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Abstract To uncover novel significant association signals (p<5�10�8), genome-wide association

studies (GWAS) requires increasingly larger sample sizes to overcome statistical correction for

multiple testing. As an alternative, we aimed to identify associations among suggestive signals (5 �

10�8
�p<5�10�4) in increasingly powered GWAS efforts using chromatin accessibility and direct

contact with gene promoters as biological constraints. We conducted retrospective analyses of

three GIANT BMI GWAS efforts using ATAC-seq and promoter-focused Capture C data from

human adipocytes and embryonic stem cell (ESC)-derived hypothalamic-like neurons. This

approach, with its extremely low false-positive rate, identified 15 loci at p<5�10�5 in the 2010

GWAS, of which 13 achieved genome-wide significance by 2018, including at NAV1, MTIF3, and

ADCY3. Eighty percent of constrained 2015 loci achieved genome-wide significance in 2018. We

observed similar results in waist-to-hip ratio analyses. In conclusion, biological constraints on sub-

significant GWAS signals can reveal potentially true-positive loci for further investigation in existing

data sets without increasing sample size.
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Introduction
Genome-wide association studies (GWAS) have been widely employed to identify genetic variants

that are associated with risk for disease and physiologically relevant traits (Tam et al., 2019;

Visscher et al., 2017). GWAS was first described in 2005 (Klein et al., 2005) and has since been uti-

lized to study a large range of common and complex traits in humans. As of July 2020, the GWAS

Catalog consisted of 4628 publications reporting a total of 189,811 associations that achieved

genome-wide significance (p<5�10�8) between genetic variants and human common complex traits.

For instance, in 2009, 54 near-independent genome-wide significant (GWS) signals associated with

variation in height had been identified in a population of tens of thousands of individuals

(Visscher, 2008), while by 2014, that number had jumped to 697 and was estimated to explain more

than 20% of the trait’s heritability (Wood et al., 2014). The number of significant GWS signals

increased to 3,290 in 2018, accounting for nearly a quarter of the heritability (Yengo et al., 2018).

And yet, despite these successes, GWAS has a clear shortcoming in that a large proportion of pre-

dicted heritability remains unexplained despite a constantly growing number of implicated loci

(Tam et al., 2019). These novel loci are only identifiable using larger sample sizes, which come at a

significant cost of both time and money, and each successive independent signal explains less and

less of the overall estimated heritability (Zuk et al., 2012).

The additional signals achieving genome-wide significance in successive rounds of GWAS are

often those that failed to achieve the commonly utilized p=5�10�8 threshold in initial rounds, a strict

bar that can only be met when larger cohort sizes are recruited. Various approaches have been pre-

viously utilized to identify sub-threshold signals that go on to achieve genome-wide significance.

Sub-threshold signals have been selected for replication in a stage 2 GWAS due to their proximity to

putative candidate genes to identify novel loci, as with the identification of the obesity locus NPC1

and replicated subsequently in a large meta-analysis (Meyre et al., 2009; Turcot et al., 2018). Epi-

genomic maps have also been utilized to implicate biologically relevant sub-threshold variants that

were subsequently experimentally validated (Wang et al., 2016). We explored if it would be possi-

ble to apply a systematic genome-wide molecular-genetics-based approach to sub-threshold signals

to predict single nucleotide polymorphisms (SNPs) that would go on to achieve genome-wide signif-

icance in a future round of GWAS. Over the past decade, sequencing technologies such aa RNA-seq

(Wang et al., 2009), ATAC-seq (Buenrostro et al., 2013), and high-resolution promoter-focused

Capture C Chesi et al., 2019; Hughes et al., 2014; Su et al., 2020 have been developed to facili-

tate the annotation of genes and their regulatory elements. Such data have been utilized to identify

physical variant-to-gene interactions via three-dimensional genomics to implicate effector genes at

GWAS loci where both sequence variant and gene reside within regions of open chromatin

(Arnold et al., 2015; Çalışkan et al., 2019; Chesi et al., 2019; Cousminer et al., 2020;

Javierre et al., 2016; Smemo et al., 2014; Su et al., 2019; Su et al., 2020). By leveraging high-res-

olution promoter-focused Capture C with ATAC-seq, it is possible to physically connect putatively

functional non-coding elements, such as enhancers, harboring disease-relevant SNPs to promoters

of specific genes thereby potentially mechanistically implicated in the SNP-associated phenotype.

We hypothesized that by applying this variant-to-gene mapping method to sub-threshold SNP sig-

nals, the molecular constraints on these signals would result in a set of SNPs that are plausibly

related to the biology of the trait in question, thereby bypassing the requirement of a larger GWAS

to implicate these signals.

To test this hypothesis, we leveraged multiple GWAS data sets, increasing in sample size over

time, to determine whether our sub-threshold implicated leads became genome-wide significant in a

subsequent larger study. We chose to test this method utilizing GWAS data sets for body mass

index (BMI) and waist-to-hip ratio adjusted for BMI (WHRadjBMI) as initial traits because they have

both been the subject of particularly large GWAS efforts by the GIANT consortium. Additionally,

both traits have implicated a large number of loci and therefore provide optimal statistical power for

our purposes. With respect to variant-to-gene mapping, we utilized our existing 3D genomic

data sets for adipocytes as well as hypothalamic neurons as previous studies have implicated these

cell types in BMI-associated variants (Locke et al., 2015).
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Results

Suggestive proxy SNP identification
We first applied our chromatin-based variant-to-gene mapping approach to predict BMI loci that

would be subsequently reported as genome-wide significant in a 2015 GWAS (n = 339,224) but

were only suggestive in 2010 (n = 249,796). Because the sentinel SNPs reported from a GWAS are

not necessarily causal with regard to phenotype, but very likely in linkage disequilibrium (LD) with

the responsible allele, we first identified proxy SNPs (r2 > 0.8) for each of the 2010 suggestive SNPs,

5�10�8
�p<5�10�4. Here, we detected 26,343 proxy SNPs; however, some of these proxy signals

were in LD with an already established genome-wide significant signal. Given the purpose of this

analysis was to identify new signals that were not yet genome-wide significant, we eliminated all

proxies that were in even very modest LD, with an already genome-wide significant signal using an

r2 > 0.1. This filtering left a residual of 23,197 signals.

