somewhat different recommendations [4–6]. More
recently, in 2019, Kumaran et al. and Chen et al. both
re-examined whole-exome sequencing data (WES) from
NA12878, although the latter also compared whole-
genome sequencing (WGS) [7, 8]. Hwang et al. com-
pared both the European NA12878 and the African
NA19240 samples from the 1000 Genomes Project. The
authors found a pipeline consisting of BWA-MEM and
subsequently the Genome Analysis ToolKit (GATK)
with the Haplotype Caller to be sufficient to reliably de-
tect variants in most regions, except for rare variants
and difficult regions, as for example, simple repeats [9].
These studies provide evidence that processing pipelines
and variant calling algorithms directly contribute to the
heterogeneity observed when comparing the results from
different sequencing experiments.
While the previous examples already offer important

insights over a multitude of sequencing platforms and
bioinformatics pipelines over the years, they also high-
light the inconsistencies. Most of all, a vast majority of
the previous studies were conducted on a single refer-
ence individual or at most only on a small number of
individuals, not allowing to achieve generalizable conclu-
sions that can be translated to large cohorts. These het-
erogeneities make it difficult to apply any filtering to a
whole sequencing cohort. A common strategy before
conducting Genome-Wide Association Studies (GWAS),
for example, is to apply several sequencing cohort-
specific filters to reduce variances, such as missingness,
minor allele frequency (MAF), and departure from
Hardy-Weinberg-Equilibrium (HWE) filters [10].

However, this strategy does not facilitate the analysis of
potentially relevant rare variants with low frequencies,
sensitive to technical errors, especially in somatic single
nucleotide variants (SNV) and indel prediction methods
[11]. In contrast, the detection of low-frequency variants
in rare disease studies is achieved by deep sequencing
and specialized data analyses. A crucial question remains
which sequencing and analysis strategies can detect rare
variants with high confidence in standard bioinformatics
setups [12].
Additionally, most analyses gravitate towards using the

same references, as, for example, provided by the Gen-
ome In A Bottle (GIAB) Consortium [13, 14]. This is a
repository of well described, widely accepted, gold-
standard variants. Such high-confidence variants are
valuable and indispensable for benchmarking different
sequencing technologies and bioinformatics pipelines.
However, they also fail to represent the full spectrum of
sequence cohort heterogeneity. Therefore, the assess-
ment of additional non-gold standard data sets can so-
lidify observations made on the gold standard variants
and uncover potential differences.
To this end, we analyzed the variant call format (vcf)

files from an extensive European reference data set from
a cohort of 99 individuals associated with a healthy aging
phenotype [15]. All subjects were sequenced three times
via different technologies, namely (1.) Illumina HiSeq X
(HSX), (2.) Illumina HiSeq (MOL) and (3.) Complete
Genomics (CG) and processed with the respective map-
ping and variant calling pipelines. Furthermore, we
reprocessed the Illumina cohorts’ sequencing data with
BWA/GATK following GATK’s currently recommended
best practice strategy for variant calling.
In order to assess heterogeneity between different se-

quencing and bioinformatic processing setups, we exam-
ined the concordance of SNPs and indels in distinct
genomic areas such as introns, exons, intergenic regions,
repeat elements, and genomic bins with varying GC con-
tent. Furthermore, we analyzed the distributions and re-
liability of variants with a MAF < 5% and HWE < 5% as
detected under each experimental approach. Such SNPs
and indels might be potentially disease-related variants
that are often the focus of biomedical research.

Results
In the current study, we re-examined the genomes of 99
individuals from the Wellderly project [15]. The well-
derly phenotype describes individuals over 80 who
present without any known chronic diseases and do not
take any regular medication. Each individual had already
been sequenced with three different next-generation se-
quencing platforms, namely Complete Genomics (CG),
Illumina HiSeq (MOL), and Illumina HiSeq X (HSX).
Variant calling had already been performed via cgatools
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for CG and the Isaac software for the Illumina cohorts
(Fig. 1a). Therefore, the raw data in our current study
were the resulting vcf files. We only considered variants,
i.e., SNPs and indels with filter tag ‘PASS’ as defined by
the variant calling pipeline, without equalizing the
‘PASS’ criteria between different setups. We believe that
this is the most realistic approach when comparing data-
sets generated by different methods. Additionally, we
left-aligned the variants and split multiallelic variants
into consecutive blocks to equalize the variant annota-
tion between the different sequencing cohorts.
In order to disentangle the impact of the bioinformatic

processing pipeline from the sequencing technology on

the concordance of variant calls, we reprocessed the Illu-
mina sequencing data with GATK, following the current
best practice recommendations for variant calling (Fig.
1a). However, due to proprietary data formats, we could
not obtain and reprocess the raw data for the CG cohort.
Throughout the study, we use the name of the sequen-
cing platform (HSX, MOL, or CG) in combination with
the mapping and variant calling pipeline to refer to the
five distinct experimental setups we compared, namely
CG, MOL + Isaac, HSX + Isaac, MOL + GATK, and
HSX +GATK.
Our comparative analysis consisted of three different

