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Evaluation of transfer learning 
in deep convolutional neural 
network models for cardiac 
short axis slice classification
Namgyu Ho1 & Yoon‑Chul Kim2*

In computer-aided analysis of cardiac MRI data, segmentations of the left ventricle (LV) and 
myocardium are performed to quantify LV ejection fraction and LV mass, and they are performed after 
the identification of a short axis slice coverage, where automatic classification of the slice range of 
interest is preferable. Standard cardiac image post-processing guidelines indicate the importance of 
the correct identification of a short axis slice range for accurate quantification. We investigated the 
feasibility of applying transfer learning of deep convolutional neural networks (CNNs) as a means to 
automatically classify the short axis slice range, as transfer learning is well suited to medical image 
data where labeled data is scarce and expensive to obtain. The short axis slice images were classified 
into out-of-apical, apical-to-basal, and out-of-basal, on the basis of short axis slice location in the 
LV. We developed a custom user interface to conveniently label image slices into one of the three 
categories for the generation of training data and evaluated the performance of transfer learning in 
nine popular deep CNNs. Evaluation with unseen test data indicated that among the CNNs the fine-
tuned VGG16 produced the highest values in all evaluation categories considered and appeared to be 
the most appropriate choice for the cardiac slice range classification.

With the recent advances in deep convolutional neural networks (CNNs), there is a growing interest in applying 
this technology to medical image analysis1. Specifically, in the field of cardiac magnetic resonance imaging (MRI), 
deep CNNs are applied to the left ventricle (LV), right ventricle (RV), and myocardial segmentation for automatic 
quantification of ejection fraction and myocardial mass2–4. The segmentation step is typically preceded by the 
identification of a short axis slice range, which may require a manual procedure, as a stack of short axis cardiac 
MR images tends to include slices out of the LV coverage5. The standard guidelines provided in Schulz-Menger 
et al.6,7 claim the need for the correct identification of a slice range for diastole and systole for the measurement 
of LV volume as well as LV mass. Figure 1 shows an example of a stack of short axis slices covering the entire LV 
with class labeling. Manual identification of a valid short axis slice range is cumbersome and time-consuming, 
and the automation of the procedure would be desirable for the complete automatization of computer-aided 
diagnosis in cardiac MRI data. 

Deep learning has shown the potential to improve automatic classification of cardiac MR images. Margeta 
et al. demonstrated the use of fine-tuned CNNs for cardiac MRI scan plane recognition8. Their method focused 
on classifying cardiac MR images into five categories (i.e., 2-chamber, 3-chamber, 4-chamber, LV outflow tract, 
and short axis). It achieved a high average F1 score, but the study did not investigate the classification of short 
axis slices into three categories (i.e., out of apical slice, in slice, and out of basal slice) as in our study design. In 
addition, automatic image quality assessment using a CNN model was demonstrated in Zhang et al.9. The method 
aimed to identify either a missing apical slice or a missing basal slice. Two separate 5-layer CNN models were 
trained. In cases where the number of images for training is not sufficiently large (e.g., medical image data), 
training a deep CNN from scratch is likely prone to overfitting. To avoid the problem and to utilize the represen-
tational power available from deep CNN models, researchers are increasingly relying on transfer learning10–12. 
Transfer learning has been demonstrated to achieve good classification accuracy as well as efficient model training 
by reusing trained weights of deep CNNs13–16, and has shown remarkable success in image classification from 
the large-scale ImageNet database.
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Early research on transfer learning utilizes pre-trained CNNs as fixed feature extractors. Specifically, the 
pre-trained network takes an image as input and then outputs “off-the-shelf ” features from a certain layer in 
the network. These features are used as input for various classifiers, including random forests, support vector 
machine (SVM), and dense neural network (DNN). Recent transfer learning methods apply fine-tuning, where 
the convolutional layers of the pre-trained networks are trained further, or fine-tuned, with images from a tar-
get domain. Fine-tuning has been shown to improve performance on a wide range of classification tasks. Shin 
et al. used AlexNet17 and GoogLeNet14 as the base networks and applied transfer learning to the medical image 
domain18. Tajbakhsh et al. demonstrated higher accuracy with fine-tuning in classification performance than a 
CNN model trained from scratch19. Mormont et al. applied transfer learning to digital pathology20. They extracted 
features from the convolutional layers of pre-trained networks and applied various machine learning techniques 
for classification. They also applied fine-tuning to top-performing base networks to maximize performance. Lee 
et al. demonstrated high accuracy in bone age assessment with the fine-tuning of GoogLeNet21. Kumar et al. 
proposed an ensemble of fine-tuned AlexNet and GoogLeNet for a variety of medical image modalities22. Finally, 
Gupta et al. applied transfer learning with InceptionV3 as the base deep CNN to coronary plaque detection in 
computed tomography angiography23.