ATAC-seq and promoter-focused capture C
We generated ATAC-seq and promoter-focused Capture C libraries from mesenchymal stem

cell (MSC)-derived adipocytes and leveraged our existing comparable data from human ESC-derived

hypothalamic neurons to query open chromatin maps for open sub-threshold SNPs that contact

open gene promoters (Pahl et al., 2020). The adipocytes were derived from mesenchymal stem

cells. Three ATAC-seq libraries were sequenced and analyzed with the ENCODE pipeline (https://

github.com/kundajelab/atac_dnase_pipelines). Peaks from all replicates were merged by bedtools

(v2.25.0) provided peaks were present in at least two biological replicates. These resulted in

2,225,635 adipocyte peaks and 179,212 hypothalamic neuron peaks.

The adipose capture C libraries had an average of 1.4 billion reads per adipose library, with an

average of 41% valid read pairs and 89% capture efficiency. We then called significant interactions

using the CHiCAGO pipeline and performed analyses at a 1-fragment resolution to identify short-

distance interactions (258,882 interactions) and at 4-fragment resolution to identify long-distance

interactions (278,040) (Cairns et al., 2016).

Variant-to-gene mapping reveals suggestive 2010 BMI loci that
subsequently achieved genome-wide significance in 2015
We next identified physical contacts between any of the remaining proxy SNPs and gene promoters,

with the additional constraint that both points of contact were within regions of open chromatin and

that the SNP itself did not map to a gene promoter. This approach favors SNPs most likely to have a

functional role in the regulation of genes relevant to a given trait and is therefore dependent on the

cell type utilized to make such inferences. For BMI variant-to-gene mapping, we used data derived

from MSC-derived adipocytes and human ESC-derived hypothalamic neurons because of the known

roles of these cell types in BMI. To identify the point at which this approach is no longer viable due

to noise, that is, at point of negligible return and excessive false positives, we stratified the sugges-

tive regions into several bins: 5�10�8
�p<5�10�7, 5�10�8

�p<5�10�6, 5�10�8
�p<5�10�5, and

5�10�8
�p<5�10�4. Note that each successive bin is inclusive of the SNPs from the previous bin.

Upon identifying loci that passed these filters, we quantified those that had reached genome-

wide significance by 2015. To avoid redundant inclusion of SNPs in LD with one another, we col-

lapsed all biologically constrained SNPs into independent SNP clusters, designated here as separate

independent ‘loci’. We defined such loci as the set of SNPs surviving the variant-to-gene mapping fil-

ter that were in LD with one another at a relatively relaxed r2 threshold of >0.4.

One hundred and sixty-one of the 23,197 suggestive proxy SNPs survived these biological filters

at our most relaxed p-value threshold. These SNPs corresponded to 78 loci, of which 11 achieved

genome-wide significance by 2015 (Table 1); these are annotated on the 2015 BMI Manhattan plot

(Figure 1). Four of these loci were highlighted in the 2010 study, but the associations were only con-

sidered ‘suggestive’ within the stage one discovery set at that time, that is at p>5�10�8. Across all

suggestive bins and cell types, the positive predictive value was low through 2015, and the propor-

tion of constrained signals actually achieving genome-wide significance (GWS) did not differ signifi-

cantly from the proportion of the unconstrained signals achieving GWS within the corresponding

p-value bin (Figure 2). This is likely a function of the relatively modest increase in sample size
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(+89,428) between 2010 and 2015. At the relatively relaxed p-value threshold of

5�10�8
�p<5�10�5, we observed that 6/15 2010 biologically constrained loci were GWS in 2015,

whereas 43/163 unconstrained loci were GWS by 2015. A flowchart describing this pipeline using

the 2010–2015 BMI data is available in Figure 3.

BMI GWAS variant-to-gene mapping constraints between 2010 and
2018
Using the same set of 2010 surviving SNPs from the previous section, we next identified how many

of these SNPs reached GWS by the 2018 BMI GWAS (N = 681,275), representing a nearly tripling in

cohort size compared to 2010. Here, we observed that 45 of the 78 2010 biologically constrained

loci achieved genome-wide significance by 2018 at the most relaxed p-value threshold (Table 2).

The proportion of 2010 suggestive SNPs meeting these criteria that achieved GWS by 2018

within suggestive bin 5�10�8
�p<5�10�5 was particularly striking (Figure 4). At this threshold,

Table 1. 2015 BMI loci that were implicated with our method in the 2010 data set.

The 2015 genome-wide significant BMI loci whose sentinel SNP was in LD with SNPs implicated from suggestive association in the

2010 BMI GWAS. Key: Notable genes from biological relevance to obesity (B); copy number variation (C); DEPICT analyses (D); GRAIL

results (G); BMI-associated variant is in strong LD (r2 � 0.8) with a missense variant in the indicated gene (M); gene nearest to index

SNP (N); association and eQTL data converge to affect gene expression (Q) (Locke et al., 2015).

Novel as of 2015 (Locke et al.)