investigations. First, we determined the absolute number

Fig. 1 Graphical abstract of the study. a Schematic overview of the workflow of our analysis. 99 individuals with the wellderly phenotype were
sequenced three times with Illumina HiSeq X (HSX, Apr. 2016), Illumina HiSeq (MOL, Feb. 2011), and Complete Genomics (CG, Apr. 2011). The
resulting sequencing data were processed with three different bioinformatic pipelines. For CG, the in-house software cgatools (v. 1.6.0) with the
Complete Genomics Analysis pipeline (v. 2.0.22) was used. At the same time, both Illumina cohorts were aligned and called with Isaac Alignment
Software and Isaac Variant Caller. In our current study, we analyzed the resulting vcf-files. We also reprocessed the MOL and HSX cohorts with the
GATK pipeline for germline short variant discovery (SNP + indel). b We evaluated the concordance of called variants between different setups by
intersecting the respective vcf-files. The average number of concordant variants for different intersections was calculated and reported.
Furthermore, we investigated the concordance in introns, exons, intergenic regions, repeat elements annotated with the RepeatMasker software,
and bins with varying GC content. Concordance was assessed with the Jaccard distance. c We applied the MAF 5% and HWE 5% filters and kept
the variants with MAF < 0.05 and HWE < 0.05. We then determined the distribution of these rare variants
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of variants in the respective experimental setups and all
possible intersections. Subsequently, we analyzed the
concordance of different setups within genomic regions,
including exons, introns, repetitive elements, or genomic
bins with varying GC content (Fig. 1b). Finally, we fo-
cused on the subset of variants filtered out after applying
the MAF 5% and HWE 5% filters. We compared the
distribution and reliability of such variants between the
different experimental setups (Fig. 1c).

Comparison of concordant variants between the three
platforms
In the first step of the analysis, we estimated the number
of variants detected in each setup. We assessed the con-
cordance between the five experimental approaches
(pipeline details are summarized in Fig. 1b).
HSX + Isaac was associated with the highest average

number of SNPs, followed by HSX + GATK, MOL +
Isaac, MOL + GATK, and then CG (Fig. 2a). Altogether,
an average of 2,942,659 SNPs was detected per individ-
ual by all methods, which corresponds to 82.2% of
HSX + Isaac SNPs, 84.8% of HSX +GATK SNPs, 86.06%
of MOL + Isaax SNPs, 86.6% of MOL + GATK SNPs,
and 88.6% of CG SNPs. With respect to indels, the high-
est number was detected by HSX +GATK, followed by
MOL + GATK, HSX + Isaac, CG, and finally MOL +
Isaac (Fig. 2b). The average number of indels seen in all
setups was 214,730, corresponding to 23.9% of HSX +

GATK indels, 28.8% of MOL +GATK indels, 32.5% of
MOL + GATK indels, 54.3% of CG indels, and 57.9% of
MOL + Isaac indels.
We tested for the statistical over- and underrepresen-

tation of observed unique variant calls for each setup
and their intersection (Table 1) with a Monte Carlo
simulation approach. The distributions of the observed
number of SNPs and indels differed significantly form
the expected numbers (chi-square test, p < 2.2 × 10− 16

for both SNPs and indels). The intersection between all
setups contained 1.41 (95% confidence interval 1.409 to
1.41) times more SNPs and 5.01 (95% confidence inter-
val 4.97 to 5.05) times more indels than expected by
chance (Table 1), increasing the confidence in these
calls. However, the variants unique to each platform
were highly overrepresented, especially in the case of
SNPs, as demonstrated by expected-versus-observed-
number-of-variants ratios that were significantly higher
than 1 in all cases (Table 1). This indicated the presence
of experimental-setup-specific systematic biases in
variant calls.

Distribution of variants along the genome
We were interested in the regional effects of variant call-
ing across the genome. Therefore, we compared the
genome-wide distribution of variants in particular areas,
such as exons, introns, and intergenic regions, as well as
the concordance in variant calls between the different

Fig. 2 Composition of variants detected under different experimental setups. The Venn-diagrams show all possible intersections for the sets of a)
SNPs and b) indels detected for each experimental setup. The quantity of variants in each subset is reported as absolute numbers divided
by 1000
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experimental setups. Notably, only a very small propor-
tion of variants were located in exons. However, the ab-
solute number of exonic SNPs and indels was very
similar for all investigated setups (Additional file 1, Fig.
S1a, b). The majority of SNPs were found in introns,
followed by intergenic regions with comparable distribu-
tions under different conditions. In contrast, the number
of intronic and intergenic indels varied substantially
where the HSX + Isaac, MOL +GATK, and HSX +
GATK strategies detected substantially more indels. This
finding implicates indels positioned in introns and inter-
genic regions as a potential primary source of heterogen-
eity between different setups.
In order to investigate the effect of genomic regions

on the concordance of variant calls, we calculated the
pairwise Jaccard distances between all setups. As ex-
pected, based on the distributions of the absolute num-
bers of variants, we observed a higher concordance for
SNPs compared to indels (Fig. 3). The Jaccard distances
were lowest in exons, whereas we detected the worst
concordance in intergenic regions. Prominently, the best
concordance for indels was achieved between MOL +
GATK and HSX +GATK, which correspond to the data
sets reprocessed with the currently recognized best prac-
tice mapping and variant calling strategies.

