
Vol.:(0123456789)1 3

Journal of Neurology (2021) 268:377–385 
https://doi.org/10.1007/s00415-020-10139-4

NEUROLOGICAL UPDATE

Diagnosing vestibular hypofunction: an update

Dmitrii Starkov1,2,5   · Michael Strupp3,4 · Maksim Pleshkov1,2 · Herman Kingma1,2 · Raymond van de Berg1,2

Received: 1 July 2020 / Revised: 31 July 2020 / Accepted: 1 August 2020 / Published online: 7 August 2020 
© The Author(s) 2020

Abstract
Unilateral or bilateral vestibular hypofunction presents most commonly with symptoms of dizziness or postural imbalance 
and affects a large population. However, it is often missed because no quantitative testing of vestibular function is performed, 
or misdiagnosed due to a lack of standardization of vestibular testing. Therefore, this article reviews the current status of the 
most frequently used vestibular tests for canal and otolith function. This information can also be used to reach a consensus 
about the systematic diagnosis of vestibular hypofunction.
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Introduction

Vestibular hypofunction (also vestibulopathy, vestibular 
dysfunction, -hyporeflexia, -loss, -failure, -deficiency), i.e. 
a unilateral or a bilateral vestibulopathy, is a heterogeneous 
disorder of the peripheral and/or rarely central vestibular 
system leading typically to disabling symptoms such as diz-
ziness, imbalance, and/or oscillopsia [1–3]. It affects up to 
95 million adults in Europe and the USA [4]. Unfortunately, 
vestibular hypofunction is often missed or misdiagnosed. 
Fortunately, nowadays vestibular function of the semicircu-
lar canals and the otolith organs can be quantified, but there 
are still some diagnostic challenges [5–10]. For instance, 
no consensus has been reached regarding standardization of 

vestibular testing yet. This leads to a large variability in nor-
mative and pathologic cut-off values. Furthermore, not many 
vestibular laboratories have obtained their own normative 
values [11]. For the purpose of standardization, this article 
reviews the current status of the most clinically used vestibu-
lar tests. The topo-diagnostic value of posturography, despite 
its broad application, is already a long time under dispute, 
and for that reason not addressed in this review [12]. Finally, 
a new method for self-motion perception will be discussed.

Video‑oculography and electro‑oculography

Nowadays, video-oculography (VOG) is used as a routine 
method in clinical practice to quantitatively measure eye 
movements, whereas EOG has rarely applied anymore [13].

Using an infrared video camera, VOG detects eye move-
ments by analyzing 2D images of the eye that is illuminated 
by infrared LEDs. The position of the pupil is calculated 
and used to track the horizontal and vertical eye movements, 
generally up to sample frequencies of 250 Hz or less [15]. 
Resolution and accuracy of VOG vary with image quality 
but are generally < 1° in 2D over a gaze range of a minimum 
of ± 25° horizontal and ± 20° vertical, as long as the pupil 
is fully visible for the camera. Detection of torsional eye 
movements is based on the detection of rotation of the iris 
structure around the pupil center. This technique often fails 
as the image of the iris varies with gaze due to its 3D struc-
ture. Another possible alternative is to use a contact lens 
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with markers [16]. However, this method is not common in 
practice and its clinical value is still to be determined.

Electro-oculography (EOG) is based on detecting the cor-
neo-retinal potential [14–16] using electrodes placed around 
the eyes. An EOG resolution in 2D of typically < 1° can be 
obtained over a gaze range of ± 30° horizontal and ± 20° ver-
tical (although linearity only holds up to an eccentric gaze 
of 15–20°). The most frequently used sample frequency is 
50–250 Hz. Accuracy (detection of absolute eye position) 
is limited due to substantial drift that often occurs. Frequent 
recalibrations are required as corneo-retinal potentials and 
EOG amplitudes vary by a factor of 4–5 with low versus 
bright ambient light intensity. Above 100 Hz the signal-to-
noise-ratio often decreases by an increasing contribution of 
other electrophysiological signals such as EMG [17].

VOG and EOG systems both meet requirements for clini-
cal use in terms of their accuracy and sensitivity of approxi-
mately 1°. There does not seem to be a “best method”, 
but VOG can be easily applied in clinical practice and is, 
therefore, most often used. The preferred method of choice 
depends on how clinicians and/or technicians weigh the pros 
and cons of each technique with respect to their own require-
ments and patient population.

