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Abstract

Accurate predictions of changes to protein-ligand binding affinity in response to chemical 

modifications are of utility in small molecule lead optimization. Relative free energy perturbation 

(FEP) approaches are one of the most widely utilized for this goal, but involve significant 

computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, 

also rigorously based on the principles of statistical mechanics, provides a more efficient 

alternative. In this paper, we describe the development of a workflow to setup, execute, and 

analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm 

implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a 

framework for setting up simulation systems for exploratory screening of modifications to a lead 

compound, enabling the calculation of relative binding affinities of combinatorial libraries. To 

validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental 

binding affinity data is examined. A protocol to automatically tailor fit biasing potentials 

iteratively to flatten the free energy landscape of any MSLD system is developed that enhances 

sampling and allows for efficient estimation of free energy differences. The protocol is first 

validated on a large number of ligand subsets that model diverse substituents, which shows 

accurate and reliable performance. The scalability of the workflow is also tested to screen more 

than a hundred ligands modeled in a single system, which also resulted in accurate predictions. 

With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of 

under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site 
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systems examined, the method is estimated to be more than an order of magnitude more efficient 

than contemporary FEP applications. The results thus demonstrate the utility of the presented 

MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a 

lead compound, and thus are of utility in lead optimization.

Graphical Abstract

INTRODUCTION

Binding affinity of drug-like molecules to target proteins is a key property that is improved 

or monitored during the lead optimization stage of small molecule drug discovery. Lead 

optimization is a time and cost intensive stage,1 which results from a large number of 

iterative cycles of design, chemical synthesis and assaying of the compounds. Physics-based 

modeling methods can bring time and cost savings to lead optimization, by accurately 

predicting binding affinities of design compounds, because, unlike knowledge based 

methods2, project and chemical series specific training data are not required. Accurate 

predictions of binding affinities can reduce experimentation by prioritizing compounds 

likely to result in improved activities. Additionally, a larger chemical space may be explored 

leading to higher quality compound designs that satisfy multiple property constraints 

simultaneously.

Explicit solvent based free energy methods offer a full atomistic description of protein-

ligand systems within a physically rigorous framework, and thus, have the potential to 

accurately predict binding affinities. Within this class of methods, alchemical relative free 

energy methods3 are particularly well suited for lead optimization as they require estimates 

of relative binding affinities in response to chemical changes to a lead compound. While 

relative free energy methods are significantly more efficient than absolute free energy 

methods, the computational cost is still quite high. Contemporary applications of relative 

free energy perturbation (FEP) calculations typically required 60–390ns of molecular 

dynamics sampling per ligand screened.4–6 Because this represents a significant investment 

in time and resources, there is a strong need to explore and develop methods that can 

accurately predict binding affinities at a lower computational cost.

Lambda Dynamics (LD), introduced 24 years ago7, is an alchemical relative free energy 

method in which the coupling variable lambda is treated as a dynamic variable with a 

fictitious mass that is coupled to the system dynamics. In contrast to FEP or Thermodynamic 
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Integration (TI), where a predetermined finite set of lambda values is sampled in multiple 

simulations, LD implements transformations between thermodynamic end states in a single 

simulation, with lambda evolution being driven by the intrinsic free energy landscape. A 

simple probability-based estimator is used to predict the free energy differences. Multiple 

ligands can be included, which for the problem of protein-ligand binding allows for the 

calculation of relative binding affinities of multiple ligands in a single LD simulation.8, 9 To 

ensure efficient sampling of all end states, biasing potentials were initially introduced, which 

are subtracted during post-processing to recover the true free energy differences. Over the 

years, the method has undergone enhancements including the extension of LD to multi-site 

lambda dynamics (MSLD)10 allowing for modeling substituents at distinct sites in a ligand, 

imposition of implicit constraints that bias the lambda sampling towards the end states11, 

and biasing potential replica exchange to enhance transitions between them.12 Importantly, 

within the last few years developments have been made including the introduction of 

additional biasing potentials13, 14 to flatten the free energy landscape of alchemical 

transformations, and a soft-core potential13, which addressed prior limitations concerning 

sampling near end states. Another important methodological development involved an 

algorithm to optimize biasing potentials to promote free energy landscape flattening13, 14 

which has been applied in recent retrospective studies.15, 16

The above-described developments in LD have set the stage for the application of this 

method in small molecule lead optimization. However, the following significant 

impediments exist in way of application to fast paced lead optimization projects. First, 

screening of multiple ligands in a single LD or MSLD simulation requires preparing a multi-

topology ligand that models a shared common core, and separate substituents. Such a multi-

topology system is difficult to prepare and prone to errors when setup manually, even more 

so than for dual topology FEP systems. Secondly, while the Adaptive Landscape Flattening 

(ALF) algorithm provides an automated way to tune parameters in the biasing potentials 

used in MSLD, the simulation lengths used in its iterations, and other specifics of the 

algorithm have not been widely tested. Since the parameters in the biasing potentials need to 

be refined for each system, the protocol needs to be optimized by testing on a wide variety 

of protein-ligand systems to ensure effective flattening, and to identify minimal simulation 

lengths for obtaining accurate results. Finally, other system setup requirements including 

partial charges, force-field parameter assignment for the ligands and protein, assignment of 

initial coordinates for the ligands, and generation of solvated simulation systems also need to 

be reached for MSLD calculations, as with FEP calculations. This paper is aimed at 

addressing these needs by developing an automated workflow for setting up and executing 

MSLD calculations, and retrospectively validating it.

The automated MSLD workflow implemented in BIOVIA Discovery Studio and Pipeline 

Pilot packages17 is described in detail in the Methods section. Given a core ligand, multiple 

sites of modification, and the specification of modifications or substituents, the workflow 

provides tools to setup and execute the MSLD calculations to estimate the binding free 

energies of a full combinatorial library. A related consideration in lead optimization in 

addition to screening efficiency is coverage of a broad chemical space in relation to the lead 

modifications. Keeping this consideration in mind, the MSLD workflow was designed to 

support the modeling of chemical modifications, which include not only substituents 
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(hydrogen atom replacements), but more broadly, arbitrary modifications as shown in 

Figures 1–8. The validation dataset was chosen appropriately to represent both small and 

large lead modifications on a common core. Validation results suggest that the presented 

MSLD workflow can accurately calculate binding affinities of large combinatorial libraries 

with significantly greater efficiency than FEP, and thus be of utility in rapidly exploring 

chemical space to optimize binding affinity, or monitoring it while other drug-like properties 

are optimized in concert.

METHODS

Lambda Dynamics.

The λ-dynamics methodology has been described in detail in previous works.7, 8 Briefly, in 

contrast with FEP and TI calculations, λ is treated as a dynamic variable. The dynamics of 

the system is generated using an extended Hamiltonian:

Hextended X, λ , x =  Tx + Tλ + V X, λ , x + V bias λ

where Tx and Tλ represent the kinetic energies of the atomic coordinates and λ variables. 

Because λ is treated as a dynamic variable, all intermediate states may be sampled during a 

single simulation. The third term represents the hybrid potential energy function for the 

solvent, the protein if present, and the alchemical ligand, and the fourth term is a bias 

described later. For a single perturbation site with a total of N ligands the hybrid potential 

term is given by:

V X, λ , x = ∑
i = 1

N
λiV X, xS, i + V env X

where X and xi are the coordinates of the environment and ligand core atoms and of the 

ligand substituent atoms, respectively, as described below. λi is the coupling parameter 

associated with ligand i. Multi-site lambda dynamics (MSLD)10 was developed to enable the 

use of multiple substituents at multiple sites, and the hybrid potential energy function was 

extended.

V X, λ , x = V env X + ∑
S = 1

Msites
∑

i = 1

NS
λS, iV X, xS, i +

  ∑
S = 1

Msites − 1
∑

i = 1

NS
∑

T = S + 1

Msites
∑

j = 1

NT
λS, iλT , j V xS, ixT , j

Msites is the total number of sites that contain multiple substituents, while NS is the number 

of substituents at site S off the common ligand core. The double summation in the second 

term accounts for the interactions between the environment and each substituent at each site. 

The third term accounts for interactions between each substituent and the substituents 

modeled at all other sites. However, it is important to note that at a given site substituents do 
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not interact or “see” one another during the simulations. For single site λ-dynamics, a ligand 

is dominant when its λ value is greater than λcut = 0.99. For MSLD, a ligand is described as 

dominant when the λ values associated with its constituent substituents are all dominant at 

the same time. Within MSLD, constraints are maintained at each site α according to

0 ≤ λα, i ≤ 1             and             ∑
i = 1

Na
λα, i = 1

To satisfy these constraints, we use an implicit constraint approach11, and simply define λ’s 

for the N substituents at site α to be:

λα, i = e5.5 sin θα, i/   ∑
j = 1

Na
e5.5 sin θα, j

Therefore, for MSLD it is values of θ that have fictious masses, mθ, and velocities, θ̇, and 

are propagated through the equation of motion and are transformed back to their 

corresponding λ values used in free energy determination. The alchemical kinetic energy 

term is thus defined as

Tλ = ∑
S = 1

Msites
∑

i = 1

NS 1
2mθθ̇2

Protein structure preparation.