Distribution of variants in repetitive genomic regions
Regions frequently excluded from the analysis of gen-
omic variants are repetitive elements because they are
known for accumulating sequencing errors [1]. In order
to calculate the impact of such regions, we proceeded as
follows (Fig. 1b): We obtained the RepeatMasker annota-
tion for the following classes of repetitive elements, Alu
elements, long interspersed nuclear elements (LINE),
low complexity regions, long terminal repeats (LTR) and
simple repeats. Then, we estimated the absolute number
of variants detected by each setup in the respective re-
petitive region. Finally, we examined the pairwise

concordance of variant calls between the different
methods using the Jaccard distance.
We observed similar distributions for the number of

SNPs in distinct repetitive regions under all experimen-
tal setups (Additional file 1, Fig. S1c). The majority of
SNPs were detected in LINE, Alu, and LTR elements,
whereas the number of SNPs in low complexity regions
was much lower. Conversely, the absolute number of
indels in the RepeatMasker annotated regions varied
enormously between the setups. Notably, the highest
number of indels were detected with the HSX +GATK
strategy, and the difference was most prominent in Alu,
LINE elements, and simple repeats (Additional file 1,
Fig. S1d).
Analysis of the Jaccard distance in pairwise compari-

sons of experimental approaches indicated that concord-
ance of variant calls was consistently worse for indels
compared to SNPs in all types of repetitive regions
(Fig. 4). This effect was most strongly pronounced in
simple repeats and Alu elements with distances as high
as 0.89 and 0.85, respectively (Fig. 4b and f). This finding
correlates with the fact that we observed the most con-
siderable discrepancy in the number of indels under
each setup in these two types of repetitive regions (Add-
itional File 1, Fig, S1d). Furthermore, concordance was
lowest for SNPs in simple repeats compared to all other
types of RepeatMasker regions (Fig. 4a). Notably, repro-
cessing data with the currently recognized mapping and
variant calling techniques was again associated with im-
proved concordance, particularly for indels as indicated
by the lowest Jaccard distances between the MOL +
GATK and HSX +GATK setups.

Distribution of variants in genomic bins with varying GC
content
GC-rich genomic regions are another potential source of
sequencing errors, so they are often also excluded from
the analysis of genomic variants [1]. To investigate the

Table 1 Monte Carlo simulation-based comparison of the observed and expected number of variants uniquely detected by each
experimental approach and in the intersection of all setups. The difference between the observed and expected distributions was
significant for both SNPs and indels (chi-square test, p < 2.2 × 10− 16). Furthermore, the observed versus expected ratios of unique
variants under each setup and in the intersection of all setups were all significantly higher than 1, as indicated by the 95%
confidence intervals. CI: Confidence interval, CG: Complete Genomics; MOL: Illumina HiSeq; HSX: Illumina HiSeq X

Setup SNPs indels

Observed Expected Ratio (95% CI) Observed Expected Ratio (95% CI)

CG unique 83,820 449 186.51 (170.71 to 205.96) 47,640 6602 7.22 (7.05 to 7.38)

MOL + Isaac unique 46,188 556 83.05 (76.22 to 90.75) 31,978 5994 5.33 (5.21 to 5.47)

HSX + Isaac unique 84,587 881 96.05 (90.08 to 102.78) 55,376 17,455 3.17 (3.13 to 3.22)

MOL + GATK unique 25,309 530 47.75 (43.94 to 52.18) 37,960 24,442 1.55 (1.54 to 1.57)

HSX + GATK unique 40,320 633 63.67 (59.03 to 68.93) 148,008 51,200 2.89 (2.87 to 2.91)

Intersection all 2,942,659 2,087,460 1.41 (1.409 to 1.41) 214,730 42,853 5.01 (4.97 to 5.05)
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impact of GC content on variant detection, we calcu-
lated the GC content in genomic bins of 100 kbp.
Then, we estimated the non-parametric correlation
between the number of SNPs and indels in the same
genomic bins with the relative proportion of GC
bases.
Figure 5a, b shows the trend lines for all experimental

setups fitted with generalized additive models for SNPs
and indels, respectively. Individual scatter plots with ob-
served values for each approach are summarized in Add-
itional file 1, Fig. S2a-j. We identified a weak positive
correlation between the number of variants and the GC
content in the 100 kbp genomic bins under all experi-
mental conditions. This trend was more pronounced for
bins with a GC content between 0% and approximately

37%. In contrast, the positive correlation between the
number of variants and GC content was weaker in bins
with a GC content between ~ 37% and ~ 64%. It is im-
portant to mention that the 6th percentile of the GC
content distribution was already at 33%, thereby bins
with a lower GC content are relatively rare (cf. Add-
itional file 1, Fig. S2k).
In order to investigate the concordance of variant calls

between experimental approaches as a function of GC
content, we annotated genomic bins with a proportion
of GC bases below 37% as having low, between 37 and
47% as medium, and above 47% as having high GC con-
tent (see Methods). Consequently, the majority of vari-
ants were located in regions with medium GC content
(Additional file 1, Fig. S1e-f).

