Skip to main content
. 2021 Jan 19;11:1839. doi: 10.1038/s41598-021-81525-9

Table 2.

Test results of the nine models with different depth levels as well as three baseline models.

Base network Deptha F1 score AUCb Accuracy Soft accuracy
OAP IN OBS
MobileNetV1 (a = 0.25) 0 0.56 0.90 0.73 0.97 0.85 0.95
MobileNetV1 (a = 0.25) 1 0.64 0.90 0.74 0.97 0.85 0.95
MobileNetV2 (a = 0.35) 0 0.56 0.78 0.46 0.86 0.67 0.76
MobileNetV2 (a = 0.35) 1 0.77 0.81 0.52 0.89 0.73 0.82
VGG16 0 0.78 0.91 0.76 0.97 0.86 0.94
VGG16 1 0.81 0.93 0.80 0.98 0.90 0.97
InceptionV3 0 0.38 0.88 0.68 0.95 0.81 0.92
InceptionV3 1 0.36 0.87 0.67 0.95 0.81 0.92
ResNet50V2 0 0.62 0.90 0.70 0.96 0.84 0.94
ResNet50V2 1 0.71 0.90 0.72 0.97 0.85 0.94
InceptionResNetV2 0 0.66 0.88 0.65 0.96 0.83 0.93
InceptionResNetV2 1 0.78 0.92 0.79 0.98 0.89 0.96
DenseNet121 0 0.67 0.90 0.73 0.97 0.85 0.93
DenseNet121 1 0.71 0.90 0.74 0.97 0.86 0.93
NASNet Mobile 0 0.57 0.78 0.58 0.88 0.70 0.80
NASNet Mobile 1 0.49 0.71 0.63 0.84 0.65 0.76
Xception 0 0.51 0.88 0.65 0.95 0.82 0.93
Xception 1 0.63 0.89 0.69 0.96 0.84 0.93
CBR-LargeT 0.69 0.90 0.77 0.96 0.85 0.93
CBR-Small 0.75 0.91 0.72 0.97 0.86 0.95
CBR-Tiny 0.61 0.84 0.74 0.92 0.78 0.88

Bold text indicates the highest value among the models.

CBR convolution, batch-normalization, ReLu-activation29.

aThe definition of depth is provided in the Supplementary Material.

bMicro-averaged AUC score.