Several major breakthroughs in deep CNN architectures have been achieved for ImageNet classification. In 
2014, the VGG architecture demonstrated the potential of deep CNN with convolutional filters of the 3 × 3 size 
only. GoogLeNet introduced the Inception module, which provided a solution to scale-invariance by concat-
enating feature maps from convolutional filters of different sizes. GoogLeNet has also set a precedent for future 
architectures by utilizing repeated structures of novel convolutional blocks. Depth-wise separable convolutions, 
first explored in Sifre and Mallat24, were adopted in many state-of-the-art CNN architectures15,16,25,26 in order to 
enable substantial reduction in computational cost. In 2017, neural architecture search (NAS)27 introduced the 
idea of learning optimal architectures with reinforcement learning, leading to a new family of architectures such 
as NASNet26. Other novel designs such as “dense blocks”28 have achieved comparable results in various datasets 
with a reduced number of parameters.

Despite these recent advances in CNN architectures, there is a lack of studies comparing the performance of 
transfer learning for a wide range of base networks in medical image data. In this study, we evaluated the perfor-
mance of transfer learning in nine popular CNN architectures in the fixed feature extraction and fine-tuning set-
tings (Fig. 2) for the task of automatic cardiac short axis slice range classification. Fine-tuning was applied to only 
a subset of convolutional layers as proposed in Tajbakhsh et al.19. Classifiers were built to take an image as input 
and classify it into one of three categories: out-of-apical (OAP), apical-to-basal (IN), and out-of-basal (OBS).

Results
Model training and validation.  Figure 3 compares the training history of five-fold cross-validation (CV) 
for each network in the fixed feature extraction setting. We plotted the history for the fixed learning rate of 10–4 
to compare the convergence of each model. The VGG16 model showed an exceptionally fast convergence speed, 
followed by MobileNetV1.

InceptionResNetV2 and Xception showed noticeably slow convergence patterns. The Inception and ResNet 
models as well as MobileNetV2 showed a high degree of overfitting. We observed a high variance of loss and 
accuracy metrics across different folds. Among the three baseline models trained from scratch, CBR-LargeT 
achieved a very low loss on the training set, likely due to a relatively larger number of trainable parameters. The 
two smaller baseline models (i.e., CBR-Small and CBR-Tiny) did not exhibit patterns of a high degree of overfit-
ting in the validation loss, although the loss curves showed a large degree of fluctuation with respect to epochs.

Figure 1.   Acquired short axis cine slices from apex to base. Labels are shown on top of each image. The short 
axis slices corresponding to IN are only valid for quantification such as LV segmentation. This study uses 
deep learning to automatically classify the short axis slices into one of the three labels: OAP, IN, and OBS. For 
quantification such as LV ejection fraction, we need to identify short axis slices that correspond to the class IN.
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Computation time.  Table 1 lists the computation time for hyperparameter search in training of the nine 
models in the fine-tuning setting (depth = 1), where three different learning rates (LRs) and five-fold CVs were 
performed for each model with 50 epochs. Training and validation were performed on a single GPU (NVIDIA 
Quadro P5000, 16 GB memory). MobileNetV2 was the fastest in training with a total time of 154 min, and 
ResNet50V2 was the 2nd place with a total time of 171 min. MobileNetV1, NASNetMobile, DenseNet121, and 
VGG16 were the next models in ascending order of the computation time. InceptionResNetV2 and Xception 
were the two worst performed models, taking 746 and 380 min, respectively. Notably, InceptionResNetV2 pro-
duced a GPU memory error with the default batch size of 32, and we reduced the batch size down to 8. This 
might have adversely affected the computation performance.

Evaluation on test data.  Table 2 displays the evaluation results of the models for the nine deep CNN 
models and three baseline CBR models. The fine-tuned VGG16 model showed the highest accuracy of 0.90 and 
soft accuracy of 0.97, outperforming the best baseline model, CBR-Small, which achieved an accuracy of 0.86 
and a soft accuracy of 0.95. The majority of models were similar in accuracy scores ranging from 0.81 to 0.90, 
with the exception of MobileNetV2 and NasNet Mobile, which ranged from 0.65 to 0.73. F1 scores were the 
highest for the fine-tuned VGG16. Micro-averaged area-under-the-curve (AUC) scores showed patterns similar 
to accuracy. The fine-tuned VGG16 and InceptionResNetV2 obtained the top micro-averaged AUC scores of 
0.98, while MobileNetV2 and NasNet Mobile showed the lowest scores. For F1 scores, we observed a high level 
of variance in the outer slices (i.e., OAP and OBS), with OAP ranging 0.36–0.81 and OBS ranging 0.46–0.80. For 
models with low F1 scores in the outer slices, InceptionV3 scored F1 values of 0.36–0.38 for OAP, and Mobile-
NetV2 scored F1 values of 0.46–0.52 for OBS.