Fig. 3 Concordance of variant calls between experimental setups in different genomic regions. Heatmaps show the pairwise concordance for
SNPs (a, c, e) and indels (b, d, f) in exons, introns, and intergenic regions. Values correspond to the Jaccard distance, which ranges between 0
and 1. Higher values indicate decreased concordance between the respective experimental setups. CG: Complete Genomics; MOL: Illumina HiSeq;
HSX: Illumina HiSeq X
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The Jaccard distances for SNPs and indels in the re-
spective GC genomic regions are depicted in Fig. 5c-h.
As previously observed, concordance was uniformly bet-
ter for SNPs as compared with indels. The differences
between regions with varying GC content were not

pronounced with a slightly higher concordance in re-
gions with a low GC content (Fig. 5c, f). Similar to the
other genomic annotations (Figs. 3 and 4), the best con-
cordance for indels was observed for the MOL-GATK
vs. HSX +GATK setup.

Fig. 4 Concordance of variant calls between experimental setups in RepeatMasker regions. Heatmaps show the pairwise concordance for SNPs
(a, c, e, g, i) and indels (b, d f, h, j) in distinct RepeatMasker regions. Values correspond to the Jaccard distance, which ranges between 0 and 1.
Higher values indicate decreased concordance between the respective experimental setups. CG: Complete Genomics; MOL: Illumina HiSeq; HSX:
Illumina HiSeq X; LINE: long interspersed nuclear elements; LTR: long terminal repeats
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Distribution of rare variants and variants deviating from
HWE
Applying common filters such as MAF and HWE might
improve the concordance of different experimental
setups. However, rare SNPs/indels and variants signifi-
cantly deviating from HWE might be disease-associated
which makes them particularly interesting for biomed-
ical research. Therefore, we applied the MAF 5% and
HWE 5% filters and focused on the variants which failed
these two filtering criteria under each experimental
setup. We observed a considerable increase in the numer

of such SNPs and indels after reprocessing the sequen-
cing data with GATK (Fig. 6a,b) compared to the
remaining experimental setups. In an attempt to evaluate
the realiability of these variants, we employed the GIAB
annotation for high and low confidence variant call in-
tervals. A higher number of variants in high confidence
intervals could be indicative of increased sensitivity for
the respective setup. The MOL +GATK and HSX +
GATK setups were associated with more SNPs in high
but also in low confidence intervals compared to the
remaining strategies. Interestingly, the CG, MOL + Isaac

Fig. 5 Relationship between GC content, number of variants, and concordance of variant calls between experimental setups. The correlation
between GC content and the number of SNPs (a) and indels (b) based on genomic bins of 100 kbp was evaluated with the Spearman correlation
coefficient r. Regression lines were fitted using generalized additive models. The correlation was highly significant for all setups (p < 2 × 10− 16).
Heatmaps show the concordance between different experimental setups for SNPs (c, d, e) and indels (f, g, h) in genomic regions with low (<
37%), medium (between 37 and 47%), and high (> 47%) GC content. Values correspond to the Jaccard distance, which ranges between 0 and 1.
Higher values indicate decreased concordance between the respective experimental setups. CG: Complete Genomics; MOL: Illumina HiSeq; HSX:
Illumina HiSeq X
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and HSX + Isaac setups had more SNPs located in high
compared to low confidence regions (Fig. 6b) which was
also true for CG indels (Fig. 6c). In contrast, all other
setups were associated with considerably more indels de-
tected in low confidence relative to high confidence
GIAB intervals (Fig. 6d). As the reliability of such variant
calls might be proportional to the quantity of reads sup-
porting them, we compared the read depth distributions
of SNPs and indels with MAF < 0.05 and HWE < 0.05 in
high and low confidence GIAB intervals. Median read
depth for SNPs was higher in high confidence intervals
under all experimental setups (Fig. 6e). In contrast,
MOL + GATK and HSX + GATK exhibited reduced read
depth for indels in both high and low confidence inter-
vals compared to the remaining strategies (Fig. 6f).
Therefore, it remains questionable if the increased num-
ber of variants, especially indels after reprocessing with
GATK points to a higher sensitivity or potentially re-
duced specificity.