2015
sentinel
SNP

2010
implicated
SNPs 2015 assigned locus name Interacting gene

rs4740619 rs10810462 C9orf93(C,M,N) TCONS_00015651

rs17094222 rs117597828 HIF1AN(N) PAX2

rs2820292 rs12086240,
rs2820315

NAV1(N) TIMM17A

rs758747 rs2238435 NLRC3(N) TCONS_00024950, TCONS_00024564, TCONS_00024949, TCONS_00024562, RP11-
462G12.1, TCONS_00024568, TCONS_00024570, RP11-
95P2.1, TCONS_00024567, TCONS_00024569, TCONS_00024320, TCONS_00024952

rs3736485 rs7183479 SCG3(B,D); DMXL2(M,N) LYSMD2, SCG3, CTD-2308G16.1, TMOD2

Identified between 2010 (Speliotes et al.) and 2015 (Locke et al.)

2015
Sentinel
SNP

2010
Implicated
SNPs

2015 Assigned locus name Interacting gene

rs17024393 rs72705210 GNAT2(N); AMPD2(D) GSTM3, AHCYL1

rs4256980 rs10840079,
rs10840087,
rs11041999,
rs11042023,
rs12803166,
rs4256980,

TRIM66(D,M,N); TUB(B) PBLD, RPL27A, TRIM66

Identified in 2010 (Speliotes et al.), but was not genome-wide significant

2015
Sentinel
SNP

2010
Implicated
SNPs

2015 Assigned Locus Name Interacting gene

rs10182181 rs12713419,
rs13012304,
rs6718510,
rs7597332,
rs7608976

ADCY3(B,M,N,Q); POMC(B,G);
NCOA1(B); SH2B1(B,M,Q); APOBR(M,
Q);

ADCY3, TCONS_00003602

rs12016871 rs7988412, MTIF3(N); GTF3A(Q) *~ 1 Mb from
sentinel

MTIF3

rs1808579 rs1788783 NPC1(B,G,M,Q); C18orf8(N,Q) NPC1

rs2287019 rs11672660,
rs34783010

QPCTL(N); GIPR(B,M) GIPR
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86.7% (13/15) of biologically constrained loci identified achieved genome-wide significance by 2018,

whereas only 40% (6/15) had achieved genome-wide significance by 2015 (Figure 2); clearly, this

improvement is a function of relative cohort size. While an increase was also observed with loci iden-

tified with no constraint (43/163 suggestive 2010 loci achieving GWS by 2015 and 105/163 achieving

GWS by 2018), the precision was significantly higher with the biological constraint than without.

We assessed the positive predictive capability of this method across the stratified p-value bins to

determine at which level of significance this biologically constrained analytic no longer outperformed

randomly selected signals from the same bin. As shown in Figure 4—figure supplement 1, there is

no point across either cell type or p-value bin where randomly sampled SNPs outperform the chro-

matin-constrained approach. Forty-four of 78 suggestive loci were identified in the

5�10�8
�p<5�10�4 bin, with a positive predictive value approximately 1.2-fold higher than random

selection. As anticipated, fewer novel chromatin-implicated loci were detected in the

5�10�8
�p<5�10�5 bin, though the positive predictive value was approximately 1.5-fold higher than

random. Taken together, these results suggest that this chromatin-constrained approach consistently

performs better than random within these serial data sets, though there are diminishing returns as

the p-value threshold is made increasingly less stringent.

Figure 1. 2015 BMI Manhattan plot depicting loci identified with 2010 salvaged SNPs 2015 BMI loci identifiable with 2010 salvaged SNPs. Cell type

where locus was identified indicated below locus name. Color indicates the p-value threshold where the locus became implicated (Locke et al., 2015).

Color key: Green – 5�10�8
�p<5�10�7, blue – 5�10�7

�p<5�10�6, orange – 5�10�6
�p<5�10�5, red – 5�10�5

�p<5�10�4.
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Figure 2. Independent 2010 BMI SNPs identified via variant-to-gene mapping that go on to reach genome-wide significance by 2015, as well as the set

of unconstrained 2010 suggestive SNPs that achieve genome-wide significance by 2015. Positive predictive value is depicted as a percentage for each

bar. Above these percentages, the p-value, as identified through Fisher’s exact test, is posted. These p-values depict the probability that the

proportions of salvaged SNPs using variant-to-gene mapping differ from simply salvaging all suggestive SNPs within the same suggestive bin.

The online version of this article includes the following source data for figure 2:

Source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2015 in each cell type.

Source data 2. Number of 2010 loci identified with no constraint and the number that achieved GWS by 2015.

Figure 3. Flowchart of the pipeline describing each computational step. BMI 2010–2015 data is utilized here as an example to report the number of

SNPs and loci that occur at each step of the analysis.
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Table 2. 2018 BMI loci that were identified using 2010 salvaged.

SNPs 2018 BMI loci identified as genes nearest to genome-wide significant SNPs that could be identified using SNPs salvaged from

suggestive regions of the 2010 BMI GWAS.

Nearest gene to sentinel Surviving proxy SNPs Lowest threshold found

ABHD17A rs893543, rs893542, rs11671347 5 � 10�4

AC007879.5 rs11677847, rs72951700, rs11689163, rs72966483, rs11694560, rs11692026, rs964621, rs964622 5 � 10�4