Figure 4 shows the visualization of confusion matrices using the scikit-learn’s confusion_matrix function30. 
The class prediction results are shown for two good performing models VGG16 and MobileNetV1 and two 
poor performing models MobileNetV2 and NASNet Mobile. VGG16 often misclassified IN slices as OAP, while 
MobileNetV1 misidentified OAP slices as IN. For the poor performing cases, MobileNetV2 often misclassified 
IN slices as OBS, and NASNet Mobile misclassified IN slices as either OAP or OBS. In Fig. 5, the t-Distributed 
Stochastic Neighbor Embedding (tSNE) analysis for dimensionality reduction indicates that in the good-per-
formance models (a-b), the intra-class samples tend to be more clustered than those in the poor-performance 
models (c-d).

In Fig. 6, the class activation maps generated from VGG16 are shown for the different combinations of the 
(Truth class, Prediction class) cases. We used the gradient based Grad-CAM visualization method by Selvaraju 
et al.31. It is noted that the model made correct predictions when the myocardium was accurately localized. For 
the incorrect cases, the model appears focusing on regions outside the myocardium. The incorrect cases such 
as (Truth, Prediction) = (IN, OAP), (IN, OBS), (OBS, IN) show the activation peaks in the regions that appear 
visually similar to the myocardium, indicating that the model attempts to identify the myocardium. Some incor-
rect cases such as (Truth, Prediction) = (OBS, OAP), (OAP, IN) show strong activation patterns in regions near 
the borders of the images.

Discussion
In this study, we applied transfer learning to the task of automatic slice range classification in cardiac short axis 
images. The F1 score, micro-averaged AUC, accuracy, and soft accuracy of deep CNN models were compared, 
and the fine-tuned VGG16 resulted in the highest values in all six evaluation categories (Table 2). Our study 
suggests that even the “light” MobileNetV1 and CBR models, which have relatively small numbers of parameters, 
show moderate accuracy compared to VGG16 and appear as a suboptimal yet feasible choice.

Numerous studies explored the effects of transfer learning18,19,23,29,32,33, but a few of them provided com-
parisons of as many recent deep CNNs as in our study. Notably, Kornblith et al.32 conducted a more expanded 
comparison of 16 different CNNs and found a strong correlation between ImageNet accuracy and transfer 
accuracy, but this was not observed in our study. It is noted that the datasets used in Kornblith et al.32 are natural 
images (e.g., food, cars, flowers, etc.) rather than medical images. Burgos-Artizzu et al. evaluated 19 deep CNN 

Figure 2.   A schematic diagram of transfer learning for the fixed feature extraction setting (i.e., depth = 0). 
Images are propagated through the convolution layers from the existing deep CNNs (base network) to extract 
penultimate layer features. The features are used to train a custom DNN classifier. The base network and custom 
DNN classifier are concatenated to form an end-to-end classification model. Fine-tuned models with depth = 1 
are illustrated in the Supplementary Material.
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models including VGG16 for the classification of fetal ultrasound images and reported that DenseNet-169 was 
the best performing model in terms of top-1 error34. This suggests that the transferability of ImageNet models 
is application-dependent and can vary depending on the difference between source domain and target domain.

We explored the fixed feature extraction setting (i.e., depth = 0) and the fine-tuning of the last convolutional 
layer (i.e., depth = 1) for transfer learning. The fine-tuning setting produced slightly higher classification accuracy 
in most of the base deep neural networks than the fixed feature extraction setting. To further improve perfor-
mance, we may consider exploring the fine-tuning of more layers down to the first layer, but this was not pursued 
in the current study as VGG16 outscored the other networks in terms of classification accuracy. We noted that 
the layer-wise fine-tuning scheme had to be customized with care for most of the deep CNNs, since they involve 
repetitions of complex convolutional blocks rather than a simple sequential stack of layers as in VGG16.

Our approach is based on the individual classification of a single short axis slice image, but it is worth con-
sidering methods that take advantage of the information of adjacent slices, because a stack of contiguous short 
axis slices from apex to base is acquired in practice. There are several approaches to exploiting the information 
of adjacent slices:

Figure 3.   Plots of training and validation loss (green and blue lines, respectively) and validation accuracy 
(orange lines) in five-fold cross-validation, for a learning rate of 10–4. The transparent lines indicate results from 
individual folds, and the opaque lines show the averages over the five folds.
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•	 Recurrent neural networks (RNN): Often used for time-series modeling, RNNs can effectively encode 
information from previous and/or subsequent slices, given an ordered sequence of image slices from a sin-
gle patient. Its use has been demonstrated in cardiac segmentation35 and intracranial hemorrhage subtype 
classification36,37.

