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Humans and other animals evolved to make decisions that extend over time
with continuous and ever-changing options. Nonetheless, the academic
study of decision-making is mostly limited to the simple case of choice
between two options. Here, we advocate that the study of choice should
expand to include continuous decisions. Continuous decisions, by our defi-
nition, involve a continuum of possible responses and take place over an
extended period of time during which the response is continuously subject
to modification. In most continuous decisions, the range of options can fluc-
tuate and is affected by recent responses, making consideration of reciprocal
feedback between choices and the environment essential. The study of con-
tinuous decisions raises new questions, such as how abstract processes
of valuation and comparison are co-implemented with action planning
and execution, how we simulate the large number of possible futures our
choices lead to, and how our brains employ hierarchical structure to make
choices more efficiently. While microeconomic theory has proven invaluable
for discrete decisions, we propose that engineering control theory may serve
as a better foundation for continuous ones. And while the concept of value
has proven foundational for discrete decisions, goal states and policies may
prove more useful for continuous ones.

This article is part of the theme issue ‘Existence and prevalence of
economic behaviours among non-human primates’.
1. Introduction
Decisions as studied in the laboratory are typically discrete. Consider a paradig-
matic example, the Allais Paradox ([1], figure 1). The Allais Paradox involves a
single choice between a pair of categorically distinct fully specified options. It
is also prototypical—the vast majority of decisions studied in microeconomics,
behavioural economics and neuroeconomics have the same properties [2–4]. In
discrete decisions, the decision-maker has, in principle, as long as they want to
decide. The result of the choice does not affect what options are made available
in the future. The choice itself takes place either instantaneously or irrespective of
time, and, oncemade, is irrevocable. The decision-maker can express their prefer-
ence verbally, with a button press, or with any other response modality. Finally,
the decision-maker’s choice is free of context; it is disembodied [5,6].

Many of the decisions we make in our daily lives are discrete. Examples
include selecting an item from a menu in a restaurant and selecting a life insur-
ance plan. However, many other decisions we face in our daily lives are
continuous. Consider how a diner selects food bite-by-bite in a large meal, or
the daily adjustments to the portfolio of an active stock market investor. Or con-
sider the pursuit behaviour of the window-skimmer dragonfly (Libellula
luctuosa). As it pursues its mosquito prey, the dragonflymust continuouslymoni-
tor the mosquito’s position while both prey and predator move rapidly through
three-dimensional space [7]. In this situation, the dragonfly is not faced with any
obvious discrete decision among fixed options: rather, it must carefully regulate
its wings to stabilize its body, track and extrapolate the future position of the prey
and plot an intercept course. Actions at each moment come from a large
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option 1: $1 million

option 2: 1% nothing
          89% $1 million
              10% $5 million 

Figure 1. The Allais Paradox (left) is a canonical example of what we call a discrete decision. It involves a single choice between two options; the choice is
independent of action, context and time. It has no influence on what options are available in the future. A dog moving along a bank preparing to jump and
grab a fish (right) is a canonical example of a continuous decision. (Online version in colour.)
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continuum of possibilities, each flowing into the next. More-
over, the mosquito will change its behaviour based on what
the dragonfly does, and the dragonfly can exploit its knowl-
edge of that fact to improve its foraging.

While such complex behaviour may be conceptualized as a
series of discrete choices—one choice at each moment—this
conceptualization is both facile and reductive. It misses some
of the most important aspects of continuous decisions, such
as the fact that each choice opens many new doors and closes
many others. Alternatively, one could view the choice as the
selection of an overarching strategy, but this just ignores the
important moment-by-moment nature of continuous decisions.
It is best to view the decision as encompassing the entire process,
from the continuum of motor adjustments to the selection of
flight control strategies. Of course, discrete and continuous
decisions are not entirely separate categories of decisions.
Instead, they represent two extremes of a spectrum of continu-
ousness. Our central message in this manuscript is that the
properties of continuous decisions (including the properties of
partially continuous ones that are not shared with purely
discrete decisions) are deserving of interest.
2. Benefits of studying continuous decisions
The greatest benefit to studying continuous decisions is
that they are a type of decision our brains were evolved to
make [8–11]. Focusing our research on evolutionarily valid
contexts is important because it maximizes our chances of
making valid discoveries. If artificial decisions are contrived,
then they may, for example, produce preference patterns,
including anomalies, that are irrelevant in the natural world.