ADCY3 rs6718510, rs7597332, rs7608976, rs13012304, rs12713419 5 � 10�4

ADCY9 rs710893, rs2531993, rs2238435 5 � 10�5

AK5 rs12729914 5 � 10�5

AP000439.5 rs11605729 5 � 10�4

BCL7A rs7299842 5 � 10�4

C10orf32 rs7085104 5 � 10�4

C18orf8 rs1788826 5 � 10�4

C1orf61 rs11264483 5 � 10�4

CCDC171 rs10810462 5 � 10�4

CNNM2 rs1926032 5 � 10�4

COQ4 rs1468648 5 � 10�4

CRTC1 rs4808845, rs4808844 5 � 10�4

DPYD rs12077442 5 � 10�4

EIF2B5 rs3914188, rs35637422 5 � 10�4

EXOSC10 rs1884429, rs12041740 5 � 10�4

FAIM2 rs422022 5 � 10�4

GAB2 rs869202 5 � 10�4

GIPR rs34783010, rs11672660 5 � 10�7

GPR61 rs72705210 5 � 10�4

HIF1AN rs117597828 5 � 10�4

HOXB1 rs2326013 5 � 10�4

IFNGR1 rs17258750 5 � 10�4

IPO9 rs2820315 5 � 10�5

KCNJ12 rs9906072 5 � 10�4

LMOD1 rs2047264 5 � 10�4

MAP2K3 rs2001651, rs3785542 5 � 10�4

MAP3K7CL rs928277 5 � 10�4

MEF2D rs2274319, rs1925950, rs12038396, rs3818463, rs2274320, rs2274317 5 � 10�4

MLN rs11752353, rs6921487, rs72880511, rs1887340, rs73746509 5 � 10�4

MLXIP rs28530689, rs10773037, rs28737311, rs36158849, rs2280573 5 � 10�4

MST1R rs3774758, rs2252833, rs6446187 5 � 10̂�4

MTIF3 rs7988412 5 � 10�7

MTOR rs11581010, rs10864490 5 � 10�4

NAV1 rs12086240 5 � 10�5

NPC1 rs1788783 5 � 10�4

RASA2 rs2042864 5 � 10�4

RCAN2 rs3934393 5 � 10�5

RNU6-543P rs10761689 5 � 10�4

RP11-493K19.3 rs13100903 5 � 10�4

RP11-562L8.1 rs12887636 5 � 10�5

Table 2 continued on next page
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BMI GWAS variant-to-gene mapping constraints between 2015 and
2018
We also applied the chromatin-based variant-to-gene mapping approach to the 2015 BMI GWAS

data to assess the efficiency of this analysis in identifying loci that would achieve genome-wide sig-

nificance by 2018. The identified proxy SNPs, their nearest 2018 GWS proxy, and the nearest gene

to those proxies are described in Supplementary file 1 (see Supplementary file 2 for the implicated

genes). We observed that across all cell types with 5�10�8
�p<5�10�4, 117 of the implicated 184

loci reached GWS in 2018. At the 5�10�8
�p<5�10�5 threshold, 80% (57/71) of the constrained

2015 implicated loci reached GWS in 2018, while 59% (148/248) of the unconstrained 2015 loci

reached GWS in 2018 (Figure 5).

The results from the analyses at these years present the greatest levels of significance observed

thus far. Given the presence of many more loci in each bin, we observed significance at the

Table 2 continued

Nearest gene to sentinel Surviving proxy SNPs Lowest threshold found

RP11-68I18.10 rs10788800 5 � 10�5

RP11-707P17.1 rs7183479 5 � 10�4

SAE1 rs466477 5 � 10�4

SKAP1 rs16951519, rs2240121 5 � 10�5

STK33 rs10840087, rs11041999, rs34009921 5 � 10�4

TNRC6B rs6001834, rs4820409 5 � 10�4

TRIM66 rs10840079, rs4256980, rs11042023, rs12803166 5 � 10�6

TTC34 rs6424062 5 � 10�5

URM1 rs7859557, rs2240948 5 � 10�4

XXYLT1 rs58434965 5 � 10�4

Figure 4. Independent 2010. BMI SNPs salvaged via variant-to-gene mapping that go on to reach genome-wide significance by 2018, as well as the set

of unconstrained 2010 suggestive SNPs that achieve genome-wide significance by 2018. Positive predictive value is depicted for each bar. Above these

percentages, the p-value, as identified through Fisher’s exact test, is posted. These p-values depict the probability that the proportions of salvaged

SNPs using variant-to-gene mapping differ from simply salvaging all suggestive SNPs within the same suggestive bin.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2018 in each cell type.

Source data 2. Number of 2010 loci identified with no constraint and the number that achieved GWS by 2018.

Figure supplement 1. Empirical distribution of positive predictive values of suggestive 2010 BMI SNPs achieving GWS by 2018.
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5�10�8
�p<5�10�6 threshold in both cell types, where 93% (26/28) of the surviving signals reached

GWS by 2018 in both cell types. This appears to be principally due to the larger sample sizes at this

bin size relative to 2010, which provided additional power to observe such differences. Considering

the results of all BMI retrospective analyses through 2018, we found that this method positively iden-

tified sub-threshold BMI signals that went on to achieve GWS at a later date significantly more often

than when we apply no biological constraint.

Constraining WHRadjBMI GWAS reports: 2010–2018
We also assessed the performance of this method in the 2010 WHRadjBMI GWAS (n = 77,167) rela-

tive to 2018 (n = 694,649) (The results of the WHRadjBMI 2010 WHRadjBMI relative to

2015 [n = 224,459,459], and 2015 WHRadjBMI relative to 2018, are available in our Figure 6—figure

supplement 2, Figure 6—figure supplement 2, and Supplementary file 2). Here, we found 15,457

proxies within the most relaxed p-value threshold of 5�10�8
�p<5�10�4. One hundred and fifty-

seven of these proxies survived our biological constraints, corresponding to 71 independent loci.

Thirty-six of these ultimately achieved GWS by the 2018 GWAS (Figure 6).

Precision of the biologically constrained 2010 loci reaching genome-wide significance in 2018 for

both traits through 5�10�8
�p<5�10�6 was 100% for each cell type, except for the 2010

WHRadjBMI SNPs constrained by adipose chromatin data which equals 83% (Figure 6—figure sup-

plement 1). This represents a 1.3- to 1.6-fold increase over the mean PPV of a randomly sampled

unconstrained SNP set at the same p-value threshold. The number of loci surviving this constraint

present in this p-value threshold is quite modest (BMI: 4/4 vs WHRadjBMI: 5/6). The threshold may

be further relaxed (5�10�8<p<5�10�5) to identify additional loci: BMI: 13/15 vs WHRadjBMI: 13/20.