•	 Three-dimensional (3D) CNN: Using a set of slices as volumetric data, it is possible to extract features directly 
from the volume using 3D convolutions as explored in Isensee et al.38.

•	 2D/3D CNN: It is also possible to concatenate multiple slices into a single two-dimensional (2D) image with 
multiple channels and build a 2D/3D CNN to utilize information from adjacent slices through channel-wise 
correlations as demonstrated in Shan et al.39.

One may consider applying transfer learning to the methods above. For RNN-based networks, pre-trained 
ImageNet models can be used for feature extraction, and the recurrent layers can be appended on top, similar 
to the DNN layers in our fine-tuned models. For the 2D/3D CNN approach, the weights from pre-trained 2D 
CNNs can be transferred to train a 3D CNN model39. These methods are worthy of investigation in future studies.

A limitation of our study is that rigorous comparisons were not performed with other related studies. To our 
knowledge, there have been no studies classifying cardiac short axis slices into the three categories. However, 

Table 1.   Comparison of computation time measured during model training and validation. a Time indicates 
computation time taken to complete the three learning rates, where for each learning rate the five-fold cross-
validation was performed.

Base network Time (min)a

MobileNetV1 (a = 0.25) 172

MobileNetV2 (a = 0.35) 154

VGG16 217

InceptionV3 308

ResNet50V2 171

InceptionResNetV2 746

DenseNet121 212

NASNet Mobile 181

Xception 380

Table 2.   Test results of the nine models with different depth levels as well as three baseline models. Bold text 
indicates the highest value among the models. CBR convolution, batch-normalization, ReLu-activation29. a The 
definition of depth is provided in the Supplementary Material. b Micro-averaged AUC score.

Base network Deptha

F1 score

AUC​b Accuracy Soft accuracyOAP IN OBS

MobileNetV1 (a = 0.25) 0 0.56 0.90 0.73 0.97 0.85 0.95

MobileNetV1 (a = 0.25) 1 0.64 0.90 0.74 0.97 0.85 0.95

MobileNetV2 (a = 0.35) 0 0.56 0.78 0.46 0.86 0.67 0.76

MobileNetV2 (a = 0.35) 1 0.77 0.81 0.52 0.89 0.73 0.82

VGG16 0 0.78 0.91 0.76 0.97 0.86 0.94

VGG16 1 0.81 0.93 0.80 0.98 0.90 0.97

InceptionV3 0 0.38 0.88 0.68 0.95 0.81 0.92

InceptionV3 1 0.36 0.87 0.67 0.95 0.81 0.92

ResNet50V2 0 0.62 0.90 0.70 0.96 0.84 0.94

ResNet50V2 1 0.71 0.90 0.72 0.97 0.85 0.94

InceptionResNetV2 0 0.66 0.88 0.65 0.96 0.83 0.93

InceptionResNetV2 1 0.78 0.92 0.79 0.98 0.89 0.96

DenseNet121 0 0.67 0.90 0.73 0.97 0.85 0.93

DenseNet121 1 0.71 0.90 0.74 0.97 0.86 0.93

NASNet Mobile 0 0.57 0.78 0.58 0.88 0.70 0.80

NASNet Mobile 1 0.49 0.71 0.63 0.84 0.65 0.76

Xception 0 0.51 0.88 0.65 0.95 0.82 0.93

Xception 1 0.63 0.89 0.69 0.96 0.84 0.93

CBR-LargeT – 0.69 0.90 0.77 0.96 0.85 0.93

CBR-Small – 0.75 0.91 0.72 0.97 0.86 0.95

CBR-Tiny – 0.61 0.84 0.74 0.92 0.78 0.88



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1839  | https://doi.org/10.1038/s41598-021-81525-9

www.nature.com/scientificreports/

it is noted that a similar study was performed by Zhang et al.9. They focused on developing a deep CNN model 
to identify whether the basal slice (or the apical slice) is missing or not. Unlike our approach, they attempted to 
develop two separate models, one for the identification of the basal slice and the other for the identification of 
the apical slice. In addition, data sources for model training and validation are different. The UK Biobank data40 
were used in Zhang et al.’s work, while the Cardiac Atlas Project data41 were used in our study.