Discussion
The reliability of genomic variants, especially when mer-
ging multiple cohorts, is still not thoroughly evaluated,
both due to the considerable heterogeneity in laboratory
protocols and variant-calling pipelines. Furthermore, nu-
merous studies have led to conflicting estimates of the
accuracy of preferred analysis pipelines for sequencing
data, and challenges remain in benchmarking variant call
datasets [3–6, 8, 9, 16]. In contrast to previous studies,
which were only able to compare a handful of genome
or exome sequences, we were given the unique oppor-
tunity to analyze a larger cohort of 99 individuals. This
real-world data set allowed us to perform a practical
comparison of the consistency of different sequencing
and variant calling methods.
First, the average number of SNPs consistently de-

tected throughout all experimental setups corresponded
to a range of 82 to 88% of SNPs for each method. The
proportion of concordant indels varied between 23 and
57% of indels from individual setups. A Monte-Carlo-
simulation-based statistical test revealed that the ob-
served number of variants called by all setups was sig-
nificantly higher than expected by chance. Nevertheless,
the observed number of variants unique to each method
was also increased considerably relative to the expected
quantity, which hints at the platform- and processing-
pipeline specific biases. This finding also implies that the
choice of the sequencing platform and the following bio-
informatic strategy directly affect variant calling and, in
turn, account for between-study heterogeneity observed
in downstream analyses such as GWAS [17–19].
Upon inspection of the different subtypes of variants,

we observed that all experimental setups demonstrated a
greater concordance in SNPs than in indel detection.

Conversely, the quantity of indels varied strongly be-
tween the platforms. Notably, HSX +GATK detected
considerably more indels compared to all other setups,
especially in introns and ALU elements. Furthermore,
indels accounted for the majority of variants unique to
HSX +GATK. The discrepancies in indel numbers were
far higher than the number of random mutations an in-
dividual should have. For instance, Conrad and col-
leagues estimated that approximately 1000 mutations
per diploid genome could be introduced due to somatic
mutations, far less than the discordance we observed
[20]. Indels are a class of variants that are particularly
prone to amass sequencing errors. These can occur ei-
ther during the PCR amplification step, the sequencing
reaction, or during the alignment step because the
aligner may have difficulties to place a single insertion/
deletion event in a highly repetitive stretch of the gen-
ome [21]. In line with this, we observed the strongest
discrepancies in indel numbers in simple repeats and
Alu elements, which is characteristic for this type of mu-
tation [22]. Prominently, reprocessing the Illumina co-
horts with the GATK pipeline was associated with a
considerable increase in the number of indels in these
repeat regions, introns, and genomic bins with medium
GC content relative to the same sequencing cohort proc-
essed with the Isaac software. This finding points to a
pronounced impact of both the sequencing but also the
mapping and variant calling strategy on the consistency
of indel detection. These discrepancies were also
reflected by a reduced concordance for indels compared
to SNPs under all investigated conditions.
GC-rich regions might be another source of hetero-

geneity in variant calls due to mapping and coverage is-
sues, and significant sequencing platform-specific GC
biases have been previously described [23]. In our
current study, we identified a weak positive correlation
between higher GC content and an increased number of
detected variants, as well as a slightly better concordance
in bins with low GC content. Therefore, our results
seem to support previous findings. In a comparative
study between the Illumina and CG platforms, Lam and
colleagues described lower GC content for the Illumina
cohort’s concordant variants [24]. In contrast, Rieber
et al. demonstrated that the CG platform is less prone to
a GC bias [23]. Our correlation analysis between GC
content and the number of detected variants revealed a
very similar relationship for all investigated setups.
Therefore, we could not ascertain if one method is more
susceptible to miscalls due to GC enrichment compared
to the others.
Rare variants and variants which significantly deviate

from HWE might be another source of heterogeneity be-
tween different setups. Interpretation and discovery of
such variants, especially disease-associated ones, remains
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a challenging task in rare variant studies. Unfortunately,
while whole genome sequencing is superior over whole
exome sequencing and panel technologies in most tech-
nical aspects, it still performs worse with respect to
sequencing depth, which is an essential factor for rare
variant discovery [24]. Reprocessing data with best prac-
tices and most up to date bioinformatic tools had an im-
pact on the quantity of detected low frequency variants
in our current study. However, it is not clear whether
these findings indicate a higher overall sensitivity of the
respective setup, when taking into account that these

newly discovered variants were distributed similarly in
GIAB-annotated high and low confidence intervals. Fur-
thermore, a major concern with the GIAB dataset is the
exclusion of regions which are difficult to analyze with
short read sequencing, inevitably leading to biases to-
wards easy to detect variants. Subsequently, the perform-
ance of more advanced algorithms might be hampered,
since they would be penalized by the GIAB truth set,
which was constructed based on older technologies [25].
Taken together, the most important finding of our

