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Abstract

Purpose: Image quality of positron emission tomography (PET) is limited by various physical 

degradation factors. Our study aims to perform PET image denoising by utilizing prior 

information from the same patient. The proposed method is based on unsupervised deep learning, 

where no training pairs are needed.

Methods: In this method, the prior high-quality image from the patient was employed as the 

network input and the noisy PET image itself was treated as the training label. Constrained by the 

network structure and the prior-image input, the network was trained to learn the intrinsic structure 

information from the noisy image, and output a restored PET image. To validate the performance 

of the proposed method, a computer simulation study based on the BrainWeb phantom was first 

performed. A 68Ga-PRGD2 PET/CT dataset containing 10 patients and a 18F-FDG PET/MR 

dataset containing 30 patients were later on used for clinical data evaluation. The Gaussian, non-

local mean (NLM) using CT/MR image as priors, BM4D and Deep Decoder methods were 
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included as reference methods. The contrast-to-noise ratio (CNR) improvements were used to rank 

different methods based on Wilcoxon signed-rank test.

Results: For the simulation study, contrast recovery coefficient (CRC). vs standard deviation 

(STD) curves showed that the proposed method achieved the best performance regarding the bias-

variance tradeoff. For the clinical PET/CT dataset, the proposed method achieved the highest CNR 

improvement ratio (53.35% ± 21.78%), compared to the Gaussian (12.64% ± 6.15%, P = 0.002), 

NLM guided by CT (24.35% ± 16.30%, P = 0.002), BM4D (38.31% ± 20.26%, P=0.002) and 

Deep Decoder (41.67% ± 22.28%, P=0.002) methods. For the clinical PET/MR dataset, the CNR 

improvement ratio of the proposed method achieved 46.80% ± 25.23%, higher than the Gaussian 

(18.16% ± 10.02%, P<0.0001), NLM guided by MR (25.36% ± 19.48%, P<0.0001), BM4D 

(37.02% ± 21.38%, P<0.0001) and Deep Decoder (30.03% ± 20.64%, P<0.0001) methods. 

Restored images for all the datasets demonstrate that the proposed method can effectively smooth 

out the noise while recovering image details.

Conclusion: The proposed unsupervised deep learning framework provides excellent image 

restoration effects, outperforming the Gaussian, NLM methods, BM4D and Deep Decoder 

methods.
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INTRODUCTION

Positron emission tomography (PET) is a powerful functional imaging modality which can 

detect molecular-level activity in the tissue by specific tracers. It has wide applications in 

oncology [1,2], cardiology [3] and neurology [4,5], but still suffers from the low signal-to-

noise ratio (SNR) which affects its detection and quantification accuracy, especially for 

small structures.

The noise in PET images is caused by the low coincident-photon counts detected during a 

given scan time and various physical degradation factors. In addition, for longitudinal 

studies or scans of pediatric populations, it is desirable to reduce the dose level of PET 

scans, which would further increase the noise level. Clinically, the Gaussian filter is always 

used for PET image denoising. However, it can smooth out important image structures 

during the denoising process. Other post-filtering approaches, such as adaptive diffusion 

filtering [6], nonlocal mean (NLM) [7], wavelet [8,9] and HYPR processing [10], were then 

proposed, trying to reduce the image noise while preserving structure details. As the image 

restoration process is ill-conditioned due to limited information available from the noisy 

PET image itself, another widely adopted strategy for PET image denoising is to incorporate 

high-resolution anatomical priors, such as the patient’s own MR or CT images, as additional 

regularizations. One intuitive approach is extracting information from segmented prior 

images, assuming homogenous tracer uptakes in the same segmented regions [11–13]. 

Techniques not requiring segmentation were also developed, attempting to leverage the high-

quality priors directly: Bowsher et al [14] encouraged the smoothness among nearby voxels 
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that have similar signal in the corresponding anatomical images; Chan et al [15] embedded 

the CT information for PET denoising using a nonlocal mean (NLM) filter; Yan et al [16] 

proposed a MR-based guided filtering method [17]; mutual information (MI) and joint 

entropy (JE) were also proposed to extract information from anatomical images [18–21].