In summary, we have investigated the feasibility of transfer learning for automatic categorization of cardiac 
cine short axis slices by evaluating nine popular deep CNNs. The evaluation of unseen test data indicated that 
the fine-tuned VGG16 provided the highest values in all evaluation categories considered and appeared to be 
the most appropriate choice for the classification of a cardiac cine MRI short axis slice range.

Methods
Code.  Code related to this study is available at https​://githu​b.com/itsna​mgyu/cardi​ac-resea​rch.

Dataset.  In the present study, we used publicly available data from the left ventricular (LV) cardiac MRI 
segmentation challenge41. The data consisted of cardiac cine image series of short axis and long axis orientations 
from 200 subjects, where there were 20–30 dynamic frames per slice and 10–16 slices per subject. Out of 20–30 
dynamic frames, we only considered two frames: one end-systolic frame and one end-diastolic frame. The stacks 
of short axis slices from one group of 100 subjects were considered for training/validation, and the stacks of short 
axis slices from the other group of 100 subjects were considered for testing. The total numbers of images per class 
are shown in Supplementary Table S1.

Data labeling.  To label the images, we developed a custom user interface, implemented using the Matplotlib42 
library for Python, for image slice labeling in a diastolic and a systolic frame for all subjects. The interface loads 
all the cardiac short axis image location information along with corresponding patient identification numbers. 
For labeling, the user interacts with the layout to classify each short axis slice into one of the following three 
categories: (1) out-of-apical (OAP), (2) apical-to-basal (IN), and (3) out-of-basal (OBS). OAP was defined as the 
slice that shows no appearance of the LV blood pool. IN was defined as the slice that shows clear appearances of 
the myocardium and LV blood pool. OBS was defined as the slice above the most basal slice, which is character-
ized by a small crescent of basal lateral myocardium and no discernable LV blood pool6. The labeling results are 
saved upon closing the interface. They are saved in an internal metadata file, which is reloaded when the user 
resumes the manual labeling task.

Figure 4.   Confusion matrices of test prediction results from the good (a,b) and poor (c,d) performing models.

https://github.com/itsnamgyu/cardiac-research
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Image preprocessing and augmentation.  As shown in Supplementary Table  S1, the sample size of 
the IN class is significantly larger than the OAP and OBS classes. To overcome the class imbalance issue, we 
oversampled the slices corresponding to the OAP and OBS classes by a factor of 6. We used a simple augmen-
tation scheme, which applied random rotations between − 45 and 45 degrees for each image (Supplementary 
Figure S1). The classification task involves the examination of the myocardium, which is positioned around the 
center of the images. To reduce unwanted features in the image data, we cropped the outer 40% of both the verti-
cal and horizontal axes of each image. The image cropping retained the myocardial region of interest in all of the 
images. To prevent data leakage, the augmentation was applied after the data split for the cross-validation. For 
the evaluation, we applied the same procedure of cropping to the input images.

Model training and validation.  We considered nine well-established CNN architectures for transfer 
learning. Supplementary Table  S2 lists the networks considered in our study, including their capacities, the 
number of penultimate features, and the ImageNet accuracy scores. We applied transfer learning to cardiac 
MR images in the fixed feature extraction and fine-tuning settings. For the fixed feature extraction setting, we 
used the penultimate features from the convolutional base of the nine CNN models as an input to a custom 
deep neural network (DNN) classifier. For the fine-tuning setting, we considered only a subset of convolu-
tional layers, following the suggestion of a layer-wise fine-tuning scheme proposed in Tajbakhsh et al.19. We also 
trained three baseline models from scratch for comparison. We adopted models from the CBR (convolution, 
batch-normalization, ReLu activation) family of CNN architectures introduced in Raghu et al.29, which follows 
conventional design of CNN architectures. We considered the CBR-LargeT, CBR-Small, and CBR-Tiny models, 
which are small in network size (approximately 1/3 to 1/60 of the size of standard deep CNN architectures used 
for ImageNet classification).

All pre-trained CNN models take natural images, with three color channels, as input, but our study deals 
with grayscale MRI images. For compatibility, we simply duplicated the grayscale channel to synthesize RGB 
images. This has the same effect as averaging out the color channels of the convolutional kernels in the first 
convolutional layer of each network.

Figure 5.   tSNE visualization by dimensionality reduction of the penultimate features. The test data are shown 
in colors for different classes. The intra-class samples in the good-performance models (a,b) tend to be more 
clustered than those in the poor-performance models (c,d).
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In the fixed feature extraction setting, we appended our custom DNN classifier to the existing base networks 
and froze the base convolutional layers during training. We removed the existing fully connected classifier layers 
and replaced them with a DNN classifier. The DNN classifier consisted of a dense layer with 256 nodes and ReLU 
activation, a dropout layer with a dropout rate of 0.5, and a dense layer with 3 nodes and softmax activation. The 
final layer has three output nodes that correspond to the three classes in our classification task: OAP, IN, OBS. 
We used pre-trained weights provided by the Keras Applications library43.