Relaxing even further to p<5�10�4 yielded far more loci, but brought in more potential false posi-

tives (BMI: 44/78 vs WHRadjBMI: 36/71), although they could still become GWS at a future time

point. Despite the larger rate of false positives at a threshold of 5�10�8<p<5�10�5 in WHRadjBMI

relative to BMI, we still observe that the chromatin-constraint surviving sub-threshold WHRadjBMI

signals went on to achieve GWS at a later date significantly more often than when we apply no

constraint.

Figure 5. Independent 2015. BMI SNPs salvaged via variant-to-gene mapping that go on to reach genome-wide significance by 2018, as well as the set

of unconstrained 2015 suggestive SNPs that achieve genome-wide significance by 2018. Positive predictive value is depicted for each bar. The posterior

probability that loci identified by our chromatin-based constraint more often achieve GWS than loci with no constraint is posted above these

percentages.

The online version of this article includes the following source data for figure 5:

Source data 1. Number of 2015 loci identified by constrained method and the number that achieved GWS by 2018 in each cell type.

Source data 2. Number of 2015 loci identified with no constraint and the number that achieved GWS by 2018.
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Predictive power of negative control does not differ from the
unconstrained set
We assessed whether there was any period (2010–2018) in which PPV for the set of SNPs that do

not physically contact gene promoters or are not located within regions of open chromatin differed

significantly from the unconstrained signals, that is, if there was any period in which such a negative

control outperformed, the unconstrained signals. We found that there was no p-value bin, cell type

or trait for which there was a difference between this negative set and the unconstrained set (Fig-

ure 7 and Figure 8). The absence of observable differences between the negative control and

unconstrained sets supports the inference that the differences observed between our

biological constrained data and the unconstrained data are in fact attributable to the chromatin-con-

strained analytic strategy.

Finally, we assessed the classification rates of this approach for both traits in all testable years. At

each threshold for prior GWAS significance, we used our biological constraints to predict whether

an implicated locus would achieve GWS in a subsequent GWAS. We found that, across all thresholds

and chromatin-constrained loci in each cell type, sensitivity was generally less than 25%, indicating a

high rate of false negatives. This is expected because the chromatin-constrained data represent

effects that are only captured by the cell-types (and their respective developmental maturities) that

were profiled. By combining the loci identified in either adipose or hypothalamic neurons, sensitivity

was increased, though the increment was modest. Specificity, however, was consistently >80%, and

often >90%, indicating few false positives. The precision was particularly high through

5�10�8<p<5�10�5; however, expanding through to 5�10�8<p<5�10�4 resulted in relatively high

Figure 6. Independent 2010. WHRadjBMI SNPs salvaged via variant-to-gene mapping that go on to reach genome-wide significance by 2018, as well

as the set of unconstrained 2010 suggestive SNPs that achieve genome-wide significance by 2018. Positive predictive value is depicted for each bar.

Above these percentages, the p-value, as identified through Fisher’s exact test, is posted. These p-values depict the probability that the proportions of

salvaged SNPs using variant-to-gene mapping differ from simply salvaging all suggestive SNPs within the same suggestive bin.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2018 in each cell type.

Source data 2. Number of 2010 loci identified with no constraint and the number that achieved GWS by 2018.

Figure supplement 1. Empirical distribution of positive predictive values of suggestive 2010 WHRadjBMI SNPs achieving GWS by 2018.

Figure supplement 2. Independent 2010.

Figure supplement 2—source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2015 in each cell

type.

Figure supplement 2—source data 2. Number of 2010 loci identified with no constraint and the number that achieved GWS by 2015.

Figure supplement 3. Independent 2015.

Figure supplement 3—source data 1. Number of 2015 loci identified by constrained method and the number that achieved GWS by 2018 in each cell

type.

Figure supplement 3—source data 2. Number of 2015 loci identified with no constraint and the number that achieved GWS by 2018.
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Figure 7. Independent 2010. BMI SNPs failing the variant-to-gene mapping filter that go on to reach genome-wide significance by 2018. Positive

predictive value is depicted for each bar. The posterior probability that loci identified by our chromatin-based constraint more often achieve GWS than

loci with no constraint is posted above these percentages. There is no threshold where this data differs significantly from the unconstrained set.

The online version of this article includes the following source data for figure 7:

Source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2018 in each cell type.

Figure 8. Independent 2010. WHRadjBMI SNPs failing the variant-to-gene mapping filter that go on to reach genome-wide significance by 2018.

Positive predictive value is depicted for each bar. The posterior probability that loci identified by our chromatin-based constraint more often achieve

GWS than loci with no constraint is posted above these percentages. There is no threshold where this data differs significantly from the unconstrained

set.

The online version of this article includes the following source data for figure 8:

Source data 1. Number of 2010 loci identified by constrained method and the number that achieved GWS by 2018 in each cell type.
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proportions of false positives in most analyses, although always at a lower rate than without a chro-

matin-constraint. As a control, we analyzed classifications of a negative control set in which loci failed

to survive the variant-to-gene mapping filter for each cell type and suggestive threshold. There was

no instance across trait, cell type, or p-value bin in which the specificity of the negative control out-

performed the variant-to-gene mapping filter (Source data 1). All together, the consistently high

specificity and precision observed conveys the capacity of this chromatin-constraint to preferentially

retain signals that are likely to achieve GWS in larger data sets while minimizing the presence of false

positives through 5�10�8<p<5�10�5.