Over the past several years, deep neural networks (DNNs) have been widely and 

successfully applied to computer vision tasks such as image segmentation and object 

detection, by demonstrating better performance than the state-of-the-art methods when large 

amounts of datasets are available. Recently in medical imaging field, with the help of DNN, 

details of low-resolution images can be restored by employing high-resolution images as 

training labels [22–25]. Furthermore, by utilizing co-registered MR images as additional 

network inputs, anatomical information can help synthesize high-quality PET images 

[26,27]. One challenge for these DNN-based methods is that large paired-training-datasets 

are needed, which is not always feasible in clinical practice, especially for pilot clinical 

trials. To acquire high-quality PET images as labels, longer scanning time or higher dose 

injection is needed, which does not fall into clinical routines and may bring extra safety 

concerns. Besides, huge efforts to collect and process the data are additional obstacles.

In this paper, we explore the possibilities of utilizing anatomical information to perform PET 

denoising based on DNN through an unsupervised learning approach. Recently, Ulyanov et 
al [28] proposed the deep image prior framework, which shows that DNNs can learn 

intrinsic structures from corrupted images without pre-training. No prior training pairs are 

needed, and random noise can be employed as the network input to generate clean images. 

Inspired by this work, we have proposed a conditional deep image prior framework for PET 

denoising. In this proposed framework, CT/MR images from the same patient are employed 

as the network input and the final corrected images are represented by the network output. 

The original noisy PET images, instead of high-quality PET images, are treated as training 

labels. In our framework, the modified 3D U-net was adopted as the network structure, and 

L-BFGS was chosen as the optimization algorithm for its monotonic property and better 

performance observed in the experiments.

Currently CT/MR images of the same patient are readily available from PET/CT or PET/MR 

scans, and this proposed method can be easily applied for PET denoising. Contributions of 

this work include two aspects: (1) anatomical prior images are used as network input to 

perform PET denoising, and no prior training or training datasets is needed in this proposed 

method; (2) this is an unsupervised deep learning method which does not require any high-

quality images as training labels.

MATERIALS AND METHODS

Conditional deep image prior

Recently, Ulyanov et al [28] proposed the deep image prior method which shows that DNN 

itself can learn intrinsic structure information from the corrupted image. No prior training 

pairs are needed, and random noise can be employed as the network input to generate 

restored images. This is an unsupervised learning approach, which has no requirement for 
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large data sets and high-quality label images. In this framework, the unknown clean image 

we try to restore, x, can be represented as

x = f(θ znoise), Eq. (1)

where f represents the neural network, θ denotes the unknown parameters of the network 

and znoise is the network input with random noise supplied. The process of image restoration 

transfers to train a neural network, whose output tries to match the original noisy image x0 

while being constrained by the network structure. The network parameters θ are iteratively 

updated to minimize the data term as follows:

θ = arg min
θ

E (f(θ znoise), x0), x = f(θ znoise), Eq. (2)

where E(⋅) is a task-dependent data term.

It is shown in conditional generative adversarial network (GAN) [29] studies that prediction 

results can be improved by using associated priors as network input, instead of random 

noise. Inspired by this, a conditional deep image prior method is proposed in this work to 

perform PET denoising, where the CT/MR images of the same patient are employed as the 

network input. To demonstrate the benefits of employing the prior image as the network 

input, a comparison between using the random noise as the network input and using the 

same patient’s MR prior image as the network input was performed, and shown in 

supplementary Fig. 1. We can see that with the MR prior image as the network input, more 

cortex details can be recovered and the noise in the white matter is much reduced.

When using L2 norm as the training loss function, the whole denoising process can be 

summarized as two steps

θ = arg min
θ

x0 − f(θ za) , x = f(θ za) . Eq. (3)

Here, za represents the CT/MR priors supplied as network input. A schematic of the 

proposed conditional deep image prior framework is shown in Fig. 1. A modified 3D U-net 

[30] was used as the network structure (network structure details shown in supplementary 

Fig. 2). Compared to the traditional 3D U-net, pooling layers were replaced by convolution 

layers with stride 2 to construct a fully convolutional neural network; deconvolution layers 

were substituted by bilinear interpretation layers to reduce the checkerboard artifacts. In our 

implementation, the whole 3D volume was directly fed into the network to reduce 

fluctuations caused by using small batches, and the L-BFGS method was chosen as the 

optimization algorithm due to its monotonic property and better performance observed in 

our previous experiments [31]. Details of training loss comparison among the popular L-

BFGS [32], Adam [33] and Nesterov’s accelerated gradient (NAG) [34] algorithms are 

shown in supplementary Fig. 3, which confirms the benefits of employing the L-BFGS 

algorithm as the network optimization algorithm. During network training, when the training 

loss does not reach the stop criterial, the network output f(θn|za) will be compared with the 

original noisy PET image x0 to update the network parameters from θn to θn+1. Once the 
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training loss meets the stopping criterial or the epoch number becomes larger than the 

predefined number, the optimization will stop, and the network will output the restored PET 

image x = f(θ za).