For example, we and others have argued that the intertem-
poral choice paradigm, as typically implemented in animals, is
quite unnatural and that results from animal intertemporal
choice tasksmay not paint an accurate picture of natural behav-
iour [12–17]. Another example comes from the fact that
laboratory risk paradigms (including our own) tend to draw
possible outcomes from a limited range of possibilities rather
than from a continuous probability distribution function
[18,19]. Such distributions are mathematically well-behaved,
but may be less common than ones with a more continuous
and contoured shape. Interestingly, this question of ethological
validity applies not just to natural situations but also to mar-
kets, which have many properties in common with nature
but not with the laboratory (for a compelling discussion of
this topic, see [20], figure 2).
3. Continuous decisions are open-world
We take the term ‘open-world’ from the domain of video
games [22]. Open-world games like Grand Theft Auto and
Minecraft present players with virtually limitless territory to
explore, and terrain filled with a multitude of possible actions.
Like the situations in which many real-world decisions occur,
they containmore unknowns than knowns, which reward curi-
osity and search, and a large number of other agents with their
own goals [23,24]. Open-world environments pose a signifi-
cant computational challenge, elided in nearly all laboratory
decisions but central to real decisions, of narrowing down a
plenitude of possible actions to a small set of ‘live’ options.
To meet these challenges, decision-makers must employ
cognitive abilities that make these computationally intensive
problems tractable, abilities like mental maps, curiosity and
heuristics. Note that ‘live’ options have much similarity with
afforded options, which have begun to have influence in the
neuroscience of decision-making, although the mechanisms
by which options activate affordance representations remain
poorly understood [18,25–27].

In order to delve into the implications of open-world tasks,
we will adopt the language of reinforcement learning (RL)
[28,29]. Notably, RL does not need to assume either a model
of the world, a fixed set of choices, or even a static set of
values. A learner that follows RL can learn online (it does not
need to be pre-trained). Moreover, while RL has traditionally
been most effective in the tabular setting—the case in which
options and contexts are discrete and finite, so that the value
of each action can be stored in a lookup table—its formalism
is generic enough to extend to continuous decisions. Finally,
recent progress in deep RLhas opened a newdialogue between
machine learning and cognitive neuroscience, producing artifi-
cial agents capable of solving challenging continuous tasks like
video games while underperforming humans in others like
imitation learning (e.g. [30–34]).

(a) States and maps
The first distinction wewant to draw between discrete and con-
tinuous tasks is in thedimensionofwhat is called the state space.
For a given problem, RL always assumes a state, the collection of
variables needed to fully define the current context [28,35–38].
For discrete choices, the state space (the set of all possible
states) usually consists of a small number of variables—perhaps
attribute information for each of the choice options available
and some information about current preferences.
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Figure 2. (a) A traditional discrete choice task used to study time preferences is the intertemporal choice task (reviewed in [13]). (b) A patch-leaving task has an
ostensibly isomorphic structure, except that the specific options available on the next trial are determined entirely by the choices made on the present trial [12]. This
feature has major effects on choice patterns and, although the element of cross-trial dependency is ostensibly more difficult, renders behaviour nearly optimal [21].
(c) The patch-leaving task, but not the intertemporal choice task, is ethologically valid. Here, monkeys at the Cayo Santiago field station travel between their
morning foraging site on Large Cay to their afternoon foraging site on Small Cay.
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For the dragonfly pursuit described above, the current state
might include position and velocity information for all joints,
estimated position and velocity of both the dragonfly and its
prey, and the relative locations of relevant obstacles. The state
might also include internal variables of the organisms
that might be relevant to predicting behaviour (e.g. hunger,
fatigue, etc.). Consequently, the state space in open-world
decisions tends to be enormous. In part, the proliferation of
these states is related to the mathematical requirements of
RL, which assume that the state contains all information on
which behaviour at the current time depends. But this
explosion of states is also inherent in the complexity of the
behaviour itself and the granularity at which it is modelled.

