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Abstract

Background

Since March 11, 2020 when the World Health Organization (WHO) declared the COVID-19

pandemic, the number of infected cases, the number of deaths, and the number of affected

countries have climbed rapidly. To understand the impact of COVID-19 on public health,

many studies have been conducted for various countries. To complement the available

work, in this article we examine Canadian COVID-19 data for the period of March 18, 2020

to August 16, 2020 with the aim to forecast the dynamic trend in a short term.

Method

We focus our attention on Canadian data and analyze the four provinces, Ontario, Alberta,

British Columbia, and Quebec, which have the most severe situations in Canada. To build

predictive models and conduct prediction, we employ three models, smooth transition auto-

regressive (STAR) models, neural network (NN) models, and susceptible-infected-removed

(SIR) models, to fit time series data of confirmed cases in the four provinces separately. In

comparison, we also analyze the data of daily infections in two states of USA, Texas and

New York state, for the period of March 18, 2020 to August 16, 2020. We emphasize that dif-

ferent models make different assumptions which are basically difficult to validate. Yet invok-

ing different models allows us to examine the data from different angles, thus, helping reveal

the underlying trajectory of the development of COVID-19 in Canada.

Finding

The examinations of the data dated from March 18, 2020 to August 11, 2020 show that the

STAR, NN, and SIR models may output different results, though the differences are small

in some cases. Prediction over a short term period incurs smaller prediction variability

than over a long term period, as expected. The NN method tends to outperform other two

methods. All the methods forecast an upward trend in all the four Canadian provinces for

the period of August 12, 2020 to August 23, 2020, though the degree varies from method

to method. This research offers model-based insights into the pandemic evolvement in

Canada.
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1 Introduction

Since the first case of the coronavirus disease 2019 (COVID-19) was found in Wuhan, China

in December 2019, the disease has been spreading worldwide. In Canada, the first confirmed

case appeared in the early January, and as of August 17, 2020, 122,392 cumulative confirmed

cases have been reported and the pandemic does not seem to be over in the next short period.

To assess the impact of COVID-19 in Canada, a large body of research has been done. For

example, Tuite et al. [1] examined an age-structured compartmental model for COVID-19

transmissions in the population of Ontario, Canada. Doreleyers and Knighton [2] studied the

dataset collected from over 100,000 postsecondary students from April 19, 2020 to May 1,

2020 and discussed how their academic life was impacted by the COVID-19 pandemic. Finan-

cial impacts on multiple perspectives, such as economic concerns of immigrants, work inter-

ruptions, or postsecondary students, were discussed by Wall [3], Messacar and Morissette

[4], and LaRochelle-Côté and Uppal [5], among others. Information on various impacts of

COVID-19 can be found in https://www.statcan.gc.ca/eng/covid19.

While different studies on COVID-19 become available, it is important to forecast the tra-

jectories of the development of COVID-19. Model-based forecasting has been explored by

various authors. For example, treating COVID-19 data as time series, Tandon et al. [6] and

Bayyurt and Bayyurt [7] respectively applied autoregressive integrated moving average

(ARIMA) models to predict the future infected cases and death. Petropoulos and Makridakis

[8] employed the exponential smoothing method to model the cumulative number of infected

cases. Siedner et al. [9] used time series methods to illustrate that social distancing helps slow

down the COVID-19 epidemic in the U.S. On the other hand, epidemic modeling has also

been broadly considered. For example, Fanalli and Piazza [10] implemented the susceptible-

infected-removed (SIR) model to analyze and forecast the COVID-19 spread in China, Italy,

and France. Wang et al. [11] extended the SIR models to evaluate the non-pharmaceutical

intervention on the outbreak of COVID-19 in Wuhan, China.

While different models have been employed separately by different researchers to study the

development trajectory of COVID-19, it is unclear how these models may perform because the

associated model assumptions are typically untestable. In this paper we implement three pre-

diction methods to study the COVID-19 data in Canada and compare their forecasting perfor-

mance. Specifically, different from the past literature that directly used linear time series

models to fit data, we consider nonlinear time series model, the smooth transition autoregres-
sive models (STAR), as well as the machine learning method, the neural network (NN) model.