Datasets

To validate the proposed method, a computer simulation study based on the BrainWeb 

phantom (matrix size, 125 × 125 × 105; voxel dimensions, 2 × 2 × 2 mm3) [35] was first 

performed. Bias-variance tradeoff can be characterized in this simulation study as the ground 

truth is known and multiple independent and identically distributed (i.i.d.) realizations can 

be simulated. The simulated geometry is based on the Siemens mCT scanner. The sinogram 

data was generated from the last 5 min frame of a one-hour 18F-FDG scan with 1 mCi dose 

injection, assuming the count number in each line of response (LOR) follows the Poisson 

distribution. Random events and the attenuation effects were considered during the 

simulation and the object-dependent scatter was not. The PET images were reconstructed 

using the maximum likelihood expectation maximization (MLEM) algorithm running 40 

iterations. The corresponding T1-weighted MR image was employed as the prior image.

Two group of real datasets with different modalities and different tracers were used to 

evaluate performance of the proposed method. One is a PET/CT dataset with ten lung cancer 

patients (8 men and 2 women). The patient information is listed in supplementary Table. 1. 

The average patient age is 59.4 ± 10.9 y (range, 43-82 y), the average weight is 69.9 ± 13.5 

kg (range, 41-84 kg) and the nominal injected dose of 68Ga-PRGD2 is 370 MBq. All 

patients were scanned with a Biograph 128 mCT PET/CT system (Siemens Medical 

Solutions, Erlangen, Germany). A low-dose CT scan (140 kV; 35 mA; pitch 1:1; layer 

spacing, 3 mm; matrix, 512 × 512; voxel size, 1.52 × 1.52 × 3 mm3; FOV, 70 cm) was 

performed for attenuation correction. PET images (matrix size, 200 × 200 × 243; voxel 

dimensions, 4.0728 × 4.0728 × 3 mm3) were acquired at 60 min post injection and 

reconstructed using 3-dimensional ordered subset expectation maximization (3D-OSEM) 

with 3 iterations and 21 subsets.

The other dataset is a PET/MR dataset containing 30 patients (21 men and 9 women) with 

different tumor types. Patient details are shown in supplementary Table. 2. The average 

patient age is 55.2 ± 7.7 y (range, 38-74 y), the average weight is 66.8 ± 9.9 kg (range, 45-85 

kg) and the average administered dose of 18F-FDG is 350.7 ± 54.7 MBq (range, 239.8-462.9 

MBq). All patients were scanned on a Biograph mMR PET/MR system (Siemens Medical 

Solutions, Erlangen, Germany). T1-weighted images (repetition time, 3.47ms; echo time, 

1.32ms; flip angle, 9°; acquisition time 19.5s; matrix size, 260 × 320 × 256; voxel 

dimensions, 1.1875 × 1.1875 × 3 mm3) were acquired simultaneously. PET images (matrix 

size, 172 × 172 × 418; voxel dimensions, 4.1725 × 4.1725 × 2.0313 mm3) were acquired at 

60 min post injection and reconstructed using 3D-OSEM.

Data Analysis

The Gaussian filtering, NLM filtering guided by CT/MR images [15], BM4D [36] and Deep 

Decoder [37] methods were employed as the reference methods. To evaluate the 

performance of different methods quantitatively, for the simulation data, the contrast 
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recovery coefficient (CRC), between the gray matter region and the white matter region, vs. 

standard deviation (STD) calculated from the white matter region were plotted to evaluate 

the bias-variance tradeoff [31] . Ten region of interests (ROIs) were drawn on the gray 

matter region and thirty background ROIs were chosen on the white matter region. Thirty 

realizations were simulated and reconstructed to generate the CRC. vs STD curves.