Discussion
In this study, we used our recently described variant-to-gene structural mapping approach

(Chesi et al., 2019; Su et al., 2020) to conduct retrospective biologically constrained analyses of

previous sequential GWAS reports to determine whether we could implicate statistically suggestive

SNPs that would subsequently achieve GWS in incrementally larger data sets. Using a combination

of high-resolution promoter-focused Capture C and ATAC-seq, this method enables the prioritiza-

tion of statistically suggestive loci.

We assessed the extent to which this method can be applied to ‘salvage’ sub-threshold loci for

possible consideration. We used BMI and WHR adjusted for BMI because of the relatively large num-

ber of loci identified in GWAS efforts conducted in large cohorts that continued to increase over

time. The number of SNPs surviving these filters for each cell type and trait at each successively

relaxed statistical cutoff are described in Source data 1.

Given the fairly modest increase in sample size between 2010 (N = 249,796) and 2015

(N = 339,224) for BMI, it was not particularly surprising that majority of the surviving 2010 BMI sig-

nals did not achieve GWS until 2018 (N = 681,275). Only six of the 15 surviving signals achieved

GWS by 2015, but 13 eventually achieved GWS by 2018. Reaching deeper into the 2010 suggestive

signals through p<5�10�4 showed a much clearer trend for both traits: roughly 20% of the surviving

2010 signals achieved GWS by 2015 and nearly 50% achieved GWS by 2018. Despite positive pre-

dictive values consistently greater than 80% for loci with 5�10�8
�p<5�10�6, it remains to be seen

how many of the remaining surviving SNPs with less significant p-values will achieve GWS by the

publication of the next GWAS in the future for each corresponding trait.

In this study, we never identified a particular sub-threshold bin where no constraint was as precise

as this chromatin-based constraint. We did, however, find that the precision observed for loci in data

sets between 2010 and 2018 varied by trait. While the positive predictive value was nearly 90% for

2010 BMI constrained loci reaching GWS by 2018 at 5�10�8
�p<5�10�5, only 65% of the surviving

2010 WHRadjBMI achieved GWS by the subsequent 2018 study. At the next, more restrictive,

threshold, 5�10�8
�p<5�10�6, we found that nearly all of the surviving loci for both traits of the

same years reached GWS by their respective 2018 study, although the number of loci within this

threshold is small (BMI: 4/4, WHRadjBMI: 5/6). Thus, our findings suggest that this strategy is capa-

ble of identifying loci that will achieve GWS at 5�10�8
�p<5�10�6. Additional loci can be identified

at 5�10�8
�p<5�10�5, at the expense of a degree of false positives. Although as noted above, such

false-positive signals could possibly go on to be GWS in a future study.

We also observed that across all suggestive thresholds, specificity was consistently >80%, and

often >90%. The consistently high specificity and precision, at least through 5�10�8
�p<5�10�6,

suggest that true negatives are largely properly identified without the generation of large amounts

of false positives. The low false-positive rate did come at a cost, however. Sensitivity was extremely

low at all thresholds, often below 20% (Source data 1). The lack of sensitivity conveys high levels of

false negatives, meaning many signals that would eventually achieve GWS would not be properly

classified with this method.

The strength of this method is in its ability to attach biological relevance to sub-threshold SNPs in

individual cell types, but this can also serve as its weakness. However, given the cost in time and

resources to test candidate loci, we believe that high specificity and precision are more important

characteristics for such a classifier. While we believe this trade-off is acceptable for the identification

of novel biologically relevant loci prior to their confirmation via GWAS, we recognize that there are

many loci that are falsely identified as not relevant. In utilizing the chromatin state of individual cell

types in such a manner, we may reject loci that are biologically relevant in a different cell type or
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those that simply lack such an epigenetic mechanism. Provided a more comprehensive library of

chromatin state in a much more diverse set of cell types, or the inclusion of additional biological fil-

ters that could identify loci that lack this epigenetic mechanism, we could potentially increase sensi-

tivity in a substantial manner while retaining high rates of precision and specificity.

Despite any such limitations, we implicated loci most likely to become significant in the context of

larger data sets with just our chromatin-based constraint approach. Using this variant-to-gene map-

ping approach, one can prioritize loci/genes of borderline statistical significance that may have

important candidacy based upon functional considerations. Confirmation could come via larger data

sets and/or by direct molecular physiological analyses of the candidates.

Materials and methods

ATAC-seq library generation and peak calls
Tn5 transposase transposition (Illumina Cat #FC-121–1030, Nextera) and purification of the Tn5

transposase derived DNA from 100,000 cells of each investigated cell type. The samples were then

shipped to the Center of Spatial and Functional Genomics at CHOP where the ATAC-seq process

was completed. Live cells were harvested via trypsinization, followed by a series of wash steps. One

hundred thousand cells from each sample were pelleted at 550 � g for 5 min at 4˚C. The cell pellet

was then resuspended in 50 ml cold lysis buffer (10 mM Tris–HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2,

0.1% IGEPAL CA-630) and centrifuged immediately at 550 � g for 10 min at 4˚C. The nuclei were

resuspended in the transposition reaction mix (2� TD Buffer [Illumina Cat #FC-121–1030, Nextera],

2.5 ml Tn5 transposase [Illumina Cat #FC-121–1030, Nextera], and nuclease-free H2O) on ice and

then incubated for 45 min at 37˚C. The transposed DNA was then purified using the MinElute Kit

(Qiagen), eluted with 10.5 ml elution buffer (EB), frozen, and sent to the Center for Spatial and Func-

tional Genomics at CHOP. The transposed DNA was PCR amplified using Nextera primers for 12

cycles to generate each library. The PCR was subsequently cleaned up using AMPureXP beads

(Agencourt), and libraries were paired-end sequenced on an Illumina HiSeq 4000 (100 bp read

length) and the Illumina NovaSeq platform. Open chromatin regions were called using the ENCODE

ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/), selecting the resulting IDR conserva-

tive peaks (with all coordinates referring to hg19). We define a genomic region open if it has 1 bp

overlap with an ATAC-seq peak.

