Table 2.
Base network | Deptha | F1 score | AUCb | Accuracy | Soft accuracy | ||
---|---|---|---|---|---|---|---|
OAP | IN | OBS | |||||
MobileNetV1 (a = 0.25) | 0 | 0.56 | 0.90 | 0.73 | 0.97 | 0.85 | 0.95 |
MobileNetV1 (a = 0.25) | 1 | 0.64 | 0.90 | 0.74 | 0.97 | 0.85 | 0.95 |
MobileNetV2 (a = 0.35) | 0 | 0.56 | 0.78 | 0.46 | 0.86 | 0.67 | 0.76 |
MobileNetV2 (a = 0.35) | 1 | 0.77 | 0.81 | 0.52 | 0.89 | 0.73 | 0.82 |
VGG16 | 0 | 0.78 | 0.91 | 0.76 | 0.97 | 0.86 | 0.94 |
VGG16 | 1 | 0.81 | 0.93 | 0.80 | 0.98 | 0.90 | 0.97 |
InceptionV3 | 0 | 0.38 | 0.88 | 0.68 | 0.95 | 0.81 | 0.92 |
InceptionV3 | 1 | 0.36 | 0.87 | 0.67 | 0.95 | 0.81 | 0.92 |
ResNet50V2 | 0 | 0.62 | 0.90 | 0.70 | 0.96 | 0.84 | 0.94 |
ResNet50V2 | 1 | 0.71 | 0.90 | 0.72 | 0.97 | 0.85 | 0.94 |
InceptionResNetV2 | 0 | 0.66 | 0.88 | 0.65 | 0.96 | 0.83 | 0.93 |
InceptionResNetV2 | 1 | 0.78 | 0.92 | 0.79 | 0.98 | 0.89 | 0.96 |
DenseNet121 | 0 | 0.67 | 0.90 | 0.73 | 0.97 | 0.85 | 0.93 |
DenseNet121 | 1 | 0.71 | 0.90 | 0.74 | 0.97 | 0.86 | 0.93 |
NASNet Mobile | 0 | 0.57 | 0.78 | 0.58 | 0.88 | 0.70 | 0.80 |
NASNet Mobile | 1 | 0.49 | 0.71 | 0.63 | 0.84 | 0.65 | 0.76 |
Xception | 0 | 0.51 | 0.88 | 0.65 | 0.95 | 0.82 | 0.93 |
Xception | 1 | 0.63 | 0.89 | 0.69 | 0.96 | 0.84 | 0.93 |
CBR-LargeT | – | 0.69 | 0.90 | 0.77 | 0.96 | 0.85 | 0.93 |
CBR-Small | – | 0.75 | 0.91 | 0.72 | 0.97 | 0.86 | 0.95 |
CBR-Tiny | – | 0.61 | 0.84 | 0.74 | 0.92 | 0.78 | 0.88 |
Bold text indicates the highest value among the models.
CBR convolution, batch-normalization, ReLu-activation29.
aThe definition of depth is provided in the Supplementary Material.
bMicro-averaged AUC score.