Moreover, for the sake of comparison, we also apply the SIR model to characterize the trajec-

tory of the number of infected cases.

To reflect possibly different measures taken by the local government in each province to

curb the virus spread, our discussion is carried out separately for individual provinces, which

involve Ontario, Alberta, British Columbia, and Quebec, the four provinces that have large

numbers of infected cases. Our study is conducted for the dataset available in https://

coronavirus.1point3acres.com/en.

2 Data and framework

2.1 Descriptive statistics

The dataset, dated from February 24, 2020 to August 16, 2020, is available at https://

coronavirus.1point3acres.com/en. It records the number of infected cases and the number of

deaths on a daily basis for each province or territory in Canada. Fig 1 gives a map display of

the total number of infected cases for each province, and Fig 2 further displays the number of

PLOS ONE Analysis of Canadian COVID-19 data

PLOS ONE | https://doi.org/10.1371/journal.pone.0244536 January 19, 2021 2 / 18

https://www.statcan.gc.ca/eng/covid19
https://coronavirus.1point3acres.com/en
https://coronavirus.1point3acres.com/en
https://coronavirus.1point3acres.com/en
https://coronavirus.1point3acres.com/en
https://doi.org/10.1371/journal.pone.0244536


cumulative infected cases since February 24, 2020. Ontario and Quebec have the largest num-

bers of cumulative confirmed cases, and the second cluster of severely infected provinces

includes Alberta and British Columbia. These four provinces are more populated than other

Canadian provinces. To better show the relation between the population size and the number

of cumulative confirmed cases, in Table 1 we report the infection rate as of August 16 which is

defined as the ratio of the number of total infected cases to the population size for the four

provinces as well as for the entire Canada. While Ontario is the most populated, its infection

rate is not the highest and is even lower than the overall infection rate in Canada. More

detailed explorations and descriptive statistics of the Canadian data are available in the dash-

board created by the GW-DS-COVID-19 research group: https://covid-19-canada.uwo.ca/

index.html which was introduced by Liu et al. [12].

Fig 3 reports infection rates classified by age (in years) and gender for the provinces

Ontario, British Columbia, and Alberta based on the data reported as of August 16, 2020.

Infection rates seem to be fairly close for men and women in the same groups but differ notice-

ably for people at different ages. The highest infection rate is in the age interval 20-29 for

Ontario and British Columbia, whereas infection rates in Alberta appear fairly similar for age

up to 49. For the group of aged 80 and older, infection rates for men are higher than those

for women, and particularly, the infection rate for men doubles that for women in Ontario.

Based on the available data, in Fig 4 we display recovery rates as of August 16, 2020, for

Ontario and Alberta according to the information of age and gender. Recovery rates appear

similar for men and women, and they remain fairly the same for different age groups except

for individuals aged 70 or older. For this age group, recovery rates for males are higher than

females. For patients younger than 70, recovery rates are higher than 80%.

Fig 1. The number of cumulative confirmed cases with COVID-19 in each province of Canada as of August 16, 2020. Darker color indicates a

higher number of the confirmed cases. Reprinted from https://covid-19-canada.uwo.ca/ under a CC BY license, with permission from the GW-DSRG

(Grace-Wenqing Data Science Research Group), original copyright 2020.

https://doi.org/10.1371/journal.pone.0244536.g001
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2.2 Framework of time series analysis

Since most provinces in Canada declared “the state of emergency” as of March 18, 2020, we

analyze time series data of the number of daily confirmed cases since March 18, 2020 which

are likely to be more homogeneous than the data before this date. We are interested in fore-

casting the trend of the pandemic in each of the four provinces. Shown in Table 2, we take the

dataset in the period from March 18, 2020 to August 11, 2020 as the training set to construct

prediction models, and use the data from August 12, 2020 to August 16, 2020 as the testing

data. The goal is to predict the number of cases in the “future” days, where we consider a short

term period from August 12, 2020 to August 23, 2020 in which the testing data in the first five

days can be used to assess the performance of prediction. In comparison, we also conduct pre-

diction for a longer period of 25 days starting from August 12, 2020, though more variability is

expected.