We used a similar approach for the fine-tuning setting, where we unfroze only those layers considered for 
further training. We applied fine-tuning to all nine base architectures, using the final models obtained from the 
fixed feature extraction stage. We selected the layers for fine-tuning based on the individual designs of the base 
architectures. All architectures are comprised of a series of unique convolutional blocks. We considered the last 
convolutional block of each network for fine-tuning. The diagrams of the last convolutional blocks for the nine 
neural networks are shown in the Supplementary Material.

Model development was performed on a single GPU (NVIDIA Quadro P5000, 16 GB memory). To train the 
network, we used mini-batch gradient descent optimization with a batch size of 32, a decay of 10–6, and Nesterov 
momentum of 0.9. For hyperparameter optimization, we considered three learning rates. Learning rates were 
10–2, 10–3, and 10–4 for the fixed feature extraction setting, while they were 10–3, 10–4, and 10–5 for the fine-tuning 
setting. For our baseline CBR models, we considered learning rates of 10–2, 10–3, and 10–4.

For a given learning rate, we performed a five-fold cross-validation and divided the training/validation set 
into five distinct subsets, each containing image slices from 20 patients. For each fold, one subset was used for 
validation and the remaining four were used for training. Hence, a total of five models were trained and validated 
to evaluate the performance of a single parameter choice. We trained each model for 50 epochs and selected an 
appropriate epoch number based on manual inspection of the average validation accuracy curve. After setting 
the epoch number and learning rate, we trained a final model on the entire training/validation set. We used this 
process in both the fixed feature extraction and fine-tuning settings for the deep CNN models, as well as in the 
training of the baseline CBR models.

Figure 6.   Representative examples of heat map patterns generated from the VGG16 model with test images as 
input. The yellow number shown in each cell indicates the number of images corresponding to the cell. There 
were no cases corresponding to the cell (Truth, Prediction) = (OAP, OBS).
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Evaluation.  A total of 21 final models were evaluated: 9 models obtained by training a custom DNN clas-
sifier on top of base CNNs used for the fixed feature extraction setting, and 9 models obtained through the 
fine-tuning, and 3 baseline models trained from scratch. Performance was evaluated against a test dataset of 100 
patients that was held out during the model development. The total number of test images per class is shown in 
Supplementary Table S3. To evaluate multi-class classification performance, we used the following metrics: F1 
score, accuracy, micro-averaged AUC score, and soft accuracy. We defined soft accuracy as an alternative meas-
ure of accuracy, where each prediction is considered correct if it matches the class of the current slice or either of 
the adjacent slices. We introduced this metric to account for the inherent interobserver variability in slice-range 
classification. Given a continuous set of short axis MRI slices, the task of determining N slice ranges is equivalent 
to determining N-1 boundaries. During the slice classification, we noticed that misidentifying these boundaries 
by one slice often yields acceptable results. Manual inspection of incorrect model predictions revealed that most 
errors fell into the boundary cases.

To evaluate the performance on individual classes, we considered the one-vs-all classification task for each 
class. For example, by regrouping the classes into OAP and non-OAP (IN, OBS), we obtain a binary classification 
for the OAP class. We applied this to all three classes and evaluated the precision, recall, AUC for each binary clas-
sification. The F1 score was defined as 2 × (precision × recall)/(precision + recall). The micro-averaged AUC score 
was calculated using the weighted average of these AUC scores, based on the number of images in each class.

For the visualization of clustering of the intra-class samples, we applied the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) method44 to the penultimate features (Supplementary Table S2) of the CNN models and 
reduced the dimensions to 2. Each data point was colored depending on the class type (i.e., OAP, IN, OBS) for 
the visualization in a 2D space.

As shown in Supplementary Figure S2, we implemented two modes in our graphical user interface that (1) 
displays probability scores for a given set of short axis slices per subject and (2) shows class activation maps for 
the predicted class of each slice. The class activation maps (CAMs) were generated using the gradient based Grad-
CAM technique31. For our models, the CAMs correspond to the weighted sum of each feature map outputted 
from the base network, based on their contribution to the final output prediction.

Received: 22 July 2020; Accepted: 7 January 2021

References
	 1.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88. https​://doi.org/10.1016/j.media​

.2017.07.005 (2017).
	 2.	 Avendi, M. R., Kheradvar, A. & Jafarkhani, H. A combined deep-learning and deformable-model approach to fully automatic 

segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119. https​://doi.org/10.1016/j.media​.2016.01.005 
(2016).