The video‑head impulse test (vHIT)

The video-head impulse test (vHIT) is able to quantitatively 
assess the vestibulo-ocular reflex (VOR) of all six semicir-
cular canals in the high-frequency domain and it can be used 
in acute, episodic and chronic vestibular syndromes [6, 18, 
19]. However, it does not purely test one vestibular organ: 
some contribution from the other side remains [6]. vHIT 
is a much more sensitive and specific test than the clinical 
HIT [20]. The commercially available vHIT-devices differ 
regarding patient comfort, the accuracy of pupil detection, 
and methods for quantifying the VOR.

The accuracy of pupil detection can be affected by incor-
rect camera adjustment, poor calibration, blinking, eye-
lashes, narrow eyelids, poor illumination, mascara, spon-
taneous nystagmus, and goggle slippage. These factors 
can cause recording artifacts that might not be detected 
by the software and which could negatively influence the 
reliability of test outcomes [21–25]. Training of examin-
ers is, therefore, imperative, since it significantly reduces 
artifacts [26]. The number of impulses required to achieve 
reliable results can be reduced to two in the case of arti-
fact-free traces, which is especially important when test-
ing very young children with relatively little attention [27]. 
The VOR is quantified by calculating gain. VOR gain is 
the measure that illustrates to which extent eye movements 
(produced by the VOR) compensate for head movements. 
However, all commercially available devices use different 

gain calculation methods, which can lead to significant dis-
crepancies in results [28, 29]. Two methods have been pro-
posed to standardize gain calculation and to lower variability 
in results [30], but they are not (yet) routinely implemented 
in the clinic. Gain is also influenced by head velocity (higher 
velocity, lower gain) [31], target distance (shorter distance, 
higher gain) [32]), and (in the case of goggles) a direction 
bias for the side on which the camera is placed (higher gains 
for the side with the camera [25]). It is, therefore, advised to 
standardize these variables as much as possible in the clinic. 
If no normative data is available, absolute gain values below 
0.8 can be considered pathological [33].

The vHIT is able to detect corrective saccades appearing 
during and after head impulses (covert and overt saccades, 
respectively). An earlier timing [34, 35] and a higher level of 
grouping (clustering regarding timing, quantified using the 
PR-score) of saccades might be indicative of compensation 
and might be correlated with a lower handicap in patients 
with vestibular hypofunction [36–40]. However, corrective 
saccades do not only reflect clinically relevant vestibular 
hypofunction or compensatory mechanisms: small saccades 
also appear in healthy subjects, especially with increasing 
age [41].

The Suppression Head Impulse Paradigm (SHIMP) 
was proposed to overcome the problem of covert saccades 
regarding gain calculation [42, 43]. SHIMP differs from 
vHIT with respect to the target: it moves along with the 
head. In this case, the presence of corrective saccades indi-
cates the presence of vestibular function [42], while the 
absence of corrective saccades indicates impaired vestibular 
function [44]. VOR gain with SHIMP is significantly lower 
than with vHIT, which might (partially) be explained by 
age and VOR inhibition strategies during SHIMP [45, 46]. 
SHIMPs significantly reduce covert saccades, but not all of 
them. Furthermore, vHIT alone seems to be sufficient for 
detecting bilateral vestibulopathy regardless of the presence 
of covert saccades (van Dooren et al., in preparation).

Testing of Dynamic Visual Acuity

The visual acuity during dynamic conditions (e.g. walking) 
is called “dynamic visual acuity” (DVA). An impaired VOR 
(especially bilaterally) causes blurred vision during head 
movements. This can result in loss of DVA.

The DVA loss is quantified by the difference in visual 
acuity in static and dynamic conditions, which is measured 
using optotype charts or computerized DVA systems [7, 47]. 
The dynamic conditions can involve walking or active/pas-
sive head movements while sitting or standing. In case of 
impaired VOR, DVA loss is generally higher for passive 
head movements than for active head movements [48, 49]. 
Contradictory evidence exists regarding the influence of age 
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on DVA: it is either weak or absent [50–53]. Nevertheless, 
age decreases the ability to accomplish DVA testing on a 
treadmill in bilateral vestibulopathy patients and healthy 
subjects [53].