Fig 2. The cumulative number of infected cases with COVID-19 in Canada.

https://doi.org/10.1371/journal.pone.0244536.g002

Table 1. A comparison of the population size, the number of cumulative confirmed cases, and the infection rate in Canada and the four provinces.

Region Number of total infected cases Population size� Infection rate(%)

Canada 122,392 37,314,442 0.328

Ontario 40,737 14,446,515 0.282

Quebec 61,227 8,433,301 0.726

Alberta 12,070 4,345,737 0.278

British Columbia 4,455 5,020,302 0.089

�Website source: https://worldpopulationreview.com/canadian-provinces/

https://doi.org/10.1371/journal.pone.0244536.t001
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3 Methods and analysis results

To construct prediction models with time-dependent data, techniques of handling time

series can be employed. To address the nonlinear patterns shown in Fig 2, we apply three

modeling methods: smooth transition autoregressive (STAR) models, neural network (NN)

models, and susceptible-infected-removed (SIR) models. We first describe these models, and

then present the results for the COVID-19 data of the four Canadian provinces as well as two

states in USA.

Fig 3. COVID-19 infection rates classified by age ranges (in years) for Ontario, British Columbia and Alberta based on the data as of August 16,

2020.

https://doi.org/10.1371/journal.pone.0244536.g003

Fig 4. COVID-19 recovery rates classified by age ranges (in years) for Ontario and Alberta based on the data as of August 16, 2020.

https://doi.org/10.1371/journal.pone.0244536.g004
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3.1 Modeling and prediction

3.1.1 The STAR model. For the discrete time point t = 0, 1, 2, . . ., T, let Xt denote the ran-

dom process of interest. The STAR model (e.g., Chatfield and Xing 2019 [13], Section 11.4)

assumes the form

Xt ¼ a0 þ
Xp

j¼1

ajXt� j

 !

φðXt� dÞ þ b0 þ
Xp

j¼1

bjXt� j

 !

1 � φðXt� dÞf g þ �t; ð1Þ

where the �t are white noises which are assumed to be independent and identically distributed

with mean zero. Here a0, aj, b0, and bj are unknown parameters, p is an order of the autoregres-

sive process, d is the delay parameter, and φ(�) is a smooth function taken as, for example,

the logistic function with a parameter, say α (Chatfield and Xing 2019 [13], p.280), as in our

numerical studies.

Let θ = (a0, a1, . . ., ap, b0, b1, . . ., bp, α)> denote the vector of associated parameters. It can

be estimated by the least squares method, given by

ŷ ¼ argmin
y

XT

t¼1

fXt � FðXt; yÞg
2

ð2Þ

with FðXt; yÞ ¼ a0 þ
Xp

j¼1

ajXt� j

 !

φðXt� dÞ þ b0 þ
Xp

j¼1

bjXt� j

 !

1 � φðXt� dÞf g. Estimator ŷ is

equivalent to the maximum likelihood estimator if �t is further assumed to follow a normal dis-

tribution (van Dijk et al. 2002 [14], p.19).

To calculate a forecasted value, we first let X̂ t denote the fitted value for t = 1, . . ., T,

obtained from (1) with θ replaced by (2), and let et ¼ Xt � X̂ t denote the resulting residual.