Moreover, it is not just the number of state variables that are
increased in continuous decisions, but their ranges. In discrete
RL settings, for S state variables withN values each, the size of
the state space is NS. That is, for a decision problem with
five yes/no contextual variables (Am I hungry? For sweet
or salty snacks? Is there food close by?), there are a total of
25= 32 possible states. In the case of continuous states, where
N becomes infinite, state spaces become infinitely large and
tabular approaches must fail. Moreover, in many cases of
interest—and not just continuous cases—states are only
partially observed, requiring some form of state inference.
(For example, in games like poker, opponents’ cards are key
missing pieces of game state information.)

Fortunately, while practical and algorithmic challenges
remain in these cases, they are addressed by existing concepts
like models, maps, trajectories and policies that bridge the dis-
crete and continuous cases. The common insight underlying
these extensions of tabular RL is that, when states or actions
are continuous, we can oftenmake use of a concept of distance,
such that ‘nearby’ states are similar and quantities like value
can be assumed to change smoothly [28,39,40]. That is, con-
tinuous spaces can often, paradoxically, have fewer variables
than discrete ones. For instance, if one is given a table of 100
numbers, this data structure has, apparently, 100 free par-
ameters. But if these numbers are samples from a quadratic
function at regularly spaced intervals along the x-axis, they
are encapsulated by only three parameters. These sorts of
geometric and smoothness assumptions often allow one to
replace tables with functions and an infinite number of indivi-
dualized values with a finite number of function parameters,
rendering learning feasible once again.

Along related lines, much recentworkonRLhas focused on
the existence andutilityofmentalmodels ormaps [36,38,41–43].
That work strongly supports the idea that mental maps—orig-
inally proposed by Tolman—have a distinct neural reality
[44]. To give a specific example, in a simulated pursuit task,
we found evidence for such maps in the firing rates of single
neurons in the dorsal anterior cingulate cortex (dACC) [45].
Specifically, dACC neurons have complex, non-regular multi-
modal firing rate place fields, reminiscent of non-grid cells in
the medial entorhinal cortex [45]. These maps in dACC (and
potentially in other regions aswell) likelyserve tomakepossible
the kinds of computations necessary for continuous pursuit.

What is important in these cases is that not that such maps
are necessary for learning—RL agents who lack them can still
eventually learn—but that these maps capture either regu-
larities in state sequences (like random walks on an unseen
graph) or structure within the states (like proportions of bird
beaks and legs) that facilitate faster learning. In the language
of learning theory, they constitute inductive biases that allow
learners to make the most of each observation. More impor-
tantly, such inductive biases, by making strong assumptions
about the possible types of knowledge to be acquired,
combat the curse of dimensionality. In the studies above,
though numbers of states were large, their dimensionalities
remained small. When dimensionality likewise increases,
learning becomes an intractable search problem without
some form of organizing assumption.
(b) Exploration
Of course, our formulation of continuous, open-world
decisions naturally intersects with the question of how open
worlds can be mapped. That is, continuous decisions face a
much more extreme version of the explore/exploit dilemma
than discrete choice paradigms. Thus, curiosity has recently
experienced a surge of interest not only in neuroscience, but
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Figure 3. Task and data from [45]. (a) Left: cartoon of virtual pursuit task. Subject uses a joystick to control an avatar (circle) and pursue prey (square) on a
computer screen. Right: avatar and prey trajectories on example trials. Grey: path of avatar; red/blue: path of prey. Colour gradient indicates the time progression
through the trial. (b) Left: a generative model explains the trajectory of non-human primates. Right: the model result exhibiting that non-human primates are
predicting the future position of the prey. (c) Example filters from neurons that are tuned for the position of the prey within the monitor. (d ) Example filters
of neurons that are tuned for the future position of the prey.
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in RL [23,24,46–49]. This also links to theoretical work on free-
energy-inspired models [50,51] that incorporate information
seeking, inference and reward into a single framework. How-
ever, this rapidly growing body of work is beyond the scope
of this review. For our purposes, we are interested in the chal-
lenges and opportunities posed by continuous tasks, and focus
for the remainder on the necessary integration of action and
decision, assuming important quantities like exploratory
policy and reward functions as given. More specifically,
open-world decisions necessitate exploration, since the world
is too big to be known, and that exploration requires strategy
because large state spaces cannot be exhaustively visited
[48,49]. In short, continuous decision-makers are almost
always highly information-starved [23].

