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Abstract

Purpose of Review: The treatment of cancer-induced bone pain (CIBP) has been proven 

ineffective and relies heavily on opioids, the subject of highly visible criticism for their negative 

side effects. Alternative therapeutic agents are needed and the last few years have brought 

promising results, detailed in this review.

Recent findings: Cysteine/glutamate antiporter system, xc
−, cannabinoids, kappa opioids, and a 

ceramide axis have all been shown to have potential as novel therapeutic targets without the 

negative effects of opioids.

Summary: Review of the most recent and promising studies involving CIBP, specifically within 

murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in 

late stages, however the standard of care is not effective to treat CIBP. The complicated and 

chronic nature of this type of pain response renders over the counter analgesics and opioids largely 

ineffective as well as difficult to use due to unwanted side effects. Pre-clinical studies have been 

standardized and replicated while novel treatments have been explored utilizing various alternative 

receptor pathways: cysteine/glutamate antiporter system, xc
−, cannabinoid type 1 receptor (CB1R), 

kappa opioids, and a ceramide axis (S1P/S1PR1).
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Introduction

The prevalence of cancer, with almost 40% of Americans receiving a diagnosis at some 

point in their lifetime, has brought enough attention to research that treatments and care have 

been studied and improved, subsequently increasing life expectancy [1]. Increased lifespan 

in patients can result in more complicated, harder to treat pain, and decreased quality of life. 

When cancer metastasizes to bone, causing cancer-induced bone pain (CIBP), it presents a 

unique issue to the condition with many treatment challenges, including complex pain 

management.
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Unlike other types of cancer pain, CIBP has elements of acute, inflammatory and 

neuropathic pain, as well as characteristics unique to the condition, discussed in great detail 

in a review by Falk and Dickenson of the University of Copenhagen [2]. Acute pain consists 

of afferent fiber activation through extreme temperature, mechanical or chemical injury to 

surrounding tissue, i.e. fracture of a diseased bone. Inflammatory pain occurs through 

mediator cells released by damaged tissue and creates changes in the central nervous system, 

a symptom of the acidic tumor environment within the bone [2]. Neuropathic pain is caused 

by damage to sensory nerve fibers and the subsequent changes in ion channels, caused by 

tumor burden to nerves or chemotherapy. In addition, CIBP manifests through different 

experiences of pain: chronic, breakthrough, and incident (movement-induced) [3]. 

Breakthrough pain, intense but brief, can often cause difficulty with movements and 

interrupts general life, while chronic pain is often dull and lasting, that can be quite intense 

and debilitating. The unpredictable nature of breakthrough pain and the longevity of chronic 

pain create a challenge in treating pain. The standard of care, currently consisting of over the 

counter analgesics and a range of opioids, cannot treat this unique combination of pain 

effectively [4].

Specifically, opioid-based pain management for CIBP is ineffective because of its dose-

limiting effects and negative impacts on bone remodeling [5]. Opioids have been proven to 

be highly addictive with the potential of a fatal overdose, making them dangerous for 

treating both very intense and long-lasting pain. Furthermore, patients taking opioids for 

chronic pain quickly develop analgesic tolerance and are often unable to achieve the same 

pain relief over time [6]. Opioids add an additional burden on those being treated for CIBP 

because they can slow or stop bone remodeling and even increase bone brittleness, greatly 

impeding the treatment of bone cancer [7]. These shortcomings, combined with a handful of 

other painful and inconvenient side effects, such as constipation and sedation, demonstrate 

the need for novel treatments for CIBP. Fortunately, over the last 18 months, substantial 

progress has been made in understanding CIBP, with studies published on many potential 

therapeutic targets such as cysteine/glutamate antiporter system xc
−, cannabinoids, kappa 

opioids, and sphingosine-1-phosphates, all of which will be described in this review.

Standards for Evaluation

In order to investigate alternative CIBP treatments, it’s important to have a consistent and 

reproducible model, which for CIBP has been done using an animal model. Thompson, et al. 