Protein structures corresponding to the congeneric ligand sets were downloaded from the 

Protein Data Bank (PDB).18 Only one protein structure per congeneric set was used as listed 

in Table 1. Protein structures were prepared using the “Prepare Protein” protocol in BIOVIA 

Discovery Studio. The p38 MAP kinase protein structure involved two residues with missing 

coordinates, which were automatically built by the protocol. The protein preparation 

protocol involves Generalized Born electrostatics based assignment of protonation states 

consistent with a pH of 7.4, assuming a protein dielectric constant of 10 and ionic strength 

of 0.145 M, as detailed previously.19 Any water molecules present in the crystal structures 

were retained. The CHARMM3620 force-field was used to model the proteins.

Ligand preparation and binding pose generation.

Ligands obtained from various sources were either in SMILES format or were converted to 

the same. Ionization states of ligands were retained as existing in the publication or data 

source except for HSP90 ligands, where they were manually inspected. For the HSP90 set, a 

“rule based” method was used to assign a single ionization state for the ligands, following 

which 2D coordinates were generated. The 3D geometry or binding pose for the congeneric 

series of ligands in each dataset was assigned using the recently validated “Generate Analog 

Conformations” (GAC) method.21 This method uses the experimental structure of the 

protein in complex with one ligand in the series as a template, which in this study happens to 

be the PDB structure listed in Table 1. The method detects the Maximal Common 
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Substructure (MCS)22 between the template ligand and other ligands in the dataset, from 

which it ascertains the common set of atoms, and atoms that are different. For each ligand, it 

then directly assigns coordinates for the common set of atoms from the template ligand. For 

the remaining atoms, a restricted conformational generation procedure is implemented that 

generates multiple conformations. These conformations are scored using the MM-GBSA 

method23 as a first step, and then the protein-ligand complex is energy minimized with non-

local (>3 Å away) protein residues held rigid. Following the minimization, a single point 

MM-GBSA energy calculation is performed to calculate a binding score, which is used to 

rank the different geometries. The top scoring geometry is selected for the MSLD 

calculation setup. The Generalized Born Molecular Volume (GBMV) method was used to 

calculate the solvation energy contribution, which used dielectric constants of 1 and 80, for 

the solute and solvent respectively. In addition, a linear solvent accessible surface area 

(SASA) term with slope (α) of 0.00542 kcal mol−1 Å−2 and intercept (β) of 0.92 kcal mol−1 

was included. Further details of the GAC method are available in our previously published 

study.21 Force-field parameters and partial charges for ligands were assigned consistent with 

CGenFF24 using the MATCH algorithm25 included in Discovery Studio and Pipeline Pilot. 

For HSP90, P38MK, CDK2, and TNKS2 set ligands, a new atom-typer implemented in the 

developmental version of the software was used.

Multi-topology builder and simulation system setup.

A MSLD topology builder was implemented that takes as input one core ligand, and 

multiple additional ligands, each representing a different substituent corresponding to a 

modification at one of the sites. Each non-core ligand is expected to model one chemical 

modification with respect to the core at a single site only, and carries a property designating 

the identity (index) of that site. Ligands corresponding to each site are grouped together, and 

for each group belonging to a site, a Maximal Common Substructure (MCS) is calculated 

with the core ligand. Details of the MCS algorithm are described elsewhere.22 When 

multiple MCS solutions are returned, the one chosen is the one that results in the minimum 

RMSD based on the positions of the constituent atoms in the ligands. Hydrogen atoms are 

not considered in MCS computation for algorithmic efficiency, and are subsequently added 

to the MCS based on the mapping of the parent heavy atoms. The resultant MCS is further 

reduced by removing atoms that have different force-field atom types and/or partial charge 

assignment. Hydrogen atoms attached to heavy atoms identified during this step are also 

removed. In this way, an atom-atom mapping is obtained between the core ligand and all 

ligands representing a substituent at one site. This process is repeated for all M sites 

separately, resulting in M MCS solutions. Following this, an intersection of the M MCS is 

calculated which results in a single MCS. The MCS contains an atom-atom mapping, which 

encodes the identities of the common core atoms, and atoms that belong to different 

substituents at different sites. A multi-topology hybrid molecule is created which contains a 

single copy of the core atoms, and one copy of atoms for each substituent in the different 

sites. The force-field atom types, partial charges, coordinates, bond connectivity, and 

improper dihedral definitions for the hybrid molecule are copied from the constituent 

ligands. Care is taken to not duplicate the bond and improper dihedral definitions involving 

MCS atoms. Following the creation of the multi-topology ligand, the ligand is solvated in a 

water box, and a copy is merged with the protein structure and solvated. The solvation step 

Raman et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



includes neutralizing Na+ and Cl− ions consistent with an ionic strength of 0.145 M. Cubic 

boxes are used to encapsulate the protein-ligand complex and the free ligand systems and 

ensure at least 7Å between the extremities of the solute and the edge of the box. Two 

solvated systems are used in MSLD calculations. For a few protein-ligand complex systems 

simulated in this study, orthorhombic boxes were used instead of cubic to reduce system 

size. This setup feature was introduced at a later stage during the development of the method 

and thus only a few systems were modeled with this approach, which include CDK2 systems 

and the P38MK-8 system. Proteins that may have an elongated shape, when incorporated in 

orthorhombic boxes have the potential to rotate during the course of the simulation, and 

consequently come in contact with its own periodic image. This problem does not exist for 

cubic systems, due to all edge lengths being the same. When using orthorhombic boxes, 

weak restraints with a force constant of 0.01 kcal mol−1 Å−2 were applied to the C-alpha 

carbon atoms of the protein to restrain the translation and rotation of the protein to avoid 

interaction with its periodic image. Restraints were not applied to binding site residues 

automatically chosen based on a 5Å proximity criterion to the ligand. A protocol named “Set 

Up MSLD Calculations” was implemented in Discovery Studio and Pipeline Pilot that 

generates the MSLD simulation systems given input ligands. Additionally, a protocol named 

“Enumerate Ligands for MSLD” was developed that makes it easier to generate input 

ligands for the above protocol. This protocol requires a core ligand and the identification of 

the sites of modification, and the R-group attachments in SMARTS format.

Bias Optimization.

MSLD simulations use biasing potentials to facilitate transitions among the substituents at 

each site. Four biasing potentials are used in this implementation as detailed previously,13, 14 

namely fixed, quadratic, end, and skew biases.

V bias = V Fixed + V Quad + V End + V Skew

The functional forms of the lambda dependent potentials are described below.

V Fixed = ∑
s

M
∑
i

Ns
ϕsiλsi

V Quad = ∑
s

M
∑
i

Ns
∑

j > i

Ns
ψsi, sjλsiλsj

V End = ∑
s

M
∑
i

Ns
∑

j ≠ i

Ns
ωsi, sjλsiλsj/ λsi + α
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V Skew = ∑
s

M
∑
i

Ns
∑

j ≠ i

Ns
χsi, sjλsj 1 − exp −λsi/σ

where α=0.017, and σ=0.18 were previously optimized to yield good fits to free energy 

profiles for a variety of systems.14–16 The set of constants, {ϕsi}, {ψsi,sj}, {ωsi,sj}, and 

{χsi,sj} are optimized during bias optimization.

The bias optimization algorithm is iterative in nature where short MSLD simulations are run, 

followed by calculation of free energy landscapes. Three types of landscapes are computed, 

the first one being a function of a single lambda value, and the remaining two being a 

function pairs of lambda values. Single lambda landscapes, G(λsi) are calculated for each 

substituent on a site. Free energy landscapes corresponding to transitions between a pair of 

substituents on a site, G(λsi/(λsi + λsj)) | λsi + λsj > 0.8, are calculated by using data 

restricted to the lambda space corresponding to transitions between the two substituents. 

Pairwise landscapes, G(λsi,λsj) are also calculated using unrestricted data for all pairs of 

substituents on a site. In a multi-topology ligand, there are Ns G(λsi) landscapes, and Ns (Ns 

− 1)/2 pairwise landscapes for each site s. G(λsi), and G(λsi/(λsi + λsj)) | λsi + λsj > 0.8 

landscapes are calculated by binning the lambda values obtained from the trajectory into 400 

bins, and G(λsi,λsj) are calculated by binning pairs of lambda values into 20 × 20 bins. 

Implicit constraints11 are present in LD simulations, which are subtracted from the 

landscapes to avoid the flattening the entropic barrier of about 3 kcal/mol in the mid-lambda 

range. The entropic barrier is retained since it is a desirable feature that promotes more 

sampling in the end states. A running window average of the landscapes is calculated using 

the most recent six simulations, where thermodynamic averaging is performed using the 

weighted histogram analysis method (WHAM).13

For each landscape, a flatness parameter is calculated as the root mean squared deviation 

from the F = 0 line, and an average flatness is calculated over all single, and pair lambda 

landscapes, respectively. For pairs of substituents, the flatness parameter is only calculated 

for the transition landscapes. Iterations are terminated when the average flatness falls below 

a specified threshold value. This is done so as to avoid running further simulations if the free 

energy landscapes are sufficiently flat. However, this termination criterion is only invoked in 

Phase 1 of the bias optimization protocol (see below). One set of biases is chosen from the 

last six iterations that provides the most even sampling for all substituents on all sites, which 

is implemented by maximizing an entropy metric calculated as follows

S = ∑
s

M
∑
i

Ns
− psilnpsi

where psi is the probability of λsi > λcut (and λcut = 0.99).