(c) Need for heuristics
Finally, it is important to note that the goal of action is not
necessarily to find the optimal course of action, but instead to
find a course of action that is sufficiently good [52–55]. Heuristic
approaches are, of course, valuable even in simple non-
continuous decisions. The additional complexity of natural
decisions means that satisficing approaches, such as heuristics,
are likely to be used in real-world decision-making. In continu-
ous decisions, where the costs of computation are much greater
and the time pressures more unrelenting, heuristics are likely to
be evenmore important. Understanding the use of heuristics in
continuous decisions, then, represents an important future
direction for study (figure 3).

4. Continuous decisions involve dynamics and
feedback

Two more important and closely related features of many
continuous decisions are that they are dynamic and involve
feedback. Indeed, the importance of both dynamics (some-
times high-dimensional, often nonlinear) and feedback
(from both other agents and the environment) is the most
obvious distinguishing feature between continuous decisions
and their discrete counterparts. The problems imposed by
dynamics encompass questions not only of control (e.g.
how to move an arm to snatch a passing prey), but also of
timing (precisely when to make this move), adding additional
complexities often excluded in laboratory decision para-
digms. Once again, we believe that RL, particularly its
intersection with control theory, offers a conceptual frame-
work for addressing these challenges, even in cases where
learning is not the primary dynamic [56,57].

Before stepping further, it is helpful to draw the distinc-
tion between modelling a set of actions as sequential
decisions and the cognitive experience of the sequential
decision-making. For instance, while it is intuitive that
the iterated Prisoner’s Dilemma involves a sequence of
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cooperation and defection decisions by each player, it is less
intuitive that a short walk down a straight hallway also
comprises a series of decisions, one for each step. Yet both
can be modelled mathematically as probabilistic sequences
of ‘decisions,’ perhaps, in the case of walking, with rewards
for staying upright and forward progress. Yet our subjective
experience is one of the long periods of automatic behaviour
punctuated by changes of mind, phenomena that are only
imperfectly captured by the framework of sequential
decisions. Instead, we might prefer to mirror mathematically
the dissociation between rare goal changes and continuous
execution of unconscious behaviours in time.

Help in thinking about these problems comes from control
theory, which has a long and fruitful history in motor neuro-
science (e.g. [56–59]). In the control framework, a system is
endowedwith a set of possible controls to apply (forces, torques,
electronic commands), a system to which these controls may be
applied (typically modelled as a set of differential equations), a
goal or set point and a cost for applying control (energy, price,
regret). The aim of control theory is to solve for a policy, an algor-
ithm that sets control as a function of the system’s state at a given
time. The optimal policy is one that best balances control error
(how close the system remains to its goal) against control costs.
Such a framework automatically addresses two key problems
identified above. First, control systems operate in time. Control
policies are functions, not discrete actions, and specify how the
controller co-evolves with the system. They are thus fundamen-
tally dynamic quantities. Second, control policies do not require
the semantics of decisions at all. They are conceptualized as
automatic processes that operate adaptively, often deterministi-
cally, once a goal has been set. Thus, they have intuitive appeal
for a framework that combines sparse, conscious decisions
with automatic ongoing processes.