Cell fixation for chromatin capture
The protocol used for cell fixation was similar to previous methods (Hughes et al., 2014). Cells were

collected and single-cell suspension were made with aliquots of 107 cells in 10 ml media (e.g. RPMI

+ 10% FCS). Five hundred and forty microliters of 37% formaldehyde was added and incubated for

10 min at RT on a platform rocker. The reaction was quenched by adding 1.5 ml 1 M cold glycine (4˚

C) for a total volume of 12 ml. Fixed cells were centrifuged at 1000 rpm for 5 min at 4˚C and super-

natant removed. The cell pellets were washed in 10 ml cold PBS (4˚C) followed by centrifugation as

above. Supernatant was removed and cell pellets were resuspended in 5 ml of cold lysis buffer (10

mM Tris pH8, 10 mM NaCl, 0.2% NP-40 [Igepal] supplemented with protease inhibitor cocktails).

Resuspended cells were incubated for 20 min on ice, centrifuged as above, and the lysis buffer

removed. Finally, cell pellets were resuspended in 1 ml fresh lysis buffer, transferred to 1.5 ml

Eppendorf tubes, and snap frozen (ethanol/dry ice or liquid nitrogen). Cells were stored at �80˚C

until they were thawed for 3C library generation.

Capture C
Custom capture baits were designed using an Agilent SureSelect library design targeting both ends

of DpnII restriction fragments encompassing promoters (including alternative promoters) of all

human coding genes, noncoding RNA, antisense RNA, snRNA, miRNA, snoRNA, and lincRNA tran-

scripts, totaling 36,691 RNA-baited fragments. The library was designed using scripts generously

provided by Dr. Hughes (Oxford, UK), utilizing the RefSeq, lincRNA transcripts, and sno/miRNA

tracks in the hg19 assembly downloaded from the UCSC Table Browser on 16 September 2015. The

capture library design covered 95% of all coding RNA promoters and 88% of RNA types described
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above. The missing 5% of coding genes that could not be designed were either duplicated genes or

contained highly repetitive DNA in their promoter regions.

The isolated DNA from the 3C libraries was quantified using a Qubit fluorometer (Life Technolo-

gies), and 10 mg of each library was sheared in dH2O using a QSonica Q800R to an average DNA

fragment size of 350 bp. QSonica settings used were 60% amplitude, 30 s on, 30 s off, 2 min inter-

vals, for a total of five intervals at 4˚C. After shearing, DNA was purified using AMPureXP beads

(Agencourt). Sample concentration was checked via Qubit fluorometer and DNA size was assessed

on a Bioanalyzer 2100 using a 1000 DNA Chip. Agilent SureSelect XT Library Prep Kit (Agilent) was

used to repair DNA ends and for adaptor ligation following the standard protocol. Excess adaptors

were removed using AMPureXP beads. Size and concentration were checked again before hybridiza-

tion. One microgram of adaptor ligated library was used as input for the SureSelect XT capture kit

using their standard protocol and our custom-designed Capture C library. The quantity and quality

of the captured library were assessed by Qubit fluorometer and Bioanalyser using a high-sensitivity

DNA Chip. Each SureSelect XT library was initially sequenced on one lane HiSeq 4000 paired-end

sequencing (100 bp read length) for QC. All six Capture C promoter interactome libraries were then

sequenced three at a time on an S2 flow cells on an Illumina NovaSeq, generating ~1.6 billion

paired-end reads per sample (50 bp read length).

Analysis of promoter-focused capture C data
Quality control of the raw fastq files was performed with FastQC. Paired-end reads were pre-proc-

essed with the HiCUP pipeline (Wingett et al., 2015), with bowtie2 as aligner and hg19 as reference

genome. Significant promoter interactions at 1-DpnII fragment resolution were called using

CHiCAGO (Cairns et al., 2016), with default parameters except for binsize which was set to 2500.

Significant interactions at 4-DpnII fragment resolution were also called with CHiCAGO using artificial

.baitmap and .rmap files where DpnII fragments were grouped into four consecutively and using

default parameters except for removeAdjacent that was set to false. We define PIR a promoter-inter-

acting region, irrespective of whether it is a baited region or not. The CHiCAGO function peakEn-

richment4Features() was used to assess enrichment of genomic features in promoter-interacting

regions at both 1-fragment and 4-fragment resolution.

Variant-to-gene mapping pipeline
BMI and WHRadjBMI GWAS summary statistics derived from European ancestry, each from 2010,

2015, and 2018, were downloaded from the Genetic Investigation of Anthropometric Traits (GIANT)

consortium https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_

data_files (Heid et al., 2010a; Locke et al., 2015; Pulit et al., 2019; Shungin et al., 2015;

Speliotes et al., 2010b; Yengo et al., 2018). We identified all genome-wide significant variants

from each data set as any SNP with p<5�10�8. We then identified the sets of variants in the varying

suggestive bins of 5�10�8
�p<5�10�7, 5 � 10�8

� p<5�10�6, 5 � 10�8
� p<5�10�5, and 5 � 10�8

� p<5�10�4. Upon the identification of these variants within each bin, we utilized SNiPA v3.3

(Arnold et al., 2015) to find their proxy SNPs, which we define as any SNP with r2 > 0.8 in Euro-

peans for each region. Only signals with LD information within SNiPA were considered.