A three phase bias optimization protocol was implemented. The first phase runs 100 

iterations of 100ps long MSLD simulations. If the average flatness parameters associated 

with single and pair (transition) lambda landscapes described above reaches a value below 
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0.25 and 0.5 kcal/mol, respectively, iterations are terminated. The second phase of bias 

optimization runs 10 iterations of 1ns long MSLD simulations, and the third phase runs 5 

iterations of 2ns long simulations. At the end of each phase, the last six iterations are 

evaluated, and the biases associated with the simulation that results in the maximum entropy 

metric are chosen for the next phase or for production simulations.

MSLD production simulations.

All simulations were performed under periodic boundary conditions. The van der Waals 

(vdW) interactions were switched off smoothly in the range 10−12 Å, and the particle mesh 

Ewald method26, 27 was used to treat long range electrostatics with a real space cut off of 12 

Å. An integration time step of 2 fs was used for dynamics. Production simulations were 

performed in the NPT ensemble, where a temperature of 298.15K was maintained using the 

Nose-Hoover thermostat method and pressure of 1 atm maintained using the Langevin 

piston method. A soft-core potential13 was used to alleviate end-point singularities. The MD 

simulation parameters used in the production stage are identical to those used in the bias 

optimization stage.

Production runs involve six independent trajectories, which are each 20ns long each, for a 

cumulative sampling time of 120ns. Two series of production runs are performed, one for the 

free ligand in solvent, and one for the solvated protein-ligand complex. From each trajectory, 

the free energy of each combinatorial ligand c from trajectory t is calculated as follows

Fct = − kBT lnpct − V Fixed, c

where pct is the probability of all substituents involved in combination c to have their 

respective lambda values λsi > λcut. VFixed,c is the sum of fixed biases corresponding to the 

substituents in combination c. The fixed bias is subtracted to retrieve the unbiased true free 

energy. Estimates from trajectories 1–2, 3–4, and 5–6 are combined to obtain three free 

energy values for each combination c. A Boltzmann average of free energy estimates from 

two trajectories ti, tj is obtained as follows.

Fcti, tj = − kBT ln
exp( − Fcti/kBT ) + exp( − Fctj/kBT )

2

The free energy associated with a combination Fc is calculated as a simple average over 

Fc
t1, t2, Fc

t3, t4, Fc
t5, t6 values - a corresponding standard deviation is also calculated. Relative 

binding free energies are calculated by taking of the difference of Fc calculated in the 

complex and free ligand states. A standard deviation associated with the prediction is 

calculated as the square root of the sum of squares of the standard deviations associated with 

complex and free ligand states.

From each MSLD simulation, the time series of lambda values corresponding to each 

substituent output at a frequency of 0.02 ps was extracted. The lambda time series was 

transformed into a “state time series” which indicates the identity of a substituent si that is 
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active at a given time point λsi > λcut. The state time series is processed individually for 

each site. For each substituent si, the number of times the system transitions from any 

substituent sj to si, or from si to any substituent sj is counted as the number of transitions 

associated with si. Transition rates are calculated for pairs of trajectories over a total 

sampling time of 40ns, resulting in three estimates which are averaged to obtain the expected 

number of transitions over 40ns.

Comparison to experiment and prediction metrics.

Validation included one site and two site systems that modeled 5–32 ligands per system, and 

two and three site systems that modeled large combinatorial libraries of 64–180 ligands per 

system. Twenty-five one site and two site systems were created by dividing the seven 

datasets into smaller subsets. For a given protein, subsets were created so as to maintain a 

common reference ligand in all sets to enable the calculation of absolute binding affinities 

by using the experimental affinity of the one reference ligand. The prediction metric used to 

assess accuracy in the 25 small subsets was average unsigned errors of ΔΔG values with 

respect to the corresponding experimental values. To observe the overall prediction quality 

for each protein set, the absolute binding affinity ΔG was calculated by first using the 

experimental ΔG of one common ligand used as a reference in each subset. Following the 

approach in other retrospective free energy studies4, 5, a single offset value was added to the 

calculated ΔG value to minimize errors associated with the choice of a single reference 

ligand as the lead compound with known affinity. The same approach was followed for the 

calculation of the AUE of ΔG for the large scale multi-site systems modeled in this study. 

Other metrics including root mean square error (RMSE), and correlation coefficient (R) 

were also calculated to assess the quality of predictions for each protein set.

MSLD Workflow.

The MSLD workflow implemented in the Discovery Studio and Pipeline Pilot packages17 

was used to run all calculations. The 2020 release of the software included prototype MSLD 

functionality that incorporates protocols to setup MSLD systems, run bias optimization, run 

production, and collate results. In addition, a helper protocol for enumerating R-group 

features on a core ligand, and another protocol to generate initial binding poses21 of ligands 

are also included. Calculations discussed in this study were run with a developmental 

version of the software that added a protocol to combine bias optimization, and production 

to support multi-phase bias optimization, with enhanced efficiency and usability. The MSLD 

simulations during bias optimization and production stages are run with CHARMm28 

included in the software, using the DOMDEC-GPU platform29. These stages can be run on a 

Pipeline Pilot server installed on a GPU cluster (grid) with a supported queuing system to 

allow for automatic queuing and execution.

RESULTS

To evaluate the accuracy and reliability of the MSLD workflow, it was tested on a diverse 

dataset, which is described below. All steps of the workflow are implemented in Discovery 

Studio and Pipeline Pilot packages17, which include protein preparation, ligand binding pose 

generation, force-field assignment, MSLD multi-topology setup, MSLD bias optimization, 
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production, and analysis. These steps are described in detail in the Methods section. For 

each MSLD system prepared, a three phase bias optimization was performed with up to 10ns 

of simulation time in each phase, for a cumulative time of 30ns. The number of iterations 

and iteration length in the three phases were 100 × 100ps, 10 × 1ns, and 5 × 2ns, 

respectively. Phase 1 is initiated with all biases set to zero, and short iterations run 

adaptively adjust the biases more frequently. In later phases 2 and 3, which are initiated with 

biases optimized in prior phases, longer iterations are helpful to obtain more sampling 

allowing more refined adjustment to the biases. With the optimized biases, six independent 

trajectories of 20ns long production simulations are run, which are merged to generate three 

trajectory segments representing 40ns of sampling each. A combined estimate of the average 

free energy and standard deviation is obtained from the production simulations (see 

Methods). We note that on average, the statistical precision of each prediction was +/− 0.48 

kcal/mol, suggesting our proposed protocol with the sampling regimen noted above are of 

sufficient precision for prioritizing compounds in lead optimization.

Datasets.

The validation dataset was collected from publicly available congeneric ligand sets with 

experimentally measured binding affinities and a co-crystal structure of the protein in 

complex with one of the ligands, or a similar ligand in the PDB.18 Additionally, the choice 

of the datasets and ligands within each was motivated by the desire to validate the presented 

method for its domain of applicability, which is to efficiently screen multiple modifications 

to a common core compound at single or multiple sites. Seven congeneric sets were 

collected from various sources as listed in Table 1. Since most datasets that we found were 

originally collated to validate FEP approaches, a subset of ligands from each was selected 

that fit the domain of applicability. A few ligands from each set could not be included 

because those involved modifications at many different parts of the core and were outside 

the focus of our current study. Another consideration for selecting the ligands used for 

validation arose from prior MSLD studies that have found efficient sampling among 

substituents that were similar in shape or volume.12 While this consideration was taken into 

account, the selected ligands were also chosen to model chemically and structurally diverse 

substituents (Figures 1–8). The range of affinities for most sets is around 4 kcal/mol (Table 

1), which represents a 1000-fold change in binding affinity, and thus provides an opportunity 

to test the method’s ability to capture large changes in affinity. Four of the seven sets 

provided an opportunity to test multi-site substitutions, which included the proteins MCL1, 

HSP90, P38 MAP kinase (P38MK), and TNKS2. TNKS2 ligands involving a change in net 

charge (8 series) were not included. Net charge changes among the ligand series could 

potentially be modeled accurately in MSLD by applying end-point corrections as done in the 

context of FEP30. However, this straightforward application of MSLD was not the focus of 

the present study. Thirty two ligands from the “left-side” group in Ref31 were included from 

the FAAH dataset. Most of the “right-side” ligands involved experimental measurements 

from racemic mixtures, and thus this set was not included in our study. A subset of ligands 

from the HSP90 dataset from D3R was selected that could be modeled with substituents on 

two sites. A complete list of ligands examined in the study can be found in the data included 

in the Supporting Information files, which includes the ligand and protein structures used to 

initiate the MSLD calculations.
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MSLD calculations on diverse subsets.