Again, this approach is complementary to the RL per-
spective reviewed above [28], which likewise attempts to
learn a policy that maximizes some set of rewards. In fact,
many classic RL problems like cart-pole or learning to walk
are control problems [56,60,61]. Such links have often been
overlooked in decision neuroscience, where RL actions are
most frequently associated with decisions [62], but there is
nothing in the formalism to force this view. Before the
advent of deep RL, RL methods were often limited to low-
dimensional, discrete state and action spaces, but modern
applications now routinely feature complex, continuous pol-
icies parameterized by deep neural networks [30,63]. Thus,
RL likewise offers up the notion of a full policy in place of
a discrete action as a building block of continuous decisions.

Just as importantly, while control systems are often
assumed to be autonomous, with fixed, pre-specified set
points, RL can be extended to the case of hierarchical learning
and control [64–70]. That is, the RL framework can easily
accommodate the idea of switching between policies or changing
goals within the same policy [71,72]. These high-level changes
aremost often slower (in the case of goals) or sparser (for policy
switches) andmap neatly onto the experience of rarer delibera-
tive decisions setting in motion automatic behaviours.
Moreover, hierarchical formulations of RL allow changes in
state to drive high-level actions, facilitating ‘bottom-up’ feed-
back that renders policies more flexible than purely ‘fire and
forget’ processes. And while training such hierarchical RL sys-
tems has continued to prove challenging [65–67,73], there is
ample evidence that brains have evolved by solving exactly
this problem [38].
(a) Example: penalty kick task
A recent study fromour group illustrates this sort of integration
of continuous control with sparse strategy changes. In the
penalty kick task, monkeys and humans played a competitive
video game against conspecifics that required continuous joy-
stick input ([71,72], figure 4). The game is based on the idea
of a penalty shot in hockey. One player (the shooter) controlled
the motion of a small circle (the puck), while the other player
(the goalie) controlled the vertical motion of a bar placed at
the opposite side of the screen. Goalies were rewarded for
blocking the puck with the bar, while shooters received
rewards for reaching a goal line behind the bar. Though the
game was highly constrained, players’ trajectories proved
highly variable, revealing a variety of both individual strat-
egies and inter-player dynamics. Such paradigms as this bear
some relation to continuous games such as duels and are clo-
sely related to pursuit games in differential game theory, but
in the latter, the focus is typically on computing optimal sol-
utions rather than modelling players’ real behaviour [74,75].

These phenomena can bemodelled as the result of a control
model applied to an evolving value function incorporating
each player’s trajectory [72,76], while directly modelling
players’ policies allows for the calculation of a measure of
instantaneous coupling between the players [71]. However, in
both human and monkey participants, we found that the key
strategic variable was not so much shooters’ ability to adjust
to their opponents as their ability to advantageously time
their final movements on each trial [71]. This work, in other
words, provides important information about the specific strat-
egies that human andmacaque decision-makers are able to use
in such tasks; that information is unavailable in discrete
decision-making paradigms.
5. Implications for neuroscience: a preliminary
sketch

Traditional ‘box-and-line’ approaches to cognitive neuro-
science presume the existence of discrete cognitive functions
with intuitive easy-to-name roles. These functions are assumed
to be reified in neuroanatomy. For example, if choice consists of
evaluation, comparison and selection, then these three concep-
tually discrete functions ought to correspond to discrete
anatomical substrates [77,78]. An alternative viewpoint is dis-
tributed; it imagines that choice reflects an emergent process
arising from multiple brain regions whose functions may not
correspond to nameable processes, and/or that may largely
overlap [18,25,79–81].