study is that reprocessing sequencing data produced by

Fig. 6 Distribution of variants failing the MAF 5% and HWE 5% filter criteria. Bar plots show the absolute number of SNPs (a) and indels (b) with
MAF < 0.05 and HWE < 0.05 under each experimental condition. The distribution of such variants in high or low confidence variant call intervals
according to the GIAB project is shown for SNPs (c) and indels (d). Box plots in e-f show the read depth’s distribution for variants with MAF <
0.05 and HWE < 0.05 for SNPs and indels, respectively
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different platforms with a currently accepted best
practice bioinformatics pipeline significantly reduces
heterogeneity, especially for indels as shown by the con-
sistently lowest Jaccard distances between the MOL +
GATK and HSX + GATK setups under all investigated
conditions. This observation implies that the mapping
and variant calling algorithms have a more substantial
impact on the homogeneity of this more challenging
class of variants than the sequencing technology. This is
in line with previous reports, as significant discrepancies
between competing processing strategies even when
using the same sequencing method have been reported
before, particularly for indels [3, 26]. For instance, Corn-
ish and colleagues identified the GATK+UnifiedGenoty-
per as the most sensitive strategy to detect variants
among 30 alternative pipelines, and results were com-
parable irrespective of the aligner used [27]. Importantly,
none of the strategies achieved an average sensitivity for
indels higher than 33%.
Furthermore, O’Rawe et al. also reported considerable

discordance between 5 different mapping and variant
calling pipelines. Nevertheless, a higher proportion of
indels unique to the GATK setup could be validated
using amplicon sequencing compared to a SOAP-based
strategy [3]. In our study, reprocessing the Illumina co-
horts with GATK was associated with a significant in-
crease in the number of detected indels. While a certain
proportion of these are probably false positives, such re-
sults could be experimentally validated. In contrast, in-
creased false negatives might be more problematic as no
validation methods for undetected variants exist.
Thereby, the GATK approach seems to be the recom-
mendable strategy for indels.
Our experimental setup is not suitable for making a

definitive statement about individual variants’ reliabil-
ity. Individual variants could be verified with high
confidence sequencing methods, such as Sanger se-
quencing. This technique could be used to determine
an actual error rate for the different setups and to
distinguish correct from incorrect variant calls in spe-
cific regions of the genome. Sensitivity and specificity
of sequencing and variant calling strategies could also
be evaluated by including an artificially created syn-
thetic reference in sequencing experiments. Such ref-
erences would have to include regions with high
variations or regions that are difficult to align to as-
sess challenging base-calls. However, we would like to
point out that our study’s goal was not to benchmark
methods but to provide practical evidence that the se-
quencing and bioinformatics methods introduce sys-
tematic between-study variation.
Another potential drawback of our study is that the

used sequencing platforms have a legacy status and
that the bulk of new data generated today stems from

different platforms. Nevertheless, genomic data ob-
tained with older sequencing technologies are now ac-
cepted resources in genomic research, such as the
1000 Genomes Project or GIAB. Furthermore, there
is still a considerable number of recently published
studies, which use older sequencing data from a wide
variety of sources [25, 27–31] or as test-data for
novel computational approaches [32, 33] and we
believe this will continue to be the case. Common in-
centives for re-analyzing genomic cohorts include re-
mapping reads to a new reference genome version
[34, 35], periodic reanalysis of disease cohorts to diag-
nose more patients [36] or large meta-GWAS aiming
to achieve statistically significant results by increasing
sample sizes. Furthermore, we demonstrated that
reprocessing sequencing data with the current best
practice recommendations for mapping and variant
calling leads to a reduced heterogeneity between data
sets stemming from different sequencing platforms.
However, even this strategy is limited to cases where
raw sequencing data are available. For instance, in the
current study, we could not reprocess the CG cohort
due to the impossibility of obtaining the sequencing
files.

Conclusions
In our study, based on a cohort of 99 subjects sequenced
with three different platforms, we demonstrated a con-
siderable discordance between the sequencing technolo-
gies and bioinformatics processing pipelines. In contrast
to previous studies, which have focused extensively on
individuals or smaller groups, our approach using a lar-
ger cohort of 99 individuals provides a direct insight into
the challenges that arise when integrating data from dif-
ferent sources. While variants that are uniquely detected
by a single setup might point to increased sensitivity,
they might also be the results of systematic errors. In
agreement with previous reports, our study also
highlighted the complexity of correctly calling indels, es-
pecially in tandem repeats and low complexity genomic
regions. Our study suggests that while both experimental
factors such as the sequencing technology as well as the
choice of data analysis method considerably contribute
to heterogeneous results, the impact of the mapping and
variant calling strategy might be more pronounced, es-
pecially for indels. The ever-growing amount of available
whole-genome sequencing data underlies the need for
reliable sequencing platforms and respective bioinfor-
matic processing pipelines. In 2001, Ioannidis and col-
leagues suggested that genetic studies’ meta-analyses
would greatly benefit from including individual data in-
stead of analyzing summary statistics [17]. At the time,
this seemed unrealistic due to the vast collaborative
data-sharing effort necessary to achieve such a goal.
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Currently, however, it is common practice to make raw
data publicly available. While differences in the choice of
sequencing platform cannot be abolished once the data
have been generated, it seems prudent to reprocess raw
data in a unified manner prior to conducting a meta-
analysis or generally integrating data from different
sources in genomic investigations. This approach would
ensure more reliable and reproducible results by remov-
ing biases originating from discrepancies in the bioinfor-
matics processing pipelines.