Recently, a new test for high-frequency DVA was pro-
posed: the functional head impulse test (fHIT) [54–56]. Dur-
ing fHIT, the test subject is placed in front of a computer 
screen and head impulses are applied in the tested plane. 
When head acceleration exceeds a predefined threshold, a 
Landolt ring optotype appears for a predefined short time 
on the screen. After the impulse, the subject is instructed 
to choose its orientation using a keyboard. The percentage 
of correct answers is used as the output of the test. The test 
has shown effectiveness when evaluating acute unilateral 
vestibulopathy [57] and the effect of a prototype vestibu-
lar implant [58]. Although fHIT moderately correlates with 
oscillopsia severity, no correlation was observed between 
fHIT and the DVA test on a treadmill [59]. These tests seem 
complementary and do not substitute for each other.

DVA is a functional outcome of all systems involved: 
VOR, the oculomotor system, and central processing of sig-
nals [59]. For instance, internal feed-forward commands can 
mediate gaze [60], gait stabilization strategies can help to 
reduce head oscillations [61], and covert saccades improve 
DVA in patients with unilateral vestibulopathy [34, 62]. 
Therefore, DVA testing is mainly suited for evaluating the 
functional state of the vestibular system and compensation 
strategies, not for diagnosing peripheral vestibular deficits.

Caloric testing

Caloric testing is a widely used method to selectively 
assess vestibular function on each side in the low-frequency 
domain (~ 0.003 Hz), using bithermal (30 °C and 44 °C) 
caloric irrigations with water (the preferred stimulus) or air 
[5, 8, 63]. To optimize stimulation, horizontal canals are 
aligned with the vertical plane by asking the test subject 
in a supine position to tilt the head 20°–30° [64]. Irriga-
tions of sufficient volume (> 250 ml) should last at least 30 s 
and can be performed in any order [65–67]. For the sake of 
standardization, it is advised to use cold irrigation first on 
the right, followed by cold on the left, then warm on the 
right, and finally warm on the left. A 5 min interval between 
the four successive irrigations can be used to avoid residual 
effects of the previous irrigation [68]. The slow phase veloc-
ity (SPV) of the caloric nystagmus is measured for each 
irrigation. In symptomatic patients, the sum of the bithermal 
maximum peak SPV < 6°/s can be considered a diagnostic 
criterion for bilateral vestibulopathy and the sum of bither-
mal maximum peak SPV on each side between 6 and 25°/s 
for presbyvestibulopathy (when also age ≥ 60 years) [1]. The 
upper limits for both vestibular asymmetry and directional 

preponderance can be set at 20% when no normative data 
is available [65, 69]. Poor attention, poor alertness, visual 
suppression, and unreliable eye movement detection often 
lead to false-positive findings of vestibular hypofunction [5].

Complete vestibular areflexia cannot be identified using 
ice water calorics, since the test mostly only evaluates low-
frequency horizontal canal function [70–72]. Moreover, ice 
water calorics itself might induce an irrelevant latent spon-
taneous nystagmus in a non-specific way [5].

Rotatory chair testing

Rotatory chair tests are generally used to assess horizon-
tal semicircular canal function in the low- and middle-fre-
quency domains. Two types of tests are mainly performed: 
the Torsion Swing Test (TST) and the Velocity Step Test 
(VST).

The TST is divided into the Sinusoidal Harmonic Accel-
eration Test (SHAT), which involves a single frequency 
sinusoidal stimulus, and the Pseudo-Random Rotation Test 
(PRRT), which involves sinusoidal stimuli with different fre-
quencies. VST uses a slow acceleration (e.g. ≤ 2°/s2) to reach 
a constant velocity (often 100°/s) followed by an abrupt 
deceleration (e.g. 200°/s2). The VST mainly tests the excited 
canal, though a contribution of the contralateral canal to 
the total response still remains [73]. The VST is believed 
to be closer to the frequency spectrum of most natural head 
movements than TST [5, 9, 74]. Eyes should be open during 
testing since eye closure reduces the VOR response [75].