Then the residual standard deviation is defined as (e.g., Hyndman and Athanasopoulos 2018

[15], Section 5.2)

ŝ ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT

t¼1

e2

t

s

:

Suppose we are interested in forecasting the value at time point T + h, where h represents

the number of steps in prediction. Then we use (1) recursively to work out the predicted values

X̂Tþ1; . . . ; X̂Tþh, respectively, for time points t = T + 1, . . ., T + h, where θ is replaced by ŷ. Fur-

ther, we construct the associated 95% as

X̂ Tþh � 1:96ŝh;

where ŝh ¼ ŝ
ffiffiffi
h
p

is the standard deviation of the h-step forecast (e.g., Hyndman and Athana-

sopoulos 2018 [15], Section 3.5). The increase of ŝh with h shows that the forecast becomes

more variable for prediction at a longer time point.

Table 2. Data split and prediction.

Type Period Number of days

Training Data March 18 to August 11 147

Testing Data August 12 to August 16 5

Short-term Prediction August 12 to August 23 12

Long-term Prediction August 12 to September 05 25

https://doi.org/10.1371/journal.pone.0244536.t002
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The R functions lstar and forecast (Chatfield and Xing 2019 [13], p.281) can be used

to fit the model using the training data and perform prediction by constructing 95% prediction

intervals, respectively.

3.1.2 The NN model. The neural network (NN) model is an important tool in machine

learning, which basically includes three elements: the input layer, the hidden layer(s), and the

output layer, as illustrated in the left panel of Fig 5. For example, consider the case with one

hidden layer with J nodes. The T time series variables Xt are taken in the input layer, and the

weighted sum for the jth node in the hidden layer is given by

Vj ¼
XT

t¼1

wtjXt

for j = 1, . . ., J, where wtj are weights to be tuned. Then through activation functions, the value

in the output layer is formulated as

X̂ t ¼ �0f
XJ

j¼1

w�j �hðVjÞ þ w�
0
g;

where w�j and w�
0

are weights, and φh(�) and φ0(�) are the user-specified activation functions.

The weights are estimated by minimizing
PT

t¼1

ðX̂ t � XtÞ
2
. Prediction of a future time point pro-

ceeds in the same way as that of the STAR model.

The R function nnetar can be used to fit the training data, where activation functions are

respectively specified as

�hðvÞ ¼ f1þ exp ð� vÞg� 1 and �0ðvÞ ¼ v:

The R function forecast can be invoked to produce predicted results as well as 95% pre-

diction intervals (Chatfield and Xing 2019 [13], p.295). In our numerical studies, we take one

hidden layer with J = 3 nodes.

3.1.3 The SIR model. In contrast to the STAR and NN model which facilitate a stochastic

variation (Chatfield and Xing 2019 [13], Section 3.1), the susceptible-infected-removed (SIR)

model is a deterministic epidemic model. The STAR and NN models postulate the number of

infected cases only, whereas the SIR model incorporates not only the infected cases but also

the numbers of death and recovery. The SIR model basically employs differential equations to

describe the dynamic changes of the population which is classified as three compartments: sus-
ceptible (S), infected (I) and removed (R) (consisting of recoveries and deaths).

The status for an individual in the population may change with time: a healthy individual

may become infected, and an infected patient may recover or die of the disease, as shown in

the right panel of Fig 5, where transition rates are introduced to characterize the dynamic

changes. Let St, It, and Rt, respectively, denote the size of the population in the states of suscep-

tible, infected, and removed at time t, and let N≜ St + It + Rt denote the population size which

is assumed to be fixed. Let β denote the average number of contacts per infectious person per

time unit, and let γ represent the transition rate from It to Rt; in other words, the duration of

the infectious status is characterized by 1

g
.
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As a result, the SIR model is given by the ordinary differential equations:

dSt

dt
¼ �

bItSt

N
;

dIt
dt
¼
bItSt

N
� gIt;

dRt

dt
¼ gIt;

ð3Þ

where one equation is determined by other two equations due to the constraint that the total

population size remains unchanged. The R function SIR in the EpiDynamics package can

be implemented to simulate It and Rt from the differential (Eq 3).