Methods
Genomes investigated
A cohort of 99 subjects with the so-called “wellderly
phenotype” was investigated. The wellderly phenotype
refers to individuals older than 80 years who do not have
any known chronic diseases and do not receive regular
medication. The subjects in our current study were sam-
pled from a larger cohort described in Erikson et al.,
2013 [15]. All individuals were sequenced three times
with different sequencing technologies: (i) Complete
Genomics, (ii) Illumina HiSeq X, and (iii) Illumina HiSeq
with TruSeq Synthetic Long-Read DNA Library Prep Kit
for long reads (Fig. 1a). All multiple nucleotide polymor-
phisms (MNP) were decomposed into consecutive SNP
since they were not encoded as such in the vcf files of
the Illumina HiSeq data set. An MNP is a variant that
extends over several base pairs and has sequential bases
that differ from the reference genome. We used VT
decompose to split each MNP into a sequence of SNP.
Furthermore, the MOL and HSX cohorts were repro-

cessed bioinformatically. Therefore, the existing align-
ment was deleted, and the mapping and variant calling
was repeated according to GATK best practice using
bwa, GATK, and NVIDIA parabricks. Since two files
were corrupted, they were excluded from the analysis
and 97 files were used.

Opensource tools used for analysis
BCFtools 1.11–16 (http://samtools.github.io/bcftools/
bcftools.html) was a standard analysis tool in this study.
We used BCFtools for filtering (QUAL, MAF, HWE and
region-based filters), querying (i.e. creation of a bed-file)
and intersecting. BCFtools stats was used to retrieve in-
formation about the number of variants per sample.
(SNP/indel). In addition, we worked with the plugin fill-
tags to update variant tags in vcf-files (i.e., MAF, HWE).
In order to join all individual vcf-files to a single cohort-
level file, we used BCFtools merge. Since vcf is a reduced
file format, which only includes the differences to the
reference genome of a given genetic sequence, we as-
sumed, that a missing variant corresponds to a reference
genome type at this position.

Bwa 0.7.17
The mapping of the unaligned files was done with bwa
mem according to the GATK best practice. We used the
flag “–M” to mark shorter, split hits as secondary and
thus ensure Picard compatibility, otherwise default set-
tings were applied.
GATK 4.1.8.1, Picard 2.22.8, HTSJDK 2.23.0

(https://gatk.broadinstitute.org/hc/en-us).
GATK was used for the processing of the sequencing

files for MOL and HSX. We used GATK to remove the
existing alignment, trim adapter sequences, mark dupli-
cates, calculate and apply BQSR and VQSR. The file pro-
cessing was performed according to GATK best practice
for germline short variant discovery of SNP and indel
(https://gatk.broadinstitute.org/hc/en-us/articles/360035
535932-Germline-short-variant-discovery-SNPs-Indels-,
accessed on 2nd Nov 2020). We used the recom-
mended files from the GATK resource bundle
(https://gatk.broadinstitute.org/hc/en-us/articles/36003
5890811-Resource-bundle, accessed on 15th Sep
2020). To make the former vcf-files (CG + cgatools,
MOL + ISAAC, HSX + ISAAC) comparable to the
newly processed files (MOL + GATK, HSX + GATK), a
lift-over from hg19 to hg38 was performed.

Nvidia Clara Parabricks 3.1.6
(https://www.nvidia.com/en-us/docs/parabricks/
quickstart-guide/software-overview/)
For variant calling, the NVIDIA Clara Parabricks Hap-

lotypeCaller was used, a GPU accelerated version of the
GATK HaplotypeCaller.
Tabix 1.7.2 (http://www.htslib.org/doc/tabix.html)

was used to create index files for gziped vcf-files and is
needed by BCFtools for processing.
Bedtools 2.27.1 (https://bedtools.readthedocs.io/en/

latest/) was used to intersect a bed with another bed-file
(Bedtools intersect). Bedtools nuc was used to calculate
the GC content of 100kbp bins for the whole genome.
With Vt 0.57721 decompose (https://github.com/atks/

vt), we split MNP into consecutive SNP. This procedure
was necessary because the vcf files of MOL did not
include MNP.
We used R 3.6.1 (https://www.r-project.org/) for basic

calculations, data manipulation, and as a framework for
plotting using ggplot2 3.2.1 (https://ggplot2.tidyverse.
org/) or ggpubr.