The seven datasets described above were divided into subsets that differed in number of 

sites, number of substituents, and chemical and topological diversity of the substituents 

(Table 2). This was done to evaluate the MSLD workflow to accurately calculate the relative 

binding free energies under different scenarios. For example, the efficient and reliable 

sampling of diverse substituents within a single series represents a stringent test of our 

MSLD workflow implementation. In addition to the differences in ligands, the nature of the 

protein pocket may also influence sampling and transition rates between different bound 

states. Thus, twenty five datasets listed in Table 2 were constructed to test the protocol 

adopted in the bias optimization and production stages. Overall, the subsets model 5 to 32 

ligands each using either one or two sites, as shown in the figures below. The 25 subsets 

categorized by the protein target are discussed below.

MCL1 dataset: 39 ligands included from this dataset were modeled as 5 MSLD systems or 

subsets which are listed in Table 2. Figures 1a and b illustrate the ligands modeled in this 

dataset. Systems MCL1–1 to 3 shown in Figure 1a involve single site representatives and 

systems MCL1–4 and 5 shown in Figure 1b are modeled with two sites each. Systems 

MCL1–1, 2, 3 include 7, 7, and 6 substituents, respectively, and collectively model 18 

different aromatic R-groups. The aromatic groups modeled in each system are quite diverse, 

as a result of which the number of additional heavy atoms in each substituent compared to 

the common core are 3–7, 3–9, and 4–10 heavy atoms in systems MCL1–1, 2, and 3, 

respectively. The MSLD simulations involve transitions between the different substituents 

and thus model changes involving an even larger number heavy atoms. For example, in 

MCL1–1 system, a transition from substituent 2 to 3 involves a change in 14 heavy atoms, 7 

from substituent 2 (disappearing), and 7 from substituent 3 (appearing). The low AUE 

obtained for these subsets (Table 2) illustrates the ability of the developed workflow to 

sample large and diverse groups.

Figure 1b shows two-site systems MCL1–4 and MCL1–5, which involved 4×5, and 4×6 

substituents, respectively. While the two two-site systems modeled 20 and 24 systems, 

respectively, only 13/20 and 14/24 substituent combinations had experimental data 

associated with them. The four substituents involved in Site 1 in both these systems are the 

same. In system MCL1–4, site 2 groups differ in the placement of the chloro and methyl 

groups, whereas in MCL1–5, the carboxylic acid group involves more diverse chemistry that 

includes indole, benzofuran, and benzothiophene groups. In MCL1–4, 7 out of the 12 heavy 

atoms of the heterocyclic carboxylic acid group are included in the MCS, whereas for 

MCL1–5, due to the diversity of substituents in site 2, only 4 out of 12 heavy atoms are in 

the MCS. The MCL1–5 system exemplifies the ability of the method to model chemically 

diverse groups to a greater degree than MCL1–4.

To further examine the efficiency of the landscape flattening we monitored the number if 

transitions involving each substituent in all 25 subsets, for a total of 185 substituents, this is 

shown in Figure S1 of the Supporting Information. The first 39 data points correspond to the 

substituents modeled in systems MCL1–1 to 5. Each point is an average over number of 

transitions calculated in the three 40ns trajectory segments. The length of each arm of the 
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error bar equals the standard deviation over the three values. A general observation is that 

the number of transitions in the protein-ligand complex state are lower than in the free ligand 

state. However, for most substituents the number of transitions in both states is high. For the 

MCL1 systems, the number of transitions per 40ns trajectory segment per substituent range 

from an average of 220 to 3541 in the complex state and even higher in the free ligand state. 

Thus, the data strongly suggest that all substituents are sampled well.

Ligand 27 was common to all the MCL1 subsets, based on which the absolute binding 

affinities of the entire congeneric set could be calculated from the relative values obtained 

from each subset. Figure 2a displays the calculated vs. experimental absolute binding free 

energies, ΔGb for the MCL1 set. Error bars depict the associated standard deviation.

FAAH dataset: 32 inhibitors of the Fatty Acid Amide Hydrolase (FAAH) protein 

previously modeled in a FEP study31 were selected. The 32 ligands were divided into 5 

subsets from which single site MSLD ligand systems were created. MSLD systems 

FAAH-1, 2, and 3 modeled 8 ligands each, whereas FAAH-4 and 5 modeled 6 ligands each. 

Ligand 31 was included as a reference in each system. Figure 3a (FAAH-1 to 3) and b 

(FAAH-4 and 5) illustrate the MSLD systems modeled. The ligands present different R-

groups in the ortho, meta, and para positions on the “left” phenyl ring31 of the core ligand. 

Ligands in the set involve differences of up to six heavy atoms with respect to the 

unsubstituted phenyl ring. Table 2 shows the range of experimental affinities in the five 

subsets to be 1.68 – 4.5 kcal/mol, with the range being greater than 4 kcal/mol for three sets. 

For 31 of the 32 substituents overall, the average number of transitions per 40ns trajectory 

segment in the complex state are greater than 70 (Figure S1). The lowest number of 

transitions were recorded for FAAH-3 sub-2 in the complex state, which models the cyano 

group at the para position. However, this does not affect the accuracy of the prediction – the 

unsigned error for this prediction is only 0.14 kcal/mol. For the free ligand state, all 

substituents involved more than 80 transitions.

The AUE for the 5 subsets range from 0.63 to 1 kcal/mol, which suggests good predictive 

power for sets spanning a wide range of affinity. Using ligand 31 as a common reference 

present in all subsets, absolute binding free energies, ΔGb was calculated for all 32 ligands. 

Figure 2b illustrates the calculated vs. experimental ΔGb, with an overall AUE of 0.7 kcal/

mol.

Hsp90 dataset: Two 2-site systems were modeled to include the HSP90 ligands. Figures 

4a and b show the two MSLD systems. In HSP90–1, site 1 involves R-group decorations on 

a phenyl ring, whereas site 2 includes more diverse R-groups. In HSP90–2, site 2 contains 

only two substituents, but site 1 includes substituents that have significant differences in 

size, and chemistry. For example, substituent site1-sub8 includes 11 additional heavy atoms 

compared to sub1. In addition, site 1 is located in a relatively occluded region of the binding 

pocket (Figure 4b inset), such that the transitions from small substituents (eg. site1-sub1) to 

large ones such as sub8 shown in the figure would require the protein pocket to open up 

further (discussed below).
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Since the two MSLD systems model 6×5 and 8×2 substituents, 30 and 16 free energy values, 

respectively, are calculated from the simulations, out of which experimental data exists for 9 

combinations in each set. The AUE obtained for the two sets with ranges of 4.3 and 4.51 

kcal/mol, are 1.04 and 1.15 kcal/mol, respectively. The slightly higher error for HSP90–2 

system is consistent with the larger size differences among the 8 substituents in site 1. This 

is reflected in the number of transitions observed for the substituents in the complex state. 

While substituents 4–8 record more than 40 average transitions are relatively low at 5.3, 14, 

and 4.3 for substituents 1, 2, 3, respectively (Figure S1). The absolute error in predicted ΔG 

for the ligands that correspond to site1-sub1 and site1-sub3 are high at 2.22 and 2.24 kcal/

mol, respectively, which appears consistent with the low number of transitions.

Figure 2c illustrates the calculated vs. experimental absolute binding free energies, ΔGb for 

16 ligands which represent the combinations of substituents for which experimental 

affinities were available. The AUE for this dataset is 0.82 kcal/mol.

PTP1B dataset: Three single site MSLD systems were constructed to model ligands from 

the PTP1B dataset with 6, 6, and 5 substituents, respectively, shown in Figure 5. Substituents 

in all three groups of ligands are not only chemically but also topologically diverse. While 

Table 2 shows the AUE obtained for the three sets is very low, the experimental binding 

affinity ranges of the individual sets at 1.27 – 1.74 kcal/mol is relatively small. However, the 

accurate results obtained for the set of ligands with R-groups that have significant 

topological differences shows the power of the method in exploring chemical space broadly. 

Except for one substituent with 81 average transitions, all have more than 150 in the 

complex state. The number of transitions in the free ligand state are much higher (Figure 

S1). Figure 2d plots the calculated vs. experimental ΔGb for the 15 ligands in this dataset, 

with an AUE of 0.39 kcal/mol.

P38 MAP kinase (P38MK) dataset: The 27 ligands from the P38MK set were modeled 

by dividing them into 6 subsets, which are shown in Figure 6a–c. This dataset includes three 

sites of modifications. The first site is modeled by systems P38MK-1 and 2, the second site 

is modeled using P38MK-3 and 4, and the third one using P38MK-5 and 6. The P38MK-1 

system models relatively small modifications that involve fluorine substitutions on the 

phenyl ring. In the P38MK-2 system on the other hand the linker atom is different or absent 

(sub 4) resulting in this set being very diverse. Similarly, P38MK-3 to 6 also model groups 

that are diverse both chemically and topologically. All 32 substituents modeled across the 

six systems recorded greater than an average of 50 transitions per 40ns trajectory segment, 

except for one with 37, indicating sufficiently sampled substituents. Table 2 shows the AUE 

obtained for each site. P38MK-4 has a relatively high AUE of 1.5 kcal/mol, but for the 

remaining P38MK sets it is similar to other ligand series evaluated in this study. ΔGb for all 

the 27 ligands were calculated using P38MK-1 sub1 ligand as reference, and are displayed 

in Figure 2e. An AUE over all ligands is 0.75 kcal/mol.