Fig 5. Illustration diagrams: The left panel is for the NN model, and the right panel is for the SIR model.

https://doi.org/10.1371/journal.pone.0244536.g005
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While the SIR model is based on the modeling of St, It, and Rt, our focus here concerns the

daily infection numbers and aims to do prediction with minimal prediction errors. Regarding

the daily number of confirmed cases on day t as the difference of St and St−1, we calculate the

predicted number of daily confirmed cases on day t, denoted X̂ tðb; gÞ, as follows:

X̂ tðb; gÞ ¼ St� 1 � St

¼ ðN � It� 1 � Rt� 1Þ � ðN � It � RtÞ

¼ It � It� 1 þ Rt � Rt� 1

for t = 1, . . ., T, where T represents the end of the study period, the assumption of the fixed

population size is used, and the dependence of It, It−1, Rt, and Rt−1 on β and γ is implicitly

reflected from the system of the ordinary differential (Eq 3). Then the parameters β and γ in

(3) can be obtained by minimizing the squared prediction error

PEðb; gÞ ¼
XT

t¼1

fXt � X̂ tðb; gÞg
2

ð4Þ

with respect to β and γ.

The minimization of (4) can be realized by using the R function optim in the built-in stats

package. Prediction values and associated intervals can be computed following the same lines

as discussed by Efimov and Ushirobira (2020) [16]. Specifically, let ŝb and ŝg denote the esti-

mated standard deviations of the estimators b̂ and ĝ, computed by applying the function

optim in the built-in stats package via the gradient descent of (4). Therefore, the 95% confi-

dence interval for b̂ and ĝ are, respectively, given by ðb; �bÞ and ðg; �gÞ, where

b ¼ b̂ � 1:96ŝb;
�b ¼ b̂ þ 1:96ŝb; g ¼ ĝ � 1:96ŝg; and �g ¼ ĝ þ 1:96ŝg:

Following Efimov and Ushirobira [16], we create the prediction bound in the following

procedure:

Step 0: Initialize S0, I0 and R0. Set t = 0.

Step 1: Simulate a lower bound of St, It and Rt, denoted St , It and Rt , and an upper bound of

St, It and Rt, denoted �St ,
�It and �Rt by

Stþ1
¼ 1 �

�b�I t

N

� �

St;

I tþ1
¼ ð1 � �gÞI t þ bI tSt;

Rtþ1
¼ Rt þ gI t;

�Stþ1 ¼ 1 �
bI t

N

� �

�St;

�I tþ1 ¼ ð1 � gÞ�I t þ
�b�I t

�St;

�Rtþ1 ¼ �Rt þ �g�I t:

Step 2: Calculate the upper bound
�̂Xtþ1 and the lower bound X̂ tþ1 of the 95% prediction interval

for time point t + 1, given by
�̂Xtþ1 ¼

�I t � I t� 1
þ �Rt � Rt� 1

and X̂ tþ1 ¼ I t �
�I t� 1 þ Rt �

�Rt� 1.

Step 3: If t< T, then set t≔ t + 1 and back to Step 1.
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3.2 Analysis of the data in four Canadian provinces

We apply the three methods in Section 3.1 to examine the data of Quebec, Alberta, Ontario, and

British Columbia separately, and respectively report in Figs 6–9 the results of the fitted values,

predicted values and the associated 95% prediction intervals for the periods displayed in Table 2.

The NN method provides the most accurate fitted values than the STAR and SIR methods

for the data in all the four provinces, and the SIR method tends to yield the worst fitted values.

In terms of prediction, the NN method tends to have the smallest prediction region for the

short term prediction. As expected, prediction errors for the three methods become bigger as

the prediction period increases. The prediction trend for the short term agrees fairly well

Fig 6. Analysis of cumulative numbers of infected cases with COVID-19 in Quebec, Canada using the STAR, NN and SIR models: Fitted values

(in red) versus the reported cumulative infections (in blue). A red dashed curve represents the prediction for the next 25 days. Black dotted lines

represent 95% prediction bands. The curves prior to the green vertical line are obtained for the training data; the red dashed curves show the predicted

values where the green vertical lines indicate the start date of prediction. A region between green and orange dashed lines reflects a short term

prediction, and a region after the orange dashed line shows a long term prediction.

https://doi.org/10.1371/journal.pone.0244536.g006
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between those produced by the NN and STAR methods, but not with those obtained from the

SIR model. Though there are disparities in the predicted results, all the methods predict an

increasing trend for all the provinces except for the STAR method applied to the Ontario data.