Tracks
We aimed to identify regions that differ more between
the sequencing technologies and post-sequencing algo-
rithms. Several annotation tracks that can be down-
loaded and applied easily were used for this purpose. If
not already available, we converted the track into the
bed-file format and processed the files with it.
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Repeatmasker: Alu, LINE, low complexity, LTR, simple
repeats.
(http://repeatmasker.org/genomes/hg38/

RepeatMasker-rm405-db20140131/hg38.fa.out.gz,
accessed on 5th Nov 2020)
Annotations for exonic, intronic, and intergenic re-

gions were retrieved from the UCSC Browser (https://
www.genome.ucsc.edu/cgi-bin/hgTables, accessed on
5th Nov 2020). Additionally, we created bed-files of the
following features:

� Minor allele frequency < 0.05
� Hardy-Weinberg-Equilibrium < 0.05

Minor allele frequency
The Minor Allele Frequency (MAF) is a commonly used
filter for downstream analysis of genetic data. The indi-
vidual data of all samples were merged into a cohort file.
Since vcf-format is sparse and only contains positions
that differ from the reference genome, we set ‘missing
positions’ as reference. The resulting file with the vari-
ants was used to filter each individual vcf-file of the re-
spective set-up.

Hardy-Weinberg-equilibrium
The Hardy-Weinberg-Equilibrium (HWE) is a theoret-
ical measure for the derivation of variants from the ex-
pected Mendelian heritage. Here, we used an HWE-
threshold of p < 0.05. Our approach was identical, as de-
scribed in the section “Minor Allele Frequency”.

Genome in a bottle (GIAB)
The GIAB project’s priority is the characterization of hu-
man genome material for analytical validation,
optimization, and technology development [13, 14]. It is
frequently used as reference material to benchmark bio-
informatics tools as variant calling algorithms.
While providing high confidence calls for different

human samples as NA12878, it also provides an an-
notation track for high confidence intervals for vari-
ant calls, which was used to characterize variants that
were filtered with a MAF < 0.05 and HWE < 0.05 filter
to investigate their plausibility in the different bio-
informatic setups. By comparing the number of vari-
ants found in high confidence regions, one can
estimate the sensitivity of distinct setups. The gen-
omic regions complementary to the GIAB high confi-
dence intervals were annotated as low confidence in
the current study.
Annotation track for high confidence intervals:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12

878_HG001/latest/GRCh38/, accessed on 25th. Nov
2020.

GC content annotation
GC content was calculated as the proportion of GC
bases in genomic bins with a length of 100 kbp using
bedtools nuc. This resulted in a distribution of genomic
GC content with a median of 39.4% (Additional File 1,
Fig. S2k). Genomic bins were annotated as having low
GC content (less than 37%), medium GC content (be-
tween 37 and 47%), and high GC content (more than
47%). These cut-off values were based on the quantiles
of the GC content distribution. Namely, 37% GC content
corresponds to the 30th percentile of the distribution,
meaning that approximately 1/3 of the bins have a lower
GC content. The next cut-off value was chosen as a mid-
dle point between 37% and the maximal value of 64%
GC content. The symmetrical middle point between 37
and 64% is approximately 50%. However, this value cor-
responds to the 95th percentile of the observed GC con-
tent distribution. In order to balance the proportion of
bins with a high GC content, we, therefore, chose the
lower cut-off value of 47%, which corresponds approxi-
mately to the 90th percentile of the GC content
distribution.

Statistical analysis
The pairwise concordance between experimental setups
was investigated with the Jaccard distance, which is cal-
culated by dividing the intersection of two sets by the
union of the sets and subtracting the resulting value
from 1:

Jaccard distance A;Bð Þ ¼ 1 −
A∩Bð Þ
A∪Bð Þ

Values of the Jaccard distance vary between 0 and 1,
and lower values correspond to a higher concordance
between two experimental setups.
The observed and expected number of unique vari-

ants for the five experimental setups and their inter-
section (Venn-diagrams in Fig. 2) was statistically
compared using a Monte Carlo simulation approach.
Assuming the total average number of SNPs (3,892,
351) and indels (1,108,674) observed as the “true”
base population from which variants were called by
each experimental approach, we could infer the statis-
tical over- or under-representation of variants
uniquely called by each setup and the intersection of
all setups. We computed the null-distribution for the
expected number of variants in each set by randomly
drawing the observed number of variants for each ap-
proach and determining the respective number of
unique variants. This step was repeated 1000 times,
and the mean values over all runs were taken as esti-
mates for the null distribution of the number of
unique variants. The observed number of unique
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variants was then compared against the expected null
distribution with a chi-squared test. Furthermore, we
calculated the ratio of the observed versus expected
number of variants under each condition. These ratios
were considered to be significantly higher than 1 if
the lower bound of the 95% confidence interval did
not cross 1. The confidence intervals were obtained
by calculating the 2.5% and the 97.5% quantiles of the
empirical distributions of the expected versus ob-
served ratios from the 1000 simulation steps.

The correlation between the number of variants and
GC content in genomic bins of 100 kbp was evaluated
with the non-parametric Spearman correlation coeffi-
cient. Regression lines were fitted using generalized
additive models as implemented in the stat_smooth() R
function.
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