CDK2 dataset: 16 ligands from the CDK2 set were modeled using two single site systems, 

CDK2–1 and CDK2–2, which included 9 and 8 substituents, respectively (Figure 7). The 

ligands involved differences in R-group substituents on a terminal phenyl ring, on meta or 

para positions or both. All 17 substituents modeled across the two systems recorded greater 
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than an average of 50 transitions per 40ns trajectory segment, indicating sufficiently 

converged results (Figure S1). Low values are obtained for the overall AUE for the 16 

ligands (Table 1), and for the two sets separately (Table 2). Figure 2f shows the calculated 

vs. experimental absolute binding free energies.

TNKS2 dataset: 20 ligands from the TNKS2 set were modeled using two two-site MSLD 

systems depicted in Figure 8. Site 2 in both systems involve substitutions and combinations 

of fluorine, chlorine, methyl, and methoxy groups on the quinazolinone group. Site 1 in 

TNKS2–1 system involved small changes, whereas in TNKS2–2 system large flexible alkyl 

chains were included. All 23 substituents modeled across the two systems recorded greater 

than an average of 200 transitions per 40ns trajectory segment (Figure S1), indicating 

sufficiently sampled substituents. The AUE obtained for the two sets is higher than the 

overall average of the 25 subsets in this study, but the calculated affinities are still predictive. 

Figure 2g plots the calculated vs. experimental ΔGb, with an AUE of 0.86 kcal/mol (Table 

1).

Screening large combinatorial libraries.

The above described MSLD systems involved one or two sites that incorporated 5 to 32 

combinatorial ligands each. Given the multi-site nature of the method, it is of interest to 

evaluate scaling to larger combinatorial libraries. With this goal in mind, five MSLD systems 

were created that spanned the same datasets as discussed above. A first and natural choice 

for a three site MSLD system was the P38MK dataset which includes modifications at three 

well separated sites on the core ligand. The three-site system P38MK-7 was constructed to 

include 5×5×5 substituents, which is shown in Figure 9a. Table 3 lists several characteristics 

and results for the different MSLD systems modeled to predict binding affinities of relatively 

large combinatorial libraries. For P38MK-7, 122 out of the 125 combinatorial ligands were 

sampled during the production simulations, predictions for which are displayed in Figure 9b. 

The ΔΔG values are calculated relative to a reference compound that models substituent 1 on 

all three sites. About one-third of the ligands are predicted to be as potent as the reference 

compound based on the error bars overlapping with the ΔΔG=0 line. The remaining 

compounds exhibit significantly different affinities. This analysis suggests that the calculated 

affinities of all combinations can help screen for compounds with significantly improved 

binding affinity. Furthermore, an analysis of the substituents involved in the tightest binding 

ligands can result in design insights relevant to lead optimization. For example, the top six 

ligands ranked by favorable affinity include sub4 at site 2, suggesting its importance in 

binding. The Discussion section below illustrates this by presenting a structural analysis of a 

ligand with substituent 4 on site 2. Experimental data were available for 13 combinations 

(red bars in Figure 9b), spanning a range of 3.78 kcal/mol. The AUE obtained for this subset 

of data was 0.61 kcal/mol. Figure 9c plots the calculated vs. experimental absolute binding 

free energies, ΔGb for 13 ligands which represent the combinations of substituents for which 

experimental affinities were available.

To monitor the extent of scalability, a second system, P38MK-8, with the same substituents 

as in P38MK-7, but with a sixth extra substituent each for sites 2 and 3 was also constructed 

(5×6×6 substituents; Figure 9a). For this system, 131/180 ligands were sampled, which 
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suggests that for this system and substituent combination, 180 ligands represent an upper 

limit of the combinations that can be visited during 120ns of cumulative sampling. Out of 

the 49 ligands that were not sampled, 31 ligands involved only substituents 1–5 on all sites. 

Since nearly all ligands involving these substituents were sampled in P38MK-7 system, the 

reason for the lesser number of sampled ligands is likely due to the sheer number of 

combinations, and not due to the chemical nature of the additional substituent 6 on sites 2 

and 3. Experimental data existed for 15/180 ligands, out of which 12 ligands were sampled. 

Figure 9d plots the calculated vs. experimental ΔGb. An AUE of 0.92 kcal/mol was observed 

for these 12 ligands.

For multi-site systems covering large combinatorial libraries like P38MK-8, incomplete 

sampling of all combinatorial ligands arises from the sheer number of ligands which are 

counted only when all three sites have the corresponding lambda values greater than the 

cutoff of λcut = 0.99. The free energy landscapes of substituent transitions in individual sites 

are well flattened as evidenced by the number of exchanges on each site, which are in a 

similar range as for the one and two site systems discussed above (data not shown). It is thus 

of interest to test if a sum of single site free energy estimates or “additive estimates”, are 

predictive, in such contexts where sampling of all combinatorial ligands is incomplete. 

Additive estimates are obtained by a sum of the single site free energies corresponding to a 

combination. While this estimate neglects cooperative effects and may not be accurate when 

cooperativity is important, it can serve to guide design strategies when the more rigorous 

cooperative estimates are lacking. For both P38MK-7 and 8, additive estimates were 

obtained for all 125 and 180 ligands, respectively. Figures 9e and f demonstrate the 

calculated additive vs. experimental ΔGb. Surprisingly, an AUE of 0.62, and 0.70 kcal/mol 

were obtained for the two sets, respectively. The implications of additive estimates for this 

dataset and others are discussed below.

Two large-scale MSLD systems were constructed for the MCL1 dataset. The first system 

MCL1–6 modeled 7×4×4 substituents and is shown in Figure 10a. The core ligand is 

relatively small and the dataset did not have well separated three sites of modification. 

However, for the purpose of testing the scalability of the presented method, site 2 (in 

MCL1–4 and 5) was split into two sites, resulting in a three site system. Additionally, two 

substituents, ethyl, and propyl were added as site 3, sub3 and 4, respectively, for which 

experimental data is not available – these were added simply to test the scalability. 109/112 

ligands were sampled during the production simulations, predictions for which are displayed 

in Figure 10b. The ΔΔG values are calculated relative to a reference compound that models 

substituent 2, 1, 1 on sites 1, 2, 3, respectively. The predictions show a large number of 

designs that bind more favorably than the reference compound. Of note is a set of fifteen 

compounds predicted to bind significantly less favorably than the reference compound - all 

of these compounds model the quinolone group (Site1-sub5). Such predictions can be useful 

in de-prioritizing design ideas during lead optimization. Figure 10c illustrates the calculated 

and experimental ΔG for the 14 ligands with experimental data (indicated by red bars in 

Figure 10b). Over a range of 4.19 kcal/mol, the AUE is 0.84 kcal/mol (Table 3). An additive 

estimate of ΔG was obtained for this set, and is plotted in Figure 10d, which has an AUE of 

0.67 kcal/mol.
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A second MCL1 system, MCL1–7 with two sites and 8×8 substituents was constructed as 

shown in Figure 11a. Site 1 substituents mostly differ by R-group substituents on the phenyl 

ring, except for sub4, which incorporates a napthyl group, whereas site2 substituents 

represent more diverse chemistry. 58/64 ligands were sampled during the production runs, 

predictions for which are displayed in Figure 11b. The ΔΔG values are calculated relative to 

a reference compound that models substituent 2, 1 on sites 1, 2 respectively (same 

compound as the one used in MCL1–6 system). The predictions show a large number of 

designs that bind significantly more strongly than the reference compound. 21 ligands have 

experimental data, indicated by red bars in Figure 11b. The non-additive and additive 

estimates of ΔG were calculated and are plotted in Figures 11c and 11d, respectively. The 

experimental data span 3.85 kcal/mol over which the AUE is 1.11 and 0.9 kcal/mol, 

respectively (Table 3).

Finally, a third site was added to the HSP90–1 system to result in the three site HSP90–3 

system with 6×5×3 substituents, shown in Figure S2 of Supporting Information. The methyl 

and ethyl substituents were added simply to evaluate the scalability; experimental data 

points for ligands with these substituents do not exist. In this system, only 68/90 ligands 

were sampled, predictions for which are displayed in Figure S2b. The ΔΔG values are 

calculated relative to a reference compound that models substituent 5, 1, 1 on sites 1, 2, 3 

respectively (the ligand in the co-crystal structure 4YKR used in the simulations). The 

number of sampled ligands is lower than the other systems discussed above, which resulted 

in sampling a much larger fraction of the ligands modeled. This observation suggests that 

factors other than the number of substituents can impact sampling. Analysis of the number 

of transitions at each site revealed that the number of exchanges between site3-sub1 and 

sub2 or 3 are low. More than 1500 transitions are observed between sub2 and 3, in each 40ns 

trajectory segment, but the average number transitions involving sub1 are much lower at 97. 