While the SIR model does not seem to output better results than the NN method, it is

advantageous in yielding some useful measures for describing the pandemic. For example,

the basic reproduction number, defined as R0 ¼
b

g
, represents the expected number of cases

infected by one case in a population where all individuals are susceptible to infection. Basically,

R0 is a simple yet informative measure to characterize the situation: “R0 > 1” means a coming

exponential trend of the number of cases, “R0 = 1” implies a slow development of the pan-

demic, and “R0 < 1” suggests a dying down transmission of the virus. The larger value of R0,

the harder to control the epidemic (e.g., Becker et al. 2006 [17]). With the estimates of β and γ

Fig 7. Analysis of cumulative numbers of infected cases with COVID-19 in Alberta, Canada using the STAR, NN and SIR models. All designations

for the various curves are as described in Fig 6.

https://doi.org/10.1371/journal.pone.0244536.g007
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produced by the SIR model, the R0 value for Ontario, British Columbia, Quebec, and Alberta

are, respectively, given by 0.99, 0.98, 1.00, and 1.00. These estimates indicate a nonsevere pan-

demic situation in those provinces, thus in Canada, especially compared to the estimate, R0 =

5.7, evaluated for the initial period of the outbreak in Wuhan city, China [18].

Further, examining the reported number of cases, we notice that the increasing trend varies

from province to province. The data in Quebec show an “elbow” shape with the “joint” appear-

ing around June 1, 2020. The data in Ontario exhibit a somewhat similar shape to that of Que-

bec with a less conceivable “joint” being around June 10, 2020. The data in Alberta and British

Columbia, on the contrary, display different patterns than those of Quebec and Ontario, yet

they are somewhat similar in having two “changing” points. The data in Alberta and British

Columbia show a steep increasing pattern until hitting May 1, 2020, then followed by a nearly

Fig 8. Analysis of cumulative numbers of infected cases with COVID-19 in Ontario, Canada using the STAR, NN and SIR models. All

designations for the various curves are as described in Fig 6.

https://doi.org/10.1371/journal.pone.0244536.g008
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flat shape until entering days around July 10, 2020 from which the increasing trend becomes

sharp. While there are no obvious explanations why those patterns are different, some attribut-

able factors include the time window of the containment measures (such as lockdown of cities)

taken by the local governments, the population density, demographic structures, testing capac-

ity, and healthcare facilities, as well as varying incubation periods (e.g., He et al. 2020 [19]).

3.3 Discussion of the three models

The numerical studies in Section 3.2 demonstrate that the three models output different

results, though the differences can be negligible in some cases. These disparities basically per-

tain to the differences in the model assumptions and implementation procedures associated

with those methods. The STAR model takes a parametric structure with the white noises

Fig 9. Analysis of cumulative numbers of infected cases with COVID-19 in British Columbia, Canada using the STAR, NN and SIR models. All

designations for the various curves are as described in Fig 6.

https://doi.org/10.1371/journal.pone.0244536.g009
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assumed to have mean zero, and the associated parameters may be estimated by the least

squares method. On the contrary, the NN method is model free and does not require an

explicit function form to link the input and output variables. Instead, it calls for hidden layers

with nodes linked by activation functions or linear functions, where different specification of

those quantities facilitates various relationships between the input and output variables, and

the associated weights are estimated based on the training data. Despite simple principles

behind the SIR model, its validity relies on the invariance assumptions including a time-inde-

pendent infection rate and a fixed size of the study population.