The outputs for SHAT are gain (ratio of slow phase eye 
velocity to chair velocity), phase (time relation between eye 
and chair velocities), and directional preponderance (asym-
metry in magnitude/gain for left and right rotations), whilst 
for VST the time constant (time for nystagmus to decay to 
37% of its peak magnitude) and gain are most relevant [9]. 
Since the gain is frequency-dependent, each frequency tested 
by SHAT or PRRT has its own normative values [76–78]. 
Phase and time constant are very stable parameters: no large 
inter-laboratory differences are observed [79]. A reduced 
gain and/or time constant reflect a unilateral or bilateral 
vestibulopathy, attention deficit, or visual suppression. A 
high gain and/or long time constant indicate hypersensitivity 
(anxiety and or hyperventilation during the test, or central 
pathology leading to disinhibition) [80, 81]. In addition, the 
product of gain and time constant seems to better reflect the 
impairment of the vestibular system than gain and time con-
stant alone [82]. Abnormalities of phase and time constant 
can point to peripheral (e.g. bilateral vestibulopathy) and/or 
central vestibular disorders. The presence of a directional 
preponderance indicates a dynamic VOR asymmetry. This is 
often seen in uncompensated peripheral vestibular disorders 
and central vestibular disorders and provides insights into 
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the central processing of vestibular input from both laby-
rinths [5, 9, 74, 77, 83–89].

Vestibular evoked myogenic potentials

Vestibular evoked myogenic potentials (VEMP) are believed 
to reflect the otolith function [10, 90].

Air-conducted sound or bone-conducted vibration of 
the skull induces otolith vestibular responses, resulting 
in VEMP, which can be recorded using electromyogra-
phy. Two types of VEMP are currently measured: cervi-
cal VEMP (cVEMP) and ocular VEMP (oVEMP). cVEMP 
mainly evaluate saccular function by measuring the inhibi-
tory response from the ipsilateral sternocleidomastoid mus-
cle. Therefore, the muscle should be contracted during the 
test. However, differences in muscle contraction can lead to 
inter- and intrasubject variabilities in response, hindering 
thorough evaluation [91–94]. Multiple methods have been 
proposed that effectively reduce variability, although none 
of them are (yet) widely applied in clinical practice [93, 
94]. oVEMP mainly evaluates utricular function by meas-
uring the excitatory response from the contralateral inferior 
oblique extra-ocular muscle. Standardized upward gaze is 
necessary to bring the eye muscles in close contact with the 
electrodes placed below the eyes [10, 90]. Regarding stimuli, 
air-conducted sound (cVEMP) and bone-conducted vibra-
tion (oVEMP) are the preferred stimuli to detect vestibular 
hypofunction, although air-conducted sound is preferred to 
detect vestibular hyperfunction (e.g., superior semicircular 
canal dehiscence syndrome). For air-conduction, obtained 
results should be corrected for the present air–bone gap 
in cases with ipsilateral conductive hearing loss [95]. The 
air-conducted and bone-conducted stimuli mostly involve 
500 Hz stimuli presented at a rate of 5 Hz to obtain optimal 
responses, although VEMP can be tested at different fre-
quencies to obtain more insights into specific disease pat-
terns [96] (e.g., testing a range from 250 to 1000 Hz). Fur-
thermore, increasing the stimulation rate from 5 to 13 Hz has 
been shown to produce reliable cVEMP thresholds, while 
decreasing testing time and subject discomfort [94].

Electromyographic responses of VEMP include two 
peaks of vestibular origin, which appear at approximately 
13 and 23 ms in cVEMP, and at approximately 10 and 15 ms 
in oVEMP. Peaks appearing later in time have mixed and/
or different origins including vestibular, stretch reflex and 
cochlear [97, 98]. Outcome parameters used for VEMP are 
the presence of the response, the threshold (in dB), peak-
to-peak amplitude (µV), peak latency (ms), and interaural 
asymmetry ratio. The testing paradigm and interpretation of 
VEMP are not yet standardized [99–102]. For correct inter-
pretation, it is strongly advised to obtain age-matched nor-
mative data [11], since with age the amplitudes and response 

rates decline [103]. This implies that absent responses also 
appear in non-symptomatic healthy individuals, especially 
above the age of 60 years old [104]. The role of VEMP in 
clinical practice has been investigated extensively regarding 
diagnostics, prognosis, and monitoring of vestibular disor-
ders [105, 106].