As for the clinical data, the contrast-to-noise ratio (CNR) regarding the lesion and the 

reference regions was used as the figure of merit, defined as

CNR = mlesion − mref
SDref

, Eq. (4)

where mlesion and mref represent the mean intensity inside the lesion and the reference region 

of interest (ROI), respectively, and SDref was the pixel-to-pixel standard deviation inside the 

reference ROI. In this study, a homogeneous region in the muscle of right shoulder was 

chosen as the reference ROI. CNR improvement ratio of different methods was calculated by 

setting the CNR of the original PET image as the base,

CNR improvement ratio = CNRPVC − CNRoriginal PET
CNRoriginal PET

× 100% . Eq. (5)

Wilcoxon signed rank test was performed on the CNR improvement ratios to compare the 

performance of different methods. P value less than 0.05 was chosen to indicate statistical 

significance.

The parameters of Gaussian (FWHM), NLM guided by CT/MR images (window size), 

BM4D (standard deviation of the noise), Deep Decoder (training epoch number) and the 

proposed method (training epoch number) were first tuned for one patient in each dataset 

(evolving curves shown in supplementary Fig. 4). Considering the fact that PET images in 

the same dataset having similar structures, the optimal parameters that achieved the highest 

CNR for each method were fixed when processing remaining patient data. Hence the CNR 

value is also the stopping criterion of the network training for the proposed method and the 

Deep Decoder method: the epoch number that leads to the highest CNR was chosen as the 

optimal epoch number. Based on supplementary Fig. 4, for the PET/CT dataset, the 

Gaussian filter with FWHM equal to 2.4 pixel, the NLM filter with window size 5×5×5, the 

BM4D filter with 10 percent noise standard deviation, the Deep Decoder method with 1800 

training epochs and the proposed method trained with 900 epochs were employed in the 

denoising processing. For the PET/MR dataset, the Gaussian filter with FWHM equal to 1.6 

pixel, the NLM filter with window size 5×5×5, the BM4D method with 8 percent noise 

standard deviation, the Deep Decoder with 2000 epochs and the proposed method trained 

with 700 epochs were employed in the denoising process.

All the network training was performed using the NVIDIA 1080 Ti graphic card based on 

the TensorFlow 1.4 platform. For the simulation dataset running 200 epochs, the network 

training time of the proposed method is around 5 mins. For the PET/CT dataset running 900 
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epochs and the PET/MR dataset running 700 epochs, the network training time of the 

proposed method is both around 40 mins.

RESULTS

Simulation Study

Fig. 2 shows one transaxial slice of the denoised images using different methods for one 

simulated realization. Both the NLM filter and the proposed method can generate clearer 

cortex structures with the help of the corresponding MR prior image. Compared to the NLM 

filter, the denoised image of the proposed method has lower noise in the white matter and 

the cortex structure is better recovered. Fig. 3 shows the CRC. vs STD curves using different 

methods. Clearly, the proposed method achieves the highest CRC at the same STD level, 

which demonstrates that the proposed method has the better bias-variance tradeoff compared 

to other reference methods.

PET/CT

Fig. 4 shows one coronal view of the PET images processed using different methods. In this 

figure, the parameters for each method were set by maximizing the CNR. Based on the 

image appearance, we can see that the proposed method can generate images with preserved 

tumor structures (indicated by arrows) and less noise, while the smoothing effects of all the 

other methods reduce tumor uptakes. Detailed CNR values and CNR improvement ratios for 

all ten patient datasets are listed in supplementary Table. 3. The mean (±SD) CNR for the 

original PET images is 13.04 ± 6.30. The mean (±SD) CNRs for Gaussian, NLM, BM4D, 

Deep Decoder and the proposed method are 14.62 ± 6.85, 15.94 ± 7.47, 18.28 ± 9.68, 18.80 

±10.10 and 20.35 ± 10.72, respectively. Fig. 5 shows the bar plot of CNR improvement 

ratios for all ten datasets using different methods. The overall performance of the proposed 

method (orange) is higher than Gaussian (gray), NLM with CT (blue), BM4D (yellow) and 

Deep Decoder (green), especially for patient 7 and 10, where its CNR improvement ratio are 

much better than other methods. The mean (±SD) CNR improvement ratios for Gaussian, 

NLM, BM4D, Deep Decoder and the proposed method are 12.64% ± 6.15%, 24.35% ± 

16.30%, 38.31% ± 20.26%, 41.67% ± 22.28% and 53.35% ± 21.78%, respectively. Fig.8 

shows the box plot of CNR improvement ratios using different methods. We can see that the 

CNR improvement ratio of the proposed method is significantly higher than the Gaussian 

(P=0.002), NLM (P=0.002), BM4D (P=0.002) and Deep Decoder (P=0.002) methods.