The greatest debates about modularity concern the
prefrontal cortex, which can be readily divided into a few
dozen areas based on cytoarchitecture. However, the functions
of these areas remain difficult to identify definitively. In fact,
this architectural diversity raises the question of why we
have so many prefrontal regions to begin with [82]. One possi-
bility is that each region integrates new information from new
sources and participates in transforming that information via
an untangling process [79]. In this view, each area in sequence
provides a partial transformation from one representation
format to another [83,84]. Indeed, it is this view, and not that
of a modular system, that best accords with recent results in
artificial neural networks (e.g. [85–87]). Of course, some cogni-
tive functions are localized at the coarsest levels. Our claim is
simply that, once one embraces the framework of continuous



real trajactories generated trajactories

real data:
participant 3

model prediction:
participant 3

(a) (b)

(c) (d)

(e) (f)

puck
bar time
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game state ( f ). Black patches represent regions of increased probability of direction change. Blue traces indicate trials played against a human bar opponent, red
traces those played against a computer. Adapted from [71,72].
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decisions, with its tight coupling of action and decision,
dynamics and feedback, the tight conceptual link between
modularity in space and serial processing in time is no
longer as natural as it has traditionally appeared.

To elaborate on this last point, consider choosing between
two options. In this simple situation, there is no particular
reason (aside from reaction time minimization) for the motor
action to begin until comparison and choice of option are com-
plete [18]. In other words, a serial design suffices. And indeed,
there is plentiful evidence consistent with the serial model of
choice (e.g. [78]). But in continuous decisions, the action is
fully interwoven with choice. It is difficult to even think about
how choice may occur without consideration of action [18,25].

We explored the idea of how the brain predicts the future
in a recent study [45]. In our virtual pursuit project (see
above), subjects could gain a strategic advantage over their
prey by predicting the prey’s future position and moving to
it, and a generative model of behaviour allowed us to confirm
that subjects indeed moved towards the predicted position of
the prey. We then used the mapping algorithm to map the
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representation of predicted future positions of prey (specifi-
cally, one developed in [88]). That is, we computed the
average firing rate of each neuron as a function of the position
in space of the future position of the avatar. These maps are
akin to place cell maps in the hippocampus, but they are for
virtual positions (on a computer screen) and for future, rather
than present positions. We found that these maps are present
in single dACC neurons and that they come from the same
cells—multiplexed—as self-position maps.

When decisions are not discrete selections but processes
of continuous adjustment made on the fly, action selection
can no longer easily be separated from choice. This suggests
a link to embodied decision-making arguments forwarded by
Shadlen et al. [89], who argue that the responses of single
neurons in the lateral intraparietal area (LIP) to visual
motion are actually better thought of as an embodied
decision variable—the weight of evidence in favour of shift-
ing gaze to a particular location. This theory neatly explains
why such signals are found in neurons with response
fields, and neatly solves the classic debate about the inten-
tional role of LIP. It is a small move from this theory of
perceptual decision-making to economic decisions.
90664
(a) Modularity and continuous decisions
We explored the idea of how the brain predicts the future in a
recent study [45]. Predicting the consequences of our actions
and using those predictions to guide choice are common to
discrete decisions [90,91]. But it is much more difficult in con-
tinuous tasks. In our virtual pursuit project (see above),
subjects could gain a strategic advantage over their prey by
predicting the prey’s future position and moving to it—much
like the dragonfly discussed above.We then designed a genera-
tive model of behaviour and were able to explicitly test the
hypothesis that subjects moved towards the predicted position
of the prey. We then used the mapping algorithm to map
the representation of predicted future positions of prey. We
found that these maps are present in single dACC neurons
and that they come from the same cells—multiplexed—as
self-position maps.