The most important clinical application of the VEMP 
is the syndromes of the third mobile window, including 
superior canal dehiscence syndrome (SCDS, see below) 
[106–108]. The relevance of VEMP in Menière’s disease, 
unilateral and bilateral vestibulopathy, vestibular migraine, 
BPPV, and auditory neuropathy is very limited or not rel-
evant [104, 109–116]. In SCDS, VEMP amplitudes are 
increased and VEMP thresholds are lowered on the affected 
side(s), as a result of a third mobile window [117]. To diag-
nose SCDS, using oVEMP amplitudes higher than 16.7 µV 
as cut-off point results in a sensitivity of 100% and a speci-
ficity of 89% [118]. Regarding cVEMP thresholds, 2000 Hz 
tone burst stimuli show the best diagnostic accuracy, with 
sensitivities equal to or higher than 92% and a specificity of 
100% [119]. Taking into account all the existing evidence 
about the use of VEMP to diagnose SCDS, oVEMP seems 
to be more sensitive and specific than cVEMP [108].

Perceptual threshold testing

Self-motion perception was first measured by Mach in the 
19th century [120]. Currently used methods to measure 
self-motion perceptual thresholds involve devices such as 
hydraulic or electric moving platforms [121, 122] or sleds 
[123]. To test self-motion perceptual thresholds, the subject 
is seated on a chair mounted on the platform or sled. Visual, 
auditory and somatosensory input are decreased as much as 
possible by, e.g., testing in darkness, wearing headphones, 
and covering skin surfaces [124]. The platform or sled then 
accelerates into the tested plane of motion, with the desired 
stimulus parameters (magnitude, frequency, etc.). After 
each stimulus, the subject has to indicate whether the move-
ment was perceived. The main outcome parameter is the 
self-motion perceptual threshold representing the minimal 
value of a physical stimulus that can still be perceived [125, 
126]. There are two types of perceptual thresholds: detection 
thresholds (motion is perceived: yes/no), and recognition 
thresholds (type and direction of motion).

In healthy subjects, self-motion perceptual thresholds 
are higher than horizontal VOR-thresholds, indicating a 
higher sensitivity of the brainstem than vestibulothalamic 
pathways [127]. Furthermore, self-motion perceptual 
thresholds increase after the age of 40 [121, 122], are fre-
quency-dependent (lower thresholds at higher frequencies) 
[124], decrease with visual input [128], depend on stimulus 
profile [129, 130] and some thresholds might be affected 
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by vestibular disorders such as Menière’s disease (higher 
thresholds) and vestibular migraine (lower thresholds) 
[131–133]. The peripheral vestibular system strongly con-
tributes to self-motion perceptual thresholds (especially rota-
tions), as shown by significantly higher thresholds in patients 
with bilateral vestibulopathy compared to a control group 
[133–135]. One of the disadvantages of testing self-motion 
perception is the substantial time needed to complete testing 
for one subject (several hours). Recently, a faster method to 
determine self-motion perceptual thresholds was proposed, 
which facilitates testing of 12 motion types within 1 h. The 
clinical value of tests for vestibular perception is not yet fully 
determined. However, since they can be of direct functional 
relevance, they might develop in the future into the “speech 
audiogram” for vestibular disorders [5, 121].

Detecting vestibular hypofunction: 
a proposal

To reliably detect vestibular hypofunction, normative labora-
tory values should be obtained for each test (if possible) and 
technicians should be trained [11].

When vestibular hypofunction is suspected, it might 
be recommended to start with vHIT due to its low burden 
for the test subject. If vHIT results are abnormal, no other 
vestibular testing is necessary. However, in case of normal 
vHIT results, performing caloric testing might be advis-
able, since caloric testing seems to be more sensitive than 
vHIT in detecting vestibular hypofunction in some vestibular 
disorders, in particular Menière’s disease [136–139]. Fur-
thermore, a dissociation between caloric testing and vHIT 
might be present, especially in cases with endolymphatic 
hydrops due to altered mechanics of the inner ear [140–143]. 
In case of bilateral vestibulopathy, rotatory chair testing can 
be added to increase the specificity of testing (not sensitiv-
ity) [80, 144] and to help to determine residual vestibular 
function [82], since the responses to rotatory chair testing 
are often better preserved than the responses to vHIT or 
caloric stimulation [144]. Dynamic visual acuity testing is 
recommended for evaluation of the functional state of the 
vestibular system as well as compensatory processes occur-
ring over time. VEMP is currently only advised for detecting 
superior canal dehiscence syndrome.

Conclusion

Most recently published literature involves refinement or 
development of vestibular laboratory tests. However, no 
worldwide consensus has been reached yet on standardized 
testing procedures and normative values for any of the tests 
discussed in this article. Standardization will most likely 

improve the reliability and reproducibility of vestibular labo-
ratory test results.
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