While results for one and two site systems presented above suggest that statistics from such 

a number of transitions result in accurate predictions, for a three site system, the large 

number of combinations becomes prohibitively high. Experimental binding affinities are 

available for 9 ligands, out of which 5 were sampled, which are shown in Figure S2c. Figure 

S2d displays the additive estimates of free energies. Both estimates result in accurate 

predictions (Table 3), but the additive estimate is able to provide predictions for all 90 

combinatorial ligands.

DISCUSSION

Given an accurate force field, explicit solvent based relative free energy methods can 

potentially offer accurate protein-ligand binding affinity predictions by virtue of an 

atomically detailed representation, and a rigorous statistical thermodynamic formulation. 

Both of these virtues are absent from several alternative methods for estimating binding 

affinity including docking-scoring methods, and implicit solvent based end-point methods 

including MM-GBSA and MM-PBSA.34, 35 Approximate methods are useful in prioritizing 

compounds from large sets, however the approximations employed have an unpredictable 

effect on the accuracy spanning different datasets and therefore render the methods less 

reliable. By contrast free energy methods are expected to be reliable based on the above 

cited considerations. In the recent past, several retrospective4–6, 36, 37 and 
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prospective31, 33, 38 studies have shown free energy perturbation (FEP) to perform reliably 

for a large number of datasets and projects. However, relative FEP relies on ΔΔG estimates 

for pairs of ligands, which are obtained from calculations requiring tens of nanoseconds of 

sampling each, thus making the screening of large libraries of ligands computationally 

expensive. Multi-Site Lambda Dynamics (MSLD) offers a fundamentally different and 

efficient solution for the calculation of relative binding free energies.

Applicability domain.

Prior applications of MSLD have tested its applicability in estimating binding free energies 

of a chemical series that model both small modifications15 and substantially larger ones16. In 

this work, we chose an applicability domain motivated by the fact that MSLD simulations 

involve efficient transitions between substituents that are similar in volume or shape.12 To 

illustrate this applicability domain, Figure 12a shows a representative screening scenario 

using ligands modeled in the MCL1 dataset supported by the presented validation, where 

different modifications to a core compound (circled in center) are modeled. MSLD 

simulations allow for all-to-all transitions (blue lines) and thus model a fully connected 

network. Figure 12b shows a contrasting example of a series of ligands beyond the scope of 

the ligand sets demonstrated in this study, in which the modifications involve larger changes 

(up to 16 heavy atoms) within the series. Blue arrows represent a minimal set of FEP 

calculations that allow the determination of affinities for this set. In principle, such large 

changes could still be modeled with MSLD, but longer simulations than used in this study 

may be needed to obtain accurate estimates. The applicability of the presented workflow to 

such cases will be the subject for a future study. Importantly, the hypothetical example 

shown in Figure 12a, and the real datasets modeled in this study Figures 1, 3–11 show that 

the method can still allow for the modeling of diverse substituents and modifications. For 

example, while R-group substituents were modeled in FAAH-2 (Figure 3) and CDK2–1 

(Figure 7) systems, different heteroaromatic groups were included in MCL1–1 (Figure 1) 

and HSP90–2 (Figure 4) systems. The PTP1B-1 system (Figure 5) is an example of 

modeling differently sized rings. Different flexible alkyl chains were modeled in P38MK-4 

(Figure 6) and TNKS2–2 (Figure 8) systems. These examples show the capability of the 

method to handle large differences in chemistry and topology, and therefore can be used to 

explore chemical space broadly.

Secondly, it is expected that a larger number of transitions and therefore better statistics 

would be related to a smaller number of substituents. Thus, one has to balance the desire to 

screen large libraries with the quality of statistics obtained. Figure S3 and accompanying 

text in the Supporting Information presents a detailed analysis of the number of transitions 

and its dependence on the number of substituents. The accurate predictions obtained with 8 

or 9 substituent systems modeled in this study (eg. FAAH and CDK2) suggest that such a 

large number of substituents can be modeled accurately. We also note that 8 or 9 substituents 

have been identified in prior studies as an upper limit of the number of substituents that can 

be reliably modeled on a site.14, 15 A larger number of substituents can result in poorer 

statistics and lower confidence in the predictions. Finally, another requirement associated 

with the implemented method is that the sites should not have an overlap of atoms between 

them, and ideally be separated by a few bonds. Separation of a few bonds is required to 
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avoid many inter-site shared valence parameters that may lead to instability during the 

simulations.

Additive Estimates.

An interesting result for systems modeling large combinatorial libraries (Table 3) is that 

additive free energy estimates were marginally more accurate than the cooperative estimates. 

This is somewhat surprising because additive estimates neglect the cooperative binding 

contributions from different sites. A possible reason for this could be better statistics for the 

additive estimates involving a larger number of substituent exchanges – for example, for the 

three site MCL1–6 system, the average number of single site transitions for the three sites 

are 864.8, 3431.3, and 2159.5 over 40ns. However, when transitions are calculated for the 

simultaneous occupancy of three sites, the corresponding average number is 48.9 (data not 

shown). It is anticipated that for systems that have strong inter-site coupling the additive 

approximation will become less accurate, even though it is not apparent in any of the 

systems tested here. This too may be the result of the design principles used in choosing how 

to delineate multi-site systems, whereby one or more bonds separated the branching of 

substituents likely reduced potential cooperative effects. Thus, it would be recommended to 

use the more rigorous cooperative estimates when available, and use additive estimates when 

the former is unavailable due to incomplete sampling. One prior MSLD application has 

shown scalability on larger combinatorial libraries15, but that study involved small 

substituents, used replica exchange to enhance sampling further, and more importantly, used 

about an order of magnitude more sampling than used here. In the interest of being of utility 

in fast paced lead optimization projects, the amount of sampling used in this study is much 

smaller, and yet shows good predictability.

While additive estimates do not explicitly incorporate cooperativity, MSLD by design is 

likely better suited than FEP to obtain additive estimates for combinatorial libraries. Since 

MSLD incorporates multiple sites in a single system, the effect of other sites on the 

exchange statistics of one site are represented in a “mean field” manner. If one were to do an 

analogous calculation with FEP, only a single site would be evaluated in each simulation, 

while fixing the other sites to an arbitrarily chosen substituent. The inclusion of multiple 

sites in a single system is a better approach in this scenario, and is a likely reason for 

obtaining accurate estimates in the five systems tested here (Table 3). Finally, it is 

noteworthy that the success seen here for the single-site additivity approximation combined 

with the large chemical spaces it opens to study, suggest that the application of such multi-

site calculations would be of significant utility in establishing QSARs for a targeted scaffold.

Estimates obtained from reduced sampling.

Results presented above show the method’s efficiency in screening large compound sets. 

However, it is still of interest to test whether shorter simulation times could result in 

comparable accuracy, as that would enable screening of even larger libraries or number of 

systems given limited computing resources. To test the effect of sampling duration of MSLD 

production runs, the total sampling time was halved from 120ns to 60ns. Figure S4 and 

Table S1 in the Supporting Information show the AUE obtained for the seven subsets, and 

the five large combinatorial libraries, respectively. Results show only an insignificant drop in 
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accuracy with reduced production sampling for the seven subsets. For large combinatorial 

libraries, reduced sampling results in lesser number of ligands being sampled, but the 

additive free energy estimates (Table S1) are nearly as accurate as those obtained with 120ns 

of sampling (Table 3). Thus, it may be possible to obtained accurate estimates with reduced 

sampling.

Another approach to gain efficiency was explored by obtaining free energy estimates from 

fixed biases provided by Phase 1, 2, and 3 of the bias optimization stages. The fixed bias 

estimates that are obtained from the bias optimization protocol estimate the end-state free 

energy, and together with the additive approximation can predict the binding free energies. 

Figure S4 and S5 in Supporting Information present the AUE obtained for the seven protein 

sets, and the five large combinatorial libraries, respectively. These results show that binding 

free energies obtained from fixed bias estimates have significantly reduced accuracy 

compared to those obtained from production simulations, and therefore the production stage 

is highly recommended for improved accuracy. Finally, the necessity of a three-phase bias 

optimization was examined by performing 120ns of cumulative production sampling, but 

initiated from Phase 1 and Phase 2 of the bias optimization stages. The analysis of the 

prediction metrics are detailed in the Supporting Information, with Tables S2–S4 listing the 

accuracy obtained with different levels of bias optimization. Results show that while for 

many sets, lesser bias optimization does not affect accuracy, for a few cases it leads to lack 

of sampling for a portion of the ligands (P38MK-7 and P38MK-8 systems). Given an 

additional computational cost per phase of only 10ns, it is recommended that the three-phase 

protocol be used for reliable performance.

Structural insights obtained from MSLD simulations.

In addition to binding free energy predictions, MSLD simulation trajectories can provide 

structural insights into the binding of different ligands modeled. Such information could be 

useful in generating additional design ideas that may result in improved affinity. For 

example, the Site2-sub4 group in P38MK-7 system is present among the six topmost 

favorable compounds, and it may be of utility to understand the interactions leading to the 

favorable affinity of ligands that include this substituent. Production simulation trajectories 

of the P38MK-7 system were analyzed visually to identify frames that coincide with the 

lambda value of Site2-sub4 being close to unity. This analysis revealed a water mediated 

interaction between the cyclohexanol alcohol group in Site2-sub4 and the carboxylate group 

of ASP109 in the protein. Figure 13a shows a representative snapshot displaying this water 

mediated interaction, where one of the two water molecules forms a water mediated 

hydrogen bond between the ligand and the protein.