While those required conditions are generally difficult to be met or verified, applying those

methods to analyze COVID-19 data may still reveal to some extent the progressive changes of the

pandemic. For prediction over a short period, these methods provide fairly reasonable results and

the NN method tends to outperform the STAR and SIR methods, evident from the good agree-

ment between the predicted values and the reported numbers for the testing data. Unsurprisingly,

the prediction ability of the methods for a long time window become less reliable, as shown by

the increasing widths of the prediction intervals as the prediction period gets larger. These obser-

vations are consistent with the usual patterns of a reasonable prediction model: a long term pre-

diction incurs more variation than a short term prediction (e.g., Chatfield 2001, p.478 [20]).

3.4 Analysis of the data in two states of USA

For comparison, in this subsection we employ the same methods discussed in Section 3.1 to

analyze the COVID-19 data in two states of USA, New York and Texas, collected for the same

period as the Canadian data discussed in Section 2.2 (i.e., March 18, 2020 to August 16, 2020).

Fig 10 shows the cumulative number of infected cases of the two states, in contrast to the

total of cumulative numbers of infections of the four Canadian provinces as well as that for

Fig 10. The cumulative numbers of reported infected cases: The total in the four Canadian provinces and the total

in Canada, in comparison to those in New York and Texas, USA.

https://doi.org/10.1371/journal.pone.0244536.g010
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Fig 11. Analysis of cumulative numbers of infected cases with COVID-19 in Texas and New York state, USA using the STAR, NN

and SIR models. All designations for the various curves are as described in Fig 6.

https://doi.org/10.1371/journal.pone.0244536.g011
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entire Canada. New York state has a steeply increasing trend before June and then become rel-

atively flat, whereas Texas shows a different pattern with a sharp upward trend. On the con-

trary, the total numbers of cases in Canada remain relatively low with a fairly flat trend.

Similar to the analysis in Section 3.2, we apply the three methods to examine the data of

New York state and Texas separately, where the data for the period of March 18, 2020 to

August 11, 2020 are taken as the training data to build a prediction model, and the data for the

period of August 12, 2020 to August 16, 2020 are taken as test data to assess the performance

of prediction. In Fig 11, we report the prediction results for a short term period of August 17,

2020 to August 23, 2020 as well as for a longer period of August 24, 2020 to September 05,

2020, where we display the results of the fitted and predicted values, together with 95% predic-

tion regions. Again, the NN method provides the best fit to the data with reasonably good

prediction, and the SIR method tends to perform the worst. All the three methods predict a

steeply increasing trend for the COVID-19 cases in Texas and a less sharp upward trend for

New York state.

4 Discussion

In this paper, we investigate prediction of the development of COVID-19 in Canada using the

STAR, NN, and SIR models. It needs to be emphasized that in building the prediction models,

the associated model assumptions are not verified or not even realistic. For example, the SIR

model requires no inbound or outbound infected travellers. It also assumes no asymptomatic

cases, which is clearly untrue; combining a meta analysis with sensitivity analyses, He et al.

[19] estimated that the asymptomatic rate was about 46%. From the epidemiological perspec-

tives, it is important to incorporate asymptomatic infections (e.g., Moriarty et al. [21]) when

building a prediction model in order to truthfully identify the number of infected cases. How-

ever, such information is unavailable for us to include in this study. A possible remedy is to

conduct sensitivity analyses as outlined by He et al. [19], which is interesting to explore as a

new project.

Another issue concerns the quality of data. The dataset itself may possibly have incorrect

records for some days. For example, the dataset considered in this study is slightly different

from the record in the JHU research dashboard (https://data.humdata.org/dataset/novel-

coronavirus-2019-ncov-cases), and this may affect the validity of the prediction results as well.

This article focuses the examination on time series data of reported daily infected cases. It is

interesting to analyze other kinds of data such as daily recovered or daily deceased individuals.

Furthermore, as data become richer and more accessible, it is useful to develop methods to

study how the pandemic is associated with population-level characteristics as well as individ-

ual-level risk factors.
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