PET/MR

Fig. 6 presents one coronal view of the PET images processed by the Gaussian, NLM guided 

by MR, BM4D, Deep Decoder and the proposed method, given the optimum parameters 

regarding the CNR. For the tumor regions, we can see that the proposed method preserves 

the tumor uptake. Zoomed subfigures show that the proposed method can recover the cardiac 

and spleen structures better than other methods. The CNR values and CNR improvement 

ratios calculated for all 30 patients are shown in supplementary Table 4. The mean (±SD) 

CNR for the original PET images is 39.34 ± 27.81. The mean (±SD) CNRs for the Gaussian, 

NLM, BM4D, Deep Decoder and the proposed method are 46.42 ± 33.94, 49.17 ± 36.82, 

54.15 ± 39.32, 52.18 ± 39.63 and 58.35 ± 43.18, respectively. The mean (±SD) CNR 
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improvement ratios for the Gaussian, NLM, BM4D, Deep Decoder and the proposed method 

are 18.16% ± 10.02%, 25.36% ± 19.48%, 37.02% ±21.38%, 30.03% ± 20.64% and 46.80% 

± 25.23%, respectively. Bar plot in Fig. 7 shows the CNR improvement ratios for all the 30 

patients. For the whole PET/MR data set, CNR improvement ratio of the proposed method is 

significantly higher than the Gaussian (P<0.0001), NLM (P<0.0001), BM4D (P<0.0001) and 

Deep Decoder (P<0.0001) methods. CNR improvement ratios for different tumor types were 

further analyzed, and the box plots of tumor types with more than five specimens (liver: 12, 

lung:6) are listed in Fig. 9. For liver and lung tumors, the mean (±SD) CNR improvement 

ratios of the proposed method (liver: 43.37% ± 30.85%; lung: 35.91% ± 10.48%) are 

significantly higher than the Gaussian (liver: 18.80% ± 9.98%, P<0.001; lung: 13.20% ± 

5.44%, P<0.05), NLM (liver: 28.00% ± 21.97%, P<0.001; lung: 15.65% ± 8.56%, P<0.05), 

BM4D (liver: 36.13% ± 26.80%, P<0.001; lung: 27.32% ± 9.66%, P<0.05), and Deep 

Decoder (liver:29.19% ±24.73%, P<0.001; lung: 17.80% ± 11.30%, P<0.05) methods.

DISCUSSION

The plot of the contrast (mlesion − mref) vs. noise inside reference ROIs (SDref) for different 

methods with varying parameters (supplementary Fig. 4) shows that the proposed method 

can maintain high contrast within the tumor region while achieving low noise in the 

reference region. Compared to the proposed method, the NLM method could not preserve 

high contrast with the same noise and the Gaussian method showed higher noise at the same 

contrast level. From Fig. 9 we can see that there is no significant difference between the 

Gaussian method and the MR-guided NLM method for the lung tumor. The fact that the T1-

weighted image does not have too many details in the lung region might be one explanation. 

However, the proposed method using MR as prior can still achieve significantly higher CNR 

improvement ratio compared with the Gaussian and NLM methods for the lung tumor case, 

which demonstrates that the proposed method can make use of priors more efficiently than 

the NLM method.

Apart from comparing the proposed method with state-of-the-arts methods, we are also 

interested in understanding the factors influencing its performance. Influence of the 

following factors were evaluated for the proposed method: modality of prior images, PET 

tracer types, tumor sizes and tumor uptakes. For the dataset of PET/CT with 68Ga-PRGD2 

and the dataset of PET/MR with 18F-FDG, the mean (± SD) improvement ratios (53.35% ± 

21.78%, 46.80% ± 25.23%) are approximately the same and there is no significant 

difference, which shows that the proposed denoising method works well regardless of 

modality types and tracer types used in this work. The tumor size, SUVmax, SUVmean and 

total lesion glycolysis (TLG) versus CNR improvement ratio for the two datasets are plotted 

in supplementary Fig. 5. Here TLG is the product of tumor size and SUVmean, which can 

show joint effects of tumor size and tracer uptake. We can see that there is no clear 

correlation of tumor size, SUVmax, SUVmean, and TLG with CNR improvement ratio, which 

is further verified by the correlation coefficients presented in Table 1. This tells us that the 

proposed denoising method is robust for various tumor sizes and tumor uptakes. In addition, 

supplementary Fig. 6 is an example showing that even when there are some mismatches in 

the tumor structure between the PET image and its corresponding CT image, the proposed 

method can still recover the tumor structure, which verifies that misregistration might not 
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lead to artefacts or local distortions of the proposed method. Further investigations regarding 

the detailed effects of misregistration on the proposed method are needed and are our future 

work.