Another example of the structural and dynamical information gleaned from the simulations 

is from the HSP90–2 system, where the interaction of Site1-Sub8 group leads to widening of 

the protein pocket. The top panel in Figure 13b shows a representative frame corresponding 

to Site1-Sub8 being non-interactive, with its Lambda value close to zero, where the Tri-

fluoro group clashes with the protein. The bottom panel shows a representative frame when 

its value is close to unity. The encircled region in the panels show a significant change in the 

shape of the protein pocket which is a consequence of the breaking an intra-protein 
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hydrogen bond between THR94 sidechain and ASN91 backbone. This information can 

direct the use of relevant protein conformations in subsequent designs involving 

functionalization of this substituents to further enhance binding affinity.

Sampling of different conformational states of ligands.

Accuracy in free energy calculations requires the sampling of all thermodynamically 

relevant conformational states. This can be challenging when multiple stable conformational 

states exist and are separated by high free energy barriers. One prominent example of 

alternate conformational states are ortho and meta substituted phenyl rings frequently found 

in drug-like molecules. Typically, phenyl rings interact closely with the protein pocket which 

often prevents a rotation of the ring in the bound state, which leads to the sampling of only 

one of two conformational states during the free energy calculation, potentially leading to 

inaccurate results. Thus, as a general practice, initial conformations used in free energy 

calculations should be selected so as to favor the thermodynamically most favorable state as 

best as possible, doing which would at least ensure the more stable conformational state 

being sampled during the calculations. To this end, we used the automated Generated 

Analog Conformations21 method implemented in Discovery Studio (and Pipeline Pilot) that 

detects the different rotameric states automatically and identifies the most favorable using an 

MM-GBSA score. Thus, the initial conformations used in the free energy calculations here 

or in FEP are likely the thermodynamically favorable ones. However, limitations in scoring 

due to the implicit solvent approximation, or the occurrence of isoenergetic conformations 

may still limit accuracy. In such cases, MSLD by design offers a better and generalizable 

solution to sampling the different conformations during the simulations than pairwise FEP 

for two reasons. First, since multiple ligands are incorporated by means of the multi-

topology ligand, the common core region is smaller than it would be in pairwise FEP, thus 

allowing for more flexibility for each substituent to explore different conformations. Second, 

in MSLD for long periods of sampling time during the course of the entire simulation 

individual substituents have lambda values close to zero when conformational transitions 

would be easy to achieve. By contrast, in FEP non-zero lambda values only exist in the end 

state windows, thus not allowing for such transitions during the remaining lambda windows. 

Figure 14 shows two examples of alternate conformational states being sampled during the 

protein-ligand complex MSLD simulations. Figure 14a shows FAAH-4 system where only 

the core atoms, and those belonging to substituent 1 are shown. Two phenyl ring orientations 

sampled during different times in the first simulation’s trajectory are shown, which position 

the Chlorine atom at the two locations. Figure 14b shows another example, that of the 

HSP90–2 system, where only the core atoms, and those of Site1-Subtituent 4 are shown. The 

two snapshots of the ligand show the two orientations of the phenyl ring that position the 

alcohol group differently. We note that not all systems with phenyl ring analogs modeled in 

this study allow the free rotation like the above two examples. For some systems (e.g. 

MCL1–1) part of the phenyl ring is included in the common core, which prevents 

substituents from independently accessing the two rotameric states. The extent of the 

common core is dependent on the extent of differences modeled and on the partial charge 

model used. In this study, bond charge increments25 are used to assign partial charges, which 

typically result in minimizing the differences to a few atoms more than the chemical 

modifications themselves.
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Computing Efficiency.

Several features of MSLD make the method more efficient relative to conventional FEP. 

Firstly, the dynamic treatment of lambda in combination with optimized biasing potentials 

enables the full thermodynamic transition between any pair of states to be modeled in a 

single simulation, where sampling is driven by the intrinsic chemical and conformational 

free energy landscape. In most FEP applications reported to date, a pre-determined lambda 

schedule is adopted which is independent of the free energy landscape and thus not 

necessarily the most efficient. Secondly, multiple ligands are modeled in a single simulation. 

In this study 19 single-site systems were tested which modeled 5–9 ligands each (Table 2). A 

cumulative sampling time of 150ns yielded predictive estimates from these systems. FEP 

applications that include cycle-closure edges typically use 1.5 * N relative FEP calculations 

to obtain absolute free energy estimates of N ligands.4 Assuming 60ns of sampling per 

relative FEP calculation, it amounts to 450 – 810 ns of sampling for 5 – 9 ligands. For single 

site MSLD systems used here, predictive estimates could be obtained with 3 to 5.4 fold less 

sampling than typical FEP applications. The two-site systems used in this study modeled 16 

to 64 ligands, for which predictive estimates could be obtained with 150ns of cumulative 

sampling. For these systems, MSLD required 9.6 – 38.4 fold less sampling than FEP would 

have required, based on the above considerations. And finally, for three site systems, 

considering the 5×5×5 P38MK-7 as an example, predictive free energies were obtained with 

75-fold less sampling. The error bars in the free energy plots shown in Figures 2, 9–11 

indicate an acceptable degree of precision that would enable the use of the predictions in 

prioritizing compounds.

The throughput that can be obtained with the MSLD workflow is also dependent on the 

speed of the MD engine. As an example, the P38MK protein solvated in an orthorhombic 

shaped water box has 31,282 atoms. On this system, MSLD sampling of 32 ns can be 

obtained per day with the current implementation run on one NVIDIA GTX 1080 Ti card 

along with 4 CPUs. Thus, a typical calculation reported in this study would require 5 GPU 

days’ worth of resources, with minor additional resources for the free ligand system. The 

bias optimization stage with default parameters required 30ns or about 1 day on a single 

GPU. The production calculations running six trajectories on one GPU each require about 

15 hours to finish 20ns. Thus, in less than 2 days of wall clock time, a large combinatorial 

library could be screened with small scale computing resources. Moreover, if three 

trajectories instead of six are chosen to run production calculations, it would reduce the 

computing resources requirements by 40%.

Best practices.

Based on the lessons we learned from the datasets and calculations described in this study, 

briefly summarized here are the factors to consider when applying the MSLD workflow to 

new systems. First, we note that the method implemented in its present form is most efficient 

for screening ligand substituents that span a similar volume or shape in the binding pocket. 

As shown above, this domain allows for screening chemically and topologically diverse 

groups. Second, to ensure sufficient sampling, our experience suggests that the number of 

substituents should not exceed nine at each site of modification. If a larger number of 

modifications is desired to be screened at a single site, the dataset can be split into multiple 
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groups, with one common ligand serving as a reference within each group, as was done in 

the FAAH and CDK2 datasets, for example. We also note that such dataset splits would be 

straightforward to automate, though it was not done in this study. Third, when setting up 

multi-site systems, care must be taken to ensure that the site centers be separated by at least 

four bonds to prevent overlap between groups from two sites. Fourth, using a cumulative 120 

ns of production sampling used in the workflow about 100 combinatorial ligands can be 

screened. However within the same frame of sampling, a larger number of ligands can be 

screened if estimates employing the additivity approximation are utilized. Our experience 

from these calculations suggest that this will likely be a good approximation in many cases. 

Finally, given the fact that accuracy was maintained with a reduced cumulative production 

sampling time of 60 ns, the workflow can be used with reduced sampling to improve 

throughput, especially screening relatively small libraries or when the additive 

approximation is used in multi-site systems.

CONCLUSIONS

This study presented an automated workflow that provides a framework to setup and execute 

the Multi-Site Lambda Dynamics (MSLD) free energy method to calculate relative binding 

affinities of combinatorial libraries of ligands. Given the specification of a core ligand with 

1–3 well separated sites and a list of modifications, the workflow sets up simulation systems 

and executes the calculations. An automated protocol to iteratively optimize biasing 

potentials enabling enhanced sampling production simulations on a flattened free energy 

landscape is retrospectively validated on 31 MSLD systems spanning a wide range of 

chemical series and proteins. With a cumulative sampling time of 150ns, estimated binding 

free energies accurately predict experimental trends for datasets that include structurally 

diverse substituents. The presented method thus allows for accurate estimation of binding 

free energies of large combinatorial libraries with small scale GPU computing resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Five MSLD systems used to model ligands in the MCL1 dataset. Panel a shows systems 

MCL1–1, MCL1–2, and MCL1–3. Panel b shows the two site systems MCL1–4 and MCL1–

5. The core ligand is shown on top.
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Figure 2. 
Calculated vs. experimental absolute binding free energies for the seven datasets are shown 

in panels a-g, with the name of the protein indicated on top left, and AUE on bottom right. 