2019 [8] published a thorough review of the procedures and methods of murine bone-

derived pain models, including CIBP and the adjacent bone pain models, including fracture 

and osteoarthritis, that are often comorbid with CIBP.

Capitalizing on a review article by Slosky et al. 2015 [4] that delves into the history of many 

of the methods, Thompson has created a simple, straightforward collection of methods 

essential for studying CIBP. Until 1999, an intracardiac model introduced cancer cells into 

the left ventricle of rodents, allowing the cancer cells to spread indiscriminately around the 

body. While the cancer cells often metastasized to bone, creating a model similar to natural 

progression of bone cancer, the global tumor burden was nonspecific, uneven, and 

unreproducible, making the model impossible to replicate and the animals too unhealthy for 
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accurate behavioral evaluation [9]. While this method could have accounted for the natural 

process of metastasis, the nonspecificity and low survival rates of the animals have led to a 

different procedure that is the current standard for CIBP studies: direct, intramedullary 

injection of the cancer cells, contained by a bone sealant. Additionally, CIBP studies often 

use syngenic models, or cancer cells from the same species that are then inoculated with 

them to allow for study of immune system interaction, as nonsyngenic models require 

immunocompromised animals to be successful. In addition to the detailed description of the 

surgical procedure for the intramedullary murine CIBP models, Thompson describes the 

flinching, guarding and other behavioral tests that are necessary for evaluating pain 

response. A study by Sliepen et al. 2019 [10] adds an additional behavioral test for CIBP: 

measurement of the condition’s inhibition of burrowing as a more complex behavior affected 

by the condition.

Cysteine/Glutamate Antiporter System xc
−

While CIBP can be severe and acute, tumor masses often do not develop direct innervation 

until the late stages of the disease after bone degradation. Instead, the acidic and enzymatic 

tumor environment provokes the nociceptors within the highly innervated surrounding bone 

tissue, leading to chronic inflammatory pain response. Slosky et al. 2016 [11] published a 

study extensively investigating one of the mechanisms of this extracellular component of 

CIBP and how to effectively treat it.

The study references preliminary data from Singh [12] [13], citing evidence that glutamate, 

an excitatory neurotransmitter, is released from the cysteine/glutamate antiporter system, xc
− 

in vitro murine breast cancer cells. The xc
− system is responsible for maintaining 

intracellular and extracellular oxidant levels by exchanging extracellular cysteine for 

intracellular glutamate, which activates N-methyl-D-aspartate (NMDA), α-amino-3-

hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA), and metabotropic-type glutamate 

receptors in the surrounding bone tissue, creating a potential target for CIBP treatment.

Slosky advanced the in vitro studies by Singh to in vivo murine models, administering the 

direct xc
− inhibitor, sulfasalazine (SSZ), to test subjects, providing evidence confirming that 

tumor-cell release of glutamate through antiporter system xc
− is a key component of CIBP. 

Additionally, SSZ is already an FDA-approved drug and since it was shown to attenuate 

known CIBP behaviors of flinching and guarding, it will likely be fast-tracked into adjunct 

therapies for human patients.

In terms of mechanisms, the study examines the role of antiporter system xc
− in mobilizing 

cells’ antioxidant defenses, confirming an upregulated expression in times of oxidative stress 

from bone cancer environments. They demonstrated that downregulating peroxynitrite 

expression subsequently downregulated the antiporter system xc
− decreased CIBP response, 

providing yet another potential therapeutic target. Slosky et al. 2016 provides key 

understanding of the role the cysteine/glutamate antiporter system xc
− plays in CIBP through 

both SSZ and peroxynitrite, and provides evidence of the key role glutamate expression 

plays in the bone cancer tumor environment in vivo.
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Two studies by Fazzari et al. [14] [15], are in association with the Singh lab referenced by 

Slosky, and leverage antiporter system xc
−. The 2017 study investigates the efficacy of 

another direct xc
− inhibitor, capsazepine (CPZ) on glutamate release, concluding that CPZ 

also reduced CIBP response using similar mechanisms to those identified by Slosky. The 

2019 study, however, Fazzari et al. focuses on another aspect of the system, glutamate 

precursors glutamine and glutaminase (GLS), which are heavily metabolized by tumor cells 

and the reaction-causing enzyme, respectively. The altered metabolism and rapid 

proliferation of cancer cells creates a reliance on glutamine as a source of nitrogen and for 

the production of many other amino acids, making it a promising target for antiporter system 

regulation [16].