	 3.	 Xue, W., Brahm, G., Pandey, S., Leung, S. & Li, S. Full left ventricle quantification via deep multitask relationships learning. Med. 
Image Anal. 43, 54–65. https​://doi.org/10.1016/j.media​.2017.09.005 (2018).

	 4.	 Kim, Y. C. et al. EVCMR: A tool for the quantitative evaluation and visualization of cardiac MRI data. Comput. Biol. Med. 111, 
103334. https​://doi.org/10.1016/j.compb​iomed​.2019.10333​4 (2019).

	 5.	 Lee, J. W. et al. Guidelines for cardiovascular magnetic resonance imaging from the Korean Society of Cardiovascular Imaging 
(KOSCI)-Part 2: Interpretation of cine, flow, and angiography data. Investig. Magn. Reson. Imaging 23, 316–327. https​://doi.
org/10.13104​/imri.2019.23.4.316 (2019).

	 6.	 Schulz-Menger, J. et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for 
Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. 
Reson. 15, 35. https​://doi.org/10.1186/1532-429X-15-35 (2013).

	 7.	 Schulz-Menger, J. et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 
update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. 
J. Cardiovasc. Magn. Reson. 22, 19. https​://doi.org/10.1186/s1296​8-020-00610​-6 (2020).

	 8.	 Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D. C. & Ayache, N. Fine-tuned convolutional neural nets for cardiac MRI 
acquisition plane recognition. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 5, 339–349. https​://doi.org/10.1080/21681​
163.2015.10614​48 (2017).

	 9.	 Zhang, L. et al. Automated quality assessment of cardiac MR images using convolutional neural networks. Int. Workshop Simul. 
Synth. Med. Imaging https​://doi.org/10.1007/978-3-319-46630​-9_14 (2016).

	10.	 Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks?. Adv. Neural Inf. Process. Syst. 
20, 3320–3328 (2014).

	11.	 Weiss, K., Khoshgoftaar, T. M. & Wang, D. A survey of transfer learning. J. Big Data 3, 9. https​://doi.org/10.1186/s4053​7-016-0043-6 
(2016).

	12.	 Tan, C. et al. A survey on deep transfer learning. In International Conference on Artificial Neural Networks, 270–279. https​://doi.
org/10.1007/978-3-030-01424​-7_27 (2018).

	13.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. http://arxiv​.org/abs/1409.1556 
(arXiv preprint) (2014).

	14.	 Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 1–9 (2015).

	15.	 Chollet, F. Xception: Deep learning with depthwise separable convolutions. http://arxiv​.org/abs/1610.02357​ (arXiv preprint) 
(2017).

	16.	 Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. http://arxiv​.org/
abs/1704.04861​ (arXiv preprint) (2017).

	17.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. 
Process. Syst. 20, 1097–1105 (2012).

	18.	 Shin, H. C. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics 
and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298. https​://doi.org/10.1109/TMI.2016.25281​62 (2016).

	19.	 Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: Full training or fine tuning?. IEEE Trans. Med. 
Imaging 35, 1299–1312. https​://doi.org/10.1109/TMI.2016.25353​02 (2016).

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2016.01.005
https://doi.org/10.1016/j.media.2017.09.005
https://doi.org/10.1016/j.compbiomed.2019.103334
https://doi.org/10.13104/imri.2019.23.4.316
https://doi.org/10.13104/imri.2019.23.4.316
https://doi.org/10.1186/1532-429X-15-35
https://doi.org/10.1186/s12968-020-00610-6
https://doi.org/10.1080/21681163.2015.1061448
https://doi.org/10.1080/21681163.2015.1061448
https://doi.org/10.1007/978-3-319-46630-9_14
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2535302


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1839  | https://doi.org/10.1038/s41598-021-81525-9

www.nature.com/scientificreports/

	20.	 Mormont, R., Geurts, P. & Marée, R. Comparison of deep transfer learning strategies for digital pathology. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2262–2271 (2018).

	21.	 Lee, H. et al. Fully automated deep learning system for bone age assessment. J. Digit. Imaging 30, 427–441. https​://doi.org/10.1007/
s1027​8-017-9955-8 (2017).

	22.	 Kumar, A., Kim, J., Lyndon, D., Fulham, M. & Feng, D. An ensemble of fine-tuned convolutional neural networks for medical 
image classification. IEEE J. Biomed. Health Inf. 21, 31–40. https​://doi.org/10.1109/JBHI.2016.26356​63 (2017).

	23.	 Gupta, V. et al. Performance of a deep neural network algorithm based on a small medical image dataset: Incremental impact of 
3D-to-2D reformation combined with novel data augmentation, photometric conversion, or transfer learning. J. Digit. Imaging 
33, 431–438. https​://doi.org/10.1007/s1027​8-019-00267​-3 (2020).