Panel h shows the cumulative percentage of ligands for which absolute errors in predictions 

are lesser than different error bounds. Calculated relative free energies were converted to 

absolute by adding a constant offset value that minimizes errors associated with the choice 

of a single reference ligand as described in Methods. Units are kcal/mol.
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Figure 3. 
Five MSLD systems used to model ligands in the FAAH dataset. Panel a shows systems 

FAAH-1, FAAH-2, and FAAH-3, which model eight substituents each. Panel b shows 

FAAH-4 and FAAH-5, which model six substituents each. The core ligand is shown on top.
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Figure 4. 
Two MSLD systems used to model ligands in the HSP90 dataset. Panel a shows the HSP90–

1 system with two sites. Panel b shows the HSP90–2 system also with two sites. Inset shows 

the partly occluded binding pocket near site 1. The core ligand is shown on top.
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Figure 5. 
Three MSLD systems used to model ligands in the PTP1B dataset. The core ligand is shown 

on top.
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Figure 6. 
Six MSLD systems used to model ligands in the P38 MAP kinase dataset. Panel a shows 

systems P38MK-1 and 2. Panel b shows systems P38MK-3 and 4. Panel c shows systems 

P38MK-5 and 6. The core ligand is shown on top.
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Figure 7. 
Two MSLD systems used to model ligands in the CDK2 dataset. The core ligand is shown 

on top.
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Figure 8. 
Two MSLD systems used to model ligands in the TNKS2 dataset. Panel a shows the 

TMKS2–1 system with two sites. Panel b shows the TNKS-2 system also with two sites. The 

core ligand is shown on top.
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Figure 9. 
Three site MSLD systems P38MK-7 and P38MK-8. Panel a shows the core ligand with 

three sites of substitutions, and the corresponding substituents. All substituents involved in 

P38MK-7 are depicted above the horizontal line. One additional substituent each for site 2 

and 3 that are modeled in P38MK-8 are depicted below the line. Panel b displays the 

calculated ΔΔG values for 122 out of 125 combinatorial ligands modeled in system 

P38MK-7, with red bars indicating ligands for which experimental data is available. Panels c 

and d display the calculated vs. experimental absolute binding free energies for P38MK-7 

and P38MK-8 sets, respectively. Panels e and f display binding free energies calculated 

using the additive approximation for P38MK-7 and P38MK-8 sets, respectively. Calculated 

relative free energies were converted to absolute by adding a constant offset value that 

minimizes errors associated with the choice of a single reference ligand as described in 

Methods. AUE are indicated on bottom right. Units are kcal/mol.
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Figure 10. 
Three site MSLD system MCL1–6. Panel a shows the core ligand with three sites of 

substitutions or modifications, and the corresponding substituents or modifications. Panel b 

displays the calculated ΔΔG values for 109 out of 112 combinatorial ligands, with red bars 

indicating ligands for which experimental data is available. Panel c displays the calculated 

vs. experimental absolute binding free energies. Panel d displays binding free energies 

calculated using the additive approximation. Calculated relative free energies were converted 

to absolute by adding a constant offset value that minimizes errors associated with the 

choice of a single reference ligand as described in Methods. AUE are indicated on bottom 

right. Units are kcal/mol.
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Figure 11. 
Three site MSLD system MCL1–7. Panel a shows the core ligand with two sites of 

substitutions, and the corresponding substituents. Panel b displays the calculated ΔΔG values 

for 58 out of 64 combinatorial ligands, with red bars indicating ligands for which 

experimental data is available. Panel c displays the calculated vs. experimental absolute 

binding free energies. Panel d displays binding free energies calculated using the additive 

approximation. Calculated relative free energies were converted to absolute by adding a 

constant offset value that minimizes errors associated with the choice of a single reference 

ligand as described in Methods. AUE are indicated on bottom right. Units are kcal/mol.
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Figure 12. 
Example illustrating the domain of applicability of the presented MSLD workflow. Panel a 

shows a representative example with a core substituent, and a collection of substituents to 

explore chemical space in the neighborhood of the core. Blue lines indicate potential 

transitions during the MSLD simulations, which represents a fully connected network. Panel 

b shows an example of a series of ligands beyond the scope of the ligand sets demonstrated 

in this study. Arrows indicate a possible relative FEP calculation plan to cover this dataset, 

which represents a minimally connected FEP map.
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Figure 13. 
Representative snapshots chosen from MSLD simulation trajectories. Panel a shows the 

ligand with cyclohexanol group (Site2-sub4) from the P38MK-7 system forming a water-

mediated hydrogen bond with the protein. The snapshot coincides with the lambda value of 

the substituent depicted being close to unity. Panel b shows the tri-fluoro phenyl group 

(Site1-sub8) from HSP90–2 system. Top sub-panel shows a snapshot corresponding to the 

lambda value of Site1-sub8 being close to zero, and the bottom sub-panel corresponds to the 

group interacting with the protein with a lambda value close to unity. The circled region 

shows a change in the protein conformation to accommodate the tri-fluoro group.
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Figure 14. 
Two examples of alternate conformational states being sampled during the protein-ligand 

complex MSLD simulations. Panel a shows FAAH-4 system where only the core atoms, and 

those belonging to substituent 1 are shown. Two phenyl ring orientations sampled during 

different times in the first simulation’s trajectory are shown, which position the Chlorine 

atom at the two locations. Panel b shows another example, that of the HSP90–2 system, 

where only the core atoms, and those of Site1-Subtituent 4 are shown. The two snapshots of 

the ligand show the two orientations of the phenyl ring that position the alcohol group 

differently.
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Table 1.

Dataset used for retrospective validation. The protein target, PDB ID of the protein structure used, the number 

of ligands, and experimental affinity range of each set are listed. Also listed are the prediction accuracy 

metrics from the calculations presented here, the average unsigned error (AUE), root mean square error 

(RMSE), and correlation coefficient (R) for each set. Units of range, AUE, and RMSE are kcal/mol.

Protein PDB ID nLigands Range AUE RMSE R

MCL1
a

4HW3 39 4.19 0.93 1.19 0.73

FAAH
b

6MRG 32 5.30 0.70 0.87 0.80

HSP90
c

4YKR 16 4.50 0.82 1.18 0.83

PTP1B
a

2QBS 15 2.78 0.39 0.48 0.84

P38MK
a

3FLY 27 3.80 0.75 1.07 0.71

CDK2
a

1H1Q 16 4.21 0.65 0.79 0.78

TNKS2
d

4UI5 20 4.13 0.86 1.09 0.43

Data source:

a)
Wang et al.4

b)
Saha et al.31

c)
D3R32

d)
Schindler et al.33
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Table 2.

Subsets representing MSLD systems modeled to cover each validation set. The subset ID, number of sites (N 

Sites), number of substituents (N Subs), number of ligands with experimental data (N Exp), experimental 

affinity range (Range), and average unsigned error (AUE) obtained for each system are listed. Average and 

standard deviation of AUE is also listed. Units of Range and AUE are kcal/mol.

Subset ID N Sites N Subs N Exp Range AUE

MCL1–1 1 7 7 3.18 0.87

MCL1–2 1 7 7 2.70 0.73

MCL1–3 1 6 6 2.56 1.11

MCL1–4 2 4×5 13 3.85 0.92

MCL1–5 2 4×6 14 3.38 1.16

FAAH-1 1 8 8 4.50 0.92

FAAH-2 1 8 8 4.28 1.00

FAAH-3 1 8 8 4.47 0.78

FAAH-4 1 6 6 2.06 0.74

FAAH-5 1 6 6 1.68 0.63

HSP90–1 2 6 × 5 9 4.30 1.04

HSP90–2 2 8 × 2 9 4.51 1.15

PTP1B-1 1 6 6 1.27 0.55

PTP1B-2 1 6 6 1.74 0.22

PTP1B-3 1 5 5 1.36 0.52

P38MK-1 1 5 5 2.40 0.90

P38MK-2 1 5 5 1.40 1.15

P38MK-3 1 5 5 1.21 0.68

P38MK-4 1 7 7 2.45 1.50

P38MK-5 1 5 5 1.71 1.00

P38MK-6 1 5 5 1.36 1.39

CDK2–1 1 9 9 2.74 0.69

CDK2–2 1 8 8 3.42 0.80

TNKS2–1 2 4×8 12 3.53 1.16

TNKS2–2 2 4×7 11 4.13 1.12

Average 0.91

Std. Dev. 0.29
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Table 3.

MSLD systems representing large scale combinatorial screening. The Subset ID, number of sites (N Sites), 

fraction of ligands sampled (N Sampled), number of ligands with experimental data that were sampled (N 

Exp), experimental affinity range and average unsigned error (AUE) obtained for each system are listed. For N 

Exp, the number in parentheses if present indicates the number of ligands with experimental affinity sampled 

in the MSLD simulations. Units of range and AUE are kcal/mol.

Subset N Sites N Sampled N Exp Range AUE AUE (additive)

P38MK-7 5 × 5 × 5 122/125 13 3.78 0.61 0.62

P38MK-8 5 × 6 × 6 131/180 15 (12) 2.96 0.92 0.70

MCL1–6 7 × 4 × 4 109/112 16 (14) 4.19 0.84 0.67

MCL1–7 8 × 8 58/64 23 (21) 3.85 1.11 0.90

HSP90–3 6 × 5 × 3 68/90 9 (5) 1.19 0.39 0.43
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