This study targets GLS through potent allosteric inhibitor, CB-839, increasing the reactive 

oxygen species (ROS) to activate xc
− without the cancer cells having access to intracellular 

glutamate. In theory, this would cause the tumor burden to favor the antioxidative properties 

of xc
− without having the glutamate resources for growth [17]. However, Fazzari et al. did 

not see any attenuation of pain behaviors in the CIBP model or consistent tumor growth 

control. The deeper understanding of how the balance of glutamate and cysteine factors into 

CIBP response will provide clarity in future treatment studies.

Miladinovic et al. 2019 [18], also in association with Singh, examines the role of antiporter 

system xc
− activation in spinal microglia, a central component of neuroinflammation and 

chronic pain. The results of a mouse model indicate that tumor-produced glutamate 

upregulates xc
− expression and activation in microglia, which increases CIBP response, 

providing evidence of yet another potential therapeutic target within the antiporter system.

Chronic Inflammatory Pain: Cannabinoid and Kappa Opioid Receptors

Zhang et al. 2018 published a study of the peripherally-restricted cannabinoid 1 receptor 

(CB1R) agonist 4-{2-[-(1E)-1[(4-propylhaphthalen-1-yl)methylidene]-1H-inden-3-yl] -

ethyl} morpholine (PrNMI) effectively attenuating CIBP in mice [19]. Cannabinoid receptor 

agonists have produced promising results in chronic pain studies and have been shown to 

improve bone integrity through balancing osteoclast and osteoblast populations, making 

them ideal candidates for a potential novel treatment for CIBP. The use of these agonists was 

originally limited by the undesirable psychotropic effects in the central nervous system, but 

by targeting only the peripheral CB1Rs, the antiallodynic effects are allowed without the 

unwanted side effects [20]. This study also investigated cannabinoid side effects still present 

in the periphery, such as decreased body temperature, catalepsy, and decreased movement, 

noting that while mild sedation was observed, there were no signs of anxiety or decreased 

limb movement. Zhang’s study confirms both the activation of CB1R receptors and the 

peripheral selectivity using a pretreatment of CB1R antagonist, SR141716, peripherally and 

centrally, respectively.

This study is one of the first of its kind to examine CB1Rs in CIBP models, but builds from 

a study by Lozano-Ondoua et al. 2013 [21], which investigated cannabinoid 2 receptor 

(CB2R) agonists in the same condition. While the analgesic and antiallodynic properties of 

CB1Rs are not fully understood, it is hypothesized that these receptors are upregulated on 
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the peripheral terminals of primary afferents of tissues under pathological conditions, such 

as CIBP. Additionally, CB1Rs are primarily present on the nerve fibers innervating the bone, 

with some low levels in osteoclasts and osteoblasts, while CB2Rs are more present in 

osteoclasts, osteoblasts, and osteocytes, indicated by Lozano-Ondoua et al. to inhibit 

osteoclast activity and subsequently prevent cancer-induced bone loss [22]. The trajectory of 

cannabinoid-type receptor studies is detailed at length in the discussion section of Zhang et 

al., but it’s clear that these studies show potential for advancing the understanding of CIBP 

mechanisms and producing novel treatments for clinical use.

In addition to cannabinoid type-receptors, a study by Edwards et al. 2018 [23] has indicated 

the therapeutic potential of targeting kappa opioid receptors (KOR) to relieve inflammatory 

pain in CIBP models. Common, clinically prescribed opioids such as morphine and 

benzodiazepine (that have failed to provide adequate management of CIBP) act on the mu 

opioid receptor (MOR), separate from the KORs targeted in this paper. In fact, KOR 

agonists have been shown to produce antinociception and attenuate morphine-induced 

dependence without as many dangerous side-effects [24]. This study leverages peripheral 

administration of KOR agonist, U50,488 and notes that clinically viable KOR agonists will 

likely be peripherally restricted like those in the CB1 studies, or functionally selective in 

order to reduce dysphoric effects [25].