	24.	 Sifre, L. & Mallat, S. Rigid-motion scattering for image classification. Ph. D. thesis (2014).
	25.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520 (2018).
	26.	 Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning transferable architectures for scalable image recognition. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 8697–8710 (2018).
	27.	 Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. http://arxiv​.org/abs/1611.01578​ (arXiv preprint) 

(2016).
	28.	 Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 4700–4708 (2017).
	29.	 Raghu, M., Zhang, C., Kleinberg, J. & Bengio, S. Transfusion: Understanding transfer learning for medical imaging. Adv. Neural 

Inf. Process. Syst. 20, 3347–3357 (2019).
	30.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	31.	 Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 

IEEE International Conference on Computer Vision, 618–626 (2017).
	32.	 Kornblith, S., Shlens, J. & Le, Q. V. Do better imagenet models transfer better? In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2661–2671 (2019).
	33.	 Swati, Z. N. K. et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging 

Graph. 75, 34–46. https​://doi.org/10.1016/j.compm​edima​g.2019.05.001 (2019).
	34.	 Burgos-Artizzu, X. P. et al. Evaluation of deep convolutional neural networks for automatic classification of common maternal 

fetal ultrasound planes. Sci. Rep. 10, 10200. https​://doi.org/10.1038/s4159​8-020-67076​-5 (2020).
	35.	 Poudel, R. P., Lamata, P. & Montana, G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. 

Reconstruct. Segment. Anal. Med. Images https​://doi.org/10.1007/978-3-319-52280​-7_8 (2016).
	36.	 Ye, H. et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent 

neural network. Eur. Radiol. 29, 6191–6201. https​://doi.org/10.1007/s0033​0-019-06163​-2 (2019).
	37.	 Nguyen, N. T., Tran, D. Q., Nguyen, N. T. & Nguyen, H. Q. A CNN-LSTM architecture for detection of intracranial hemorrhage 

on CT scans. http://arxiv​.org/abs/2005.10992​ (arXiv preprint) (2020).
	38.	 Isensee, F. et al. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In 

International Workshop on Statistical Atlases and Computational Models of the Heart, 120–129 (2017).
	39.	 Shan, H. et al. 3-D Convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. 

IEEE Trans. Med. Imaging 37, 1522–1534. https​://doi.org/10.1109/TMI.2018.28322​17 (2018).
	40.	 Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18, 8. https​://doi.

org/10.1186/s1296​8-016-0227-4 (2016).
	41.	 Fonseca, C. G. et al. The Cardiac Atlas Project–an imaging database for computational modeling and statistical atlases of the heart. 

Bioinformatics 27, 2288–2295. https​://doi.org/10.1093/bioin​forma​tics/btr36​0 (2011).
	42.	 Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. https​://doi.org/10.1109/MCSE.2007.55 (2007).
	43.	 Chollet, F. Keras: Deep learning library for theano and tensorflow. https​://keras​.io/k 7, T1 (2015).
	44.	 Maaten, L. V. D. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

Acknowledgements
This work was supported by the Basic Science Research Program through the National Research Foundation of 
Korea (NRF-2018 R1D1A1B07042692).

Author contributions
N.H. and Y.K. designed the experiments. N.H. implemented the transfer learning algorithm on cardiac data. 
Y.K. evaluated the results. N.H. and Y.K. wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-81525​-9.

Correspondence and requests for materials should be addressed to Y.-C.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s10278-017-9955-8
https://doi.org/10.1007/s10278-017-9955-8
https://doi.org/10.1109/JBHI.2016.2635663
https://doi.org/10.1007/s10278-019-00267-3
http://arxiv.org/abs/1611.01578
https://doi.org/10.1016/j.compmedimag.2019.05.001
https://doi.org/10.1038/s41598-020-67076-5
https://doi.org/10.1007/978-3-319-52280-7_8
https://doi.org/10.1007/s00330-019-06163-2
http://arxiv.org/abs/2005.10992
https://doi.org/10.1109/TMI.2018.2832217
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1093/bioinformatics/btr360
https://doi.org/10.1109/MCSE.2007.55
https://keras.io/k
https://doi.org/10.1038/s41598-021-81525-9
https://doi.org/10.1038/s41598-021-81525-9
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1839  | https://doi.org/10.1038/s41598-021-81525-9

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification
	Results
	Model training and validation. 
	Computation time. 
	Evaluation on test data. 

	Discussion
	Methods
	Code. 
	Dataset. 
	Data labeling. 
	Image preprocessing and augmentation. 
	Model training and validation. 
	Evaluation. 

	References
	Acknowledgements