CONCLUSION

In this work, we proposed an unsupervised deep learning method for PET denoising, where 

the patient’s prior image was employed as the network input and the original noisy PET 

image was treated as the training label. Evaluations based on simulation datasets as well as 

PET/CT and PET/MR datasets demonstrate the effectiveness of the proposed denoising 

method over the Gaussian, anatomically guided NLM, BM4D and Deep Decoder methods. 

Future work will focus on further clinical evaluations with various tumor types as well as the 

detailed effects of misregistration on the proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the proposed unsupervised deep learning framework.
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Figure 2. 
The denoised images using different methods with different parameters (Gaussian: 

FWHM=2.5 pixels; NLM: widow size 5×5×5; BM4D: noise standard deviation 50 

percentage; Deep Decoder: 3800 epochs; the proposed method: 200 epochs) for the 

simulated brain dataset. The first column is the corresponding MR prior image.
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Figure 3. 
The CRC-STD curves, between the gray matter region and the white matter region for the 

simulation study. Markers are generated for different FWHM (1.5, 2.5, 3.5, 4.5 pixels) of 

Gaussian, different window size (5, 7, 9, 11 pixels) of NLM, different noise standard 

deviation (40, 50, 60, 70 percentages) of BM4D, different epochs (2000, 2600, 3200, 3800) 

of Deep Decoder and different epochs (150, 200, 220, 250) of the proposed method.
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Figure 4. 
Coronal view of (a) the original noisy PET image; (b) the post-processed PET image using 

the Gaussian filter with FWHM = 2.4 pixel; (c) the post-processed PET image using the 

NLM filter guided by CT using window size 5×5×5; (d) the post-processed PET image using 

the BM4D method with 10 percent noise standard deviation; (e) the post-processed PET 

image using the Deep Decoder method with 1800 epochs; (f) the post-processed PET image 

using the proposed method trained with 900 epochs. Tumors are pointed out using arrows.
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Figure 5. 
The CNR improvement ratios of ten PET/CT datasets using the Gaussian, NLM guided by 

CT, BM4D, Deep Decoder and the proposed method.
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Figure 6. 
Coronal view of (a) the original noisy PET image; (b) the post-processed image using the 

Gaussian filter with FWHM = 1.6 pixel; (c) the post-processed image using the NLM filter 

guided by MR with window size 5×5×5; (d) the post-processed PET image using the BM4D 

method with 8 percent noise standard deviation; (e) the post-processed PET image using the 

Deep Decoder method with 2000 epochs; (f) the post-processed PET image using the 

proposed method trained with 700 epochs. Tumors are pointed out using arrows. Details in 

the red box are zoomed-in and shown above the whole-body images using a different color 

bar with the maximum value of 2.2.
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Figure 7. 
The CNR improve ratios of thirty PET/MR datasets using the Gaussian, NLM guided by 

MR, BM4D, Deep Decoder and the proposed method.

Cui et al. Page 18

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2021 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Box plot of CNR improvement ratios for 10 lung tumor patients in PET/CT datasets. In the 

boxplots, lines indicating median, 25th and 75th percentiles; cross displaying the mean 

value; * and ** representing P<0.05 and P<0.01, respectively.
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Figure 9. 
Box plot of CNR improvement ratios for different tumor types in PET/MR datasets. Number 

of patients for each tumor type is listed in the bracket. In the boxplots, lines indicating 

median, 25th and 75th percentiles; cross displaying the mean value; *, *** and ns 

representing P<0.05, P<0.001 and nonsignificant, respectively.
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Table 1.

The correlations of CNR values and CNR improvement ratios with different tumor features for all scans of 

PET/CT and PET/MR datasets.

Correlation tumor size SUV max SUV mean TLG

PET/CT
Improvement ratio 0.3734 0.3409 0.1286 0.3664

CNR −0.0407 0.8949(p<0.05) 0.8192(p<0.05) 0.1909

PET/MR
Improvement ratio 0.1821 0.0039 −0.0601 0.1039

CNR 0.3251 0.8483(p<0.0001) 0.8508(p<0.0001) 0.6475(p<0.0001)
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