We next conducted a variant-to-gene mapping for each cell type within each of the suggestive

bins to identify the gene promoters that are in contact with these SNPs. Promoter Capture C librar-

ies are utilized to identify the genes with which these variants have interactions. Significant interac-

tions were called using the CHiCAGO pipeline (Cairns et al., 2016) utilizing both 1-fragment and 4-

fragment resolutions. We chose to focus on non-gene-to-gene interactions; thus, we ignored interac-

tions that were identified as bait-to-bait as these represent the interactions between gene pro-

moters. ATAC-seq libraries were also utilized to identify only those gene promoters that interact

with SNPs in regions of open chromatin. Genes within the annotated MHC region were removed

due to its highly polymorphic nature.

We next removed SNPs within the suggestive bins that were in linkage disequilibrium with any

SNP that was significant genome wide. This was done to determine an entirely novel set of variant

interacting genes that are entirely independent of those that are already known. To accomplish this,

we removed all variants that were found to be in LD with a variant that is significant at a genome

level. Thus, we identified all proxies of genome-wide significant variants at r2 > 0.1 and remove any
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variant within the suggestive region that is found to be a proxy of these genome-wide significant

variants. This provides a filtered set of SNPs that are independent of any SNP that is significant at a

genome-wide scale.

Retrospective analysis
Interacting SNP-gene promoter pairs were identified by the variant-to-gene mapping pipeline

described above for each GWAS across all suggestive zones for each cell type. Of these SNP-gene

promoter pairs, we identify those that are in tight LD (r2 >0.8) with an SNP that is genome-wide sig-

nificant in a future study. The implicated genes derived from our variant-to-gene mapping approach

were frequently different from the locus ‘names’ traditionally used in publications reporting GWAS

findings, typically based on the nearest gene. In contrast, our variant-to-gene mapping used the

integration of ATAC-seq and promoter-focused Capture C data to identify the gene promotor(s)

physically in contact with a genomic region (almost always non-coding) harboring an associated vari-

ant. However, in order to assess the 2015 loci that were identifiable in 2010 with this method, for

consistency’s sake, we annotated the implicated 2010 loci with the published locus ‘name’ annota-

tion from the respective 2015 GWAS report. However, unlike the 2015 efforts, the 2018 studies did

not annotate the reported loci with an arbitrary gene notation; thus, we simply labeled the nearest

gene to the 2018 sentinel SNP in which the surviving signals were in tight LD. The gene promoters in

contact with each surviving signal are also available in Source data 1. The surviving SNPs that were

in tight LD with an SNP that achieved GWS in 2015 were annotated with the published 2015 locus

name of a sentinel SNP residing up to 1 MB away. We indicate the locus name that was provided in

each 2015 study, as well as provide the set of gene promoters that were identified by the variant-to-

gene mapping pipeline. Manhattan plots were generated in R (R Development Core Team, 2019),

utilizing p-values of SNPs from the corresponding summary statistics. SNP positions were identified

with dbSNP Build 151 to plot the relative location of the SNPs on the Manhattan plot. The

highlighted loci point to the SNP with the lowest p-value identified at each locus.

In the case of all remaining comparisons, retrospective annotation was performed differently.

Rather than trying to provide a locus name to the set of SNPs that were identified to be in tight LD

with a genome-wide significant SNP in a later year, we elected to identify the surviving SNP, the

gene promoters it physically contacts, and its best proxy that reached GWS (as defined by both r2

and p-value in the summary statistics).

To assess the predictive power of this method, we identified the positive predictive value of each

set of salvaged SNPs across each retrospective analysis. To accurately quantify the number of loci

that are identifiable using salvaged suggestive SNPs, we group the surviving variants based on their

LD (r2 > 0.4) to one another as a locus. We extend this one additional time to include the proxies

(r2 > 0.4) of each previously identified proxy SNP as a component of each locus. This allows SNPs

that failed to be identified as a proxy of the lead SNP to be included within the locus via the transi-

tive property, but only via one iteration of this process. The resulting loci identified are independent

from one another, which prevents double counting of loci. We count these loci for each cell type

across each suggestive bin, and we also identify the number of distinct loci regardless of cell type.

We then identify the set of true positives as a locus that is in tight LD with a genome-wide significant

SNP in a future GWAS. Those failing to meet these criteria are deemed false positives. We also iden-

tified loci of all genome-wide significant independent suggestive SNPs (r2 < 0.4) for each retrospec-

tive analysis and identified true-positive, false-positive, false-negative, and true-negative counts for

this set using the same metrics as the constrained data sets. We used a beta-binomial model and

used Monte Carlo approximation over 100,000 iterations to identify the posterior probability that

loci identified by our chromatin-based constraint more often achieve GWS than loci with no con-

straint. We also assessed significance of the positive predictive values by calculating an empirical dis-

tribution from 10,000 iterations of a randomly sampled population of the unconstrained suggestive

signals within each p-value threshold bin. At each iteration, we randomly selected N loci, where N is

the corresponding number of loci surviving our chromatin-constraints from either cell type, and

quantified the positive predictive value from this sampling. We then plotted the location where the

positive predictive values fell for each cell type to determine whether these different significantly

from the random population.

We calculated sensitivity, specificity, false-negative rate, and false positive rate of this approach

across both traits for all testable years. To do this, we identified binary classifications of sub-
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threshold loci that were predicted to either reach or not reach GWS by the future year in each cell

type separately. We then created confusion matrices for each cell type and p-value bin to calculate

each binary classification performance metric. Additionally, we identified these values for the previ-

ously described negative control data (the effective inverse of the biological constrained data) as

well as the randomly sampled data. For both of these data sets, we identified these metrics across

10,000 randomly sampled populations where we randomly selected N loci, where N is the corre-

sponding number of loci surviving our chromatin-constraints from either cell type at the correspond-

ing p-value threshold.

All source code available on Github: https://github.com/rkweku/SubThresholdProjectScripts.
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