The results of the study found a long-lasting antinociceptive effect of U50,488, (confirmed 

by KOR antagonist, nor-binaltorphimine) without seeing any negative effects on tumor 

proliferation or bone degradation. Their twice-a-day, week long study showed pre-U50,480 

injection baselines to be improved in comparison to vehicle on the last day, suggesting 

repeated administration to be beneficial to chronic pain treatment without creating tolerance. 

This paper paves the way for future studies of KOR agonists in CIBP and provides 

promising evidence in support of clinical treatments targeting the aspect of inflammatory 

pain.

Neuropathic Pain: S1P/S1PR1

With much of the most recent work revolving around acute and inflammatory pain directly 

involved with the tumor or tumor microenvironment, Grenald et al. 2017 [26] published a 

promising study focusing on the neuropathic-type pain associated with CIBP. Neuropathic 

pain occurs when there is an injury directly to the sensory nerves, which alters the ion 

channels that produce action potentials and distinct pathology into the dorsal horn of the 

spinal cord and spinal glia [2]. This can happen after chemotherapy or surgical treatments 

damages nerves, or if the tumor burden pinches or grows through nerves in the bone. 

Although no treatment exists to target it, neuropathic pain is present in about a quarter of 

bone cancer patients and hypothesized to be the source of continued pain in recovering 

patients [27].

The ceramide, sphingosine-1-phosphate (S1P), and S1P receptor subtype 1 (S1PR1) axis has 

been identified as a crucial part of neuropathic pain response by Janes et al. 2014 [28], and 

Grenald et al. examined its role in neuropathic pain response seen in CIBP, becoming one of 

the first studies to focus on this aspect of pain response in CIBP. The notable findings 
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include the sphingolipid metabolism (production of S1P) is upregulated in the tumor 

environment, likely sensitizing local afferents and contributing to spinal S1P production and 

neuropathic pain. This study also leveraged known S1PR1 antagonist, Fingolimod (FTY720) 

to create irreversible downregulation of S1P production and neuropathic pain response. The 

efficacy of FTY720 through regulating interleukin 10 (IL-10) production by astrocytes 

provides novel insight into the neuropathic mechanisms of CIBP and identifies the S1P/

S1PR1 axis as a therapeutic target for clinically treating this aspect of pain. Additionally, 

FTY720 is an FDA-approved drug currently used to treat multiple sclerosis patients, making 

this study even more notable for its’ fast-track clinical viability.

Conclusion

The multifaceted pain response that defines CIBP makes treatment a complicated endeavor, 

but recent studies have had significant breakthroughs. The 2019 review from Thompson et 

al. created a tangible standard for animal bone pain models, Slosky et al., Fazzari et al., and 

Miladinovic et al. examined different aspects of the antiporter system xc
−, further clarifying 

its role in CIBP and tumor growth. Edwards et al. and Zhang et al. examined kappa opioid 

and cannabinoid receptors, respectively, to create promising evidence for clinical treatments 

of CIBP. Grenald et al. addressed the neuropathic pain associated with CIBP and laid a solid 

foundation for future studies and clinical uses. These advancements indicate future 

improvements for the currently ineffective treatment for CIBP.
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Key Points

• Cancer-induced bone pain (CIBP) is a complicated pain response that is not 

effectively treated by the current standard of care.

• Syngenic intramedullary injections are the standard for CIBP models.

• Inhibition of tumor-released glutamate through the cysteine/glutamate 

antiporter system, xc
− has shown promising results to treat CIBP.

• Peripherally restricted cannabinoid 2 (CB2) and kappa opioid receptor 

agonists have been shown to reduce CIBP.

• Neuropathic pain elements of CIBP have been shown to be reduced by 

sphingosine-1-phosphate receptor 1 (S1PR1) antagonists.
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