A consequence of this idea is that decision computations
ought to be constrained, at least in part, by the motor system.
There is plentiful evidence for this idea. For example, we tend
to gaze longer at options that we are about to choose. There is
evidence that exogenous manipulations that bias our looking
times towards one option increase our chances of choosing
that option [92]. Another example is the idea from robotics
and cognitive science called ‘morphological computation’
[93–95]. The idea is that the shape and material properties
of the body can be exploited to make central control processes
simpler. It implies that the local computation that is based on
certain properties of the body would influence the control
process [96]. In this case, if a certain effector is used to
implement choice, their biomechanical properties would
influence the outcome of the choice. This raises an intriguing
possibility—continuous decisions expressed in two modal-
ities may differ owing to different physical properties or
biomechanical constraints. Because continuous decisions are
more tightly integrated with effector systems than discrete
ones are, their underlying computations will be more influ-
enced by the affordances of these systems. That is, we may
make the same choice whether the output modality is our
eyes, our fingers or our feet, but we may make different
decisions when the modality is the same. We may, for
example, predict further into the future when using our
eyes than our hands.

Further evidence comes from the fact that subjects appear
to initiate their action before they have fully decided on an
option. That is, they hedge their bets and choose an intermedi-
ate path between the two options [97,98]. Then, as their
decision process unfolds in their heads, their arm changes its
pattern and begins to divert its path towards the chosen
option. Critically, the initial hedging path lasts longer if the
choice takesmore time to unfold. In otherwords, the beginning
of selection takes place before the choice is complete. Taking
this idea literally, the choice process occurs simultaneously
with the motor action. They are not discrete and the action
would provide a feedback signal to the choice, which is
opposed to the idea that movement does not influence the
choice at all. Ultimately, then, the resolution of the question
ofmodularity requires testing undermore naturalistic contexts.
That is, natural tasks provide a valuable ‘stress test’ for
modular models.
6. Conclusion
Here, we offer a definition for continuous decisions, and, by
contrast, a complementary definition for discrete decisions.
We argue that the neuroscientific and psychological study
of decision-making is impoverished by its near-exclusive
focus on discrete decisions, and would be enriched by
expanding its scope to include continuous ones.

One practical obstacle is the lack of standardized tasks
that can serve as the focus of such research. We propose
that simple computerized continuous motion tasks, such as
the penalty kick task and pursuit task, can serve that role
[45,72]. These two tasks involve a continuum of actions,
take place over an extended time, and, because they involve
multiple players, exhibit the complex intra-trial feedback
relationship for decisions that is characteristic of many
naturalistic continuous decisions.

Another practical obstacle to the adoption of continuous
decisions is the additional complexity involved in studying
continuous tasks. As a result, we propose that the develop-
ment of new analysis techniques ought to be a major focus
moving forward. For example, most traditional analyses in
systems neuroscience have relied on averages, both in time
and across trials, to reduce the complexity in data and achieve
statistical power. But when trial-to-trial behavioural variabil-
ity is large, these repetitions may no longer be comparable to
one another. As a result, single-trial analyses will likely be
crucial (e.g. [99,100], also [71,72,76]). And these methods
often benefit from denser recording techniques such as cal-
cium imaging [101] and multi-contact multi-electrode
recording ([102,103] and [104,105]).

Along adifferent axis, there ismuchpromise in recent studies
that eschew single brain areas in favour of integrative analyses of
simple, natural behaviours. Recent technical advances are
making such studies possible, and this trend is likely to continue
(e.g. [106]). Corresponding analytical tools are being developed
too [107,108]. This also requires novel theories about information
transformations between areas (e.g. [79,86,109]).

To the degree that some complexity in behaviour is irre-
ducible, the study of continuous decisions is both necessary
and inevitable. Not only are these decisions closer to natural
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behaviour (and so easier to train in model species), they begin
to tap the complexity we want to study, offering new puzzles
that force us to integrate our knowledge across cognitive
levels, brain regions and time scales. If the behaviours we
are interested in—our own included—take place in a chan-
ging, dynamic world, then our models of that world must
grow to embrace these essential features.
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