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Abstract

One of the main limitations of natural language-based approaches to meaning is that they do not incor-

porate multimodal representations the way humans do. In this study, we evaluate how well different kinds

of models account for people’s representations of both concrete and abstract concepts. The models we

compare include unimodal distributional linguistic models as well as multimodal models which combine

linguistic with perceptual or affective information. There are two types of linguistic models: those based

on text corpora and those derived from word association data. We present two new studies and a reanaly-

sis of a series of previous studies. The studies demonstrate that both visual and affective multimodal mod-

els better capture behavior that reflects human representations than unimodal linguistic models. The size

of the multimodal advantage depends on the nature of semantic representations involved, and it is espe-

cially pronounced for basic-level concepts that belong to the same superordinate category. Additional

visual and affective features improve the accuracy of linguistic models based on text corpora more than

those based on word associations; this suggests systematic qualitative differences between what informa-

tion is encoded in natural language versus what information is reflected in word associations. Altogether,

our work presents new evidence that multimodal information is important for capturing both abstract and

concrete words and that fully representing word meaning requires more than purely linguistic informa-

tion. Implications for both embodied and distributional views of semantic representation are discussed.
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1. Introduction

When you look up the word rose in the 2012 Concise Oxford English Dictionary, it is
defined as “a prickly bush or shrub that typically bears red, pink, yellow, or white fra-

grant flowers, native to north temperate regions and widely grown as an ornamental.”

How central are each of these aspects to our representation of a rose, and in what form

are they represented? Different theories give different answers to this question, particu-

larly with respect to how much linguistic and nonlinguistic sensory representations con-

tribute to meaning. In embodied theories, meaning is based on the relationship between

words and internal bodily states corresponding to multiple modalities, such as somatosen-

sation, vision, olfaction, and perhaps even internal affective states. By contrast, lexico-se-

mantic views focus on the contribution of language, suggesting that the meaning of rose
can be derived in a recursive fashion by considering its relationship to the meaning of

words in its linguistic context, such as bush, red, and flower (cf. Firth, 1968). These two

views are extremes on a spectrum, and current theories of semantics tend to take an inter-

mediate position that both linguistic and nonlinguistic information contribute to meaning.

How is information from sensory modalities and the language modality combined, and

which is more important to understand the meaning of words? One idea is that language is a

symbolic system that represents meaning via the relationships between (amodal) symbols but

is also capable of capturing sensory representations since these symbols refer to perceptual

information. This is consistent with the symbol interdependency hypothesis, proposed by

Louwerse (2011) and closely related to Clark’s (2006) hypothesis that we use language as

proxy of the world.

Others have argued for hybrid approaches that combine both symbolic and sensorily

grounded representations to varying degrees, depending on task and word characteristics

(Andrews, Frank, & Vigliocco, 2014; Paivio, 1971; Riordan & Jones, 2011; Vigliocco,

Meteyard, Andrews, & Kousta, 2009). One reason for the importance of nonlinguistic

sensory information is that although language has the capacity to capture sensory proper-

ties, this capacity is imperfect in making fine-grained distinctions. For example, in Japa-

nese the word ashi does not distinguish between foot and leg. As another example,

consider the fact that across languages, commonly used color terms only cover a subset

of all the colors that humans can detect. Thus, one would expect that models of lexical

semantics should perform better when provided with visual training data in addition to

linguistic corpora (e.g., Bruni, Tran, & Baroni, 2014; Johns & Jones, 2012; Silberer &

Lapata, 2014). This may be true even for abstract words that lack visual referents: Recent

work suggests that nonlinguistic factors such as sensorimotor experience, emotional expe-

rience, interoception, and sociality ground the meaning of abstract words (for an over-

view, see Borghi et al., 2017). This suggests that models incorporating only linguistic

information will fare less well in capturing human representations than those that com-

bine linguistic and sensory input. The opposite may also hold—that models incorporating

only sensory input will fare less well than those based on both.

Not all agree that multimodal information is necessary for the representation of word

meaning, at least not for abstract words that lack physical referents (Paivio, 2013). For
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instance, it is not clear how the meaning of concepts like “romance” or “purity,” which

are connotations of the word rose that are not directly derived from sensory impressions,

might be captured by sensory-based models that learn low-level visual features from

images (e.g., Chatfield, Simonyan, Vedaldi, & Zisserman, 2014; He, Zhang, Ren, & Sun,

2016; Lazaridou, Pham, & Baroni, 2015).

In this paper, we revisit the question about the extent to which the language modality

encodes sensory properties by comparing linguistic representations derived from text cor-

pora or word associations with multimodal models that encode sensory or affective infor-

mation as well. We focus on concrete and abstract concepts and the role of visual and

affective properties. With affective information we refer more specifically to the emo-

tional valence, or how positive/negative a word is and the arousal, or how calming/excit-
ing a word is.1 This will allow us to determine whether models of abstract word meaning

require multimodal affective representations in the same way that models of concrete

word meaning do.

1.1. Multimodal representations of concrete concepts

Concrete concepts are concepts that refer to a perceptible entity. Multimodal models of

concrete concepts combine linguistic and sensory representations to determine to what

degree linguistic representations capture sensory properties. In theory, these sensory prop-

erties could reflect any modality. In a study by Kiela and Clark (2015), for example, a

multimodal model was constructed that combines language with auditory input. In prac-

tice, most studies focus on visual multimodal models, and this is reflected in the type of

concepts that are modeled (typically concrete nouns) and the way concreteness is mea-

sured (typically focusing on the visual modality, see Brysbaert, Warriner, & Kuperman,

2014). Early work relied on psycho-experimental methods to capture these sensory prop-

erties; a common approach is to derive representations from feature elicitation tasks in

which participants are asked to list meaningful properties of the concept in question.

These (presumably nonlinguistic) features are then combined in a multimodal model

whose linguistic representations are derived from text corpora (Andrews et al., 2014;

Johns & Jones, 2012; Steyvers, 2010).

In recent years, multimodal models have begun to use visual representations derived

from large image databases instead of feature listing tasks. These range from approaches

in which visual features are obtained by human annotators (Silberer, Ferrari, & Lapata,

2013) to bag-of-visual words approaches in which a large set of visual descriptors are

mapped onto vectors encoding low-level scale-invariant feature transformations (e.g.,

Bruni et al., 2014). Deep convolutional networks are starting to be used as well, since

they typically outperform the low-level representations captured by simpler feature

extraction methods (e.g., Lazaridou et al., 2015).

1.2. Multimodal representations of abstract concepts

Because of their reliance on visual information, most previous work on multimodal

models has focused on concrete concepts. However, there are good reasons to study
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abstract concepts as well. For one, they are extremely prevalent in everyday language:

72% of the noun or verb tokens in the British National Corpus are rated by people as

more abstract than the noun war, which many would already consider quite abstract (e.g.,

Lazaridou et al., 2015). Abstract concepts also pose a particular challenge to strong

embodiment views, which maintain that meaning primarily relies on nonlinguistic infor-

mation. According to these theories, concrete and abstract concepts are not substantially

different from each other; both are grounded in the same systems that are engaged during

perception, action, and emotion (Borghi et al., 2017). The difficulty for such views is that

abstract concepts like “opinion” do not have clearly identifiable referents. By contrast,

distributional semantic views can easily explain how abstract concepts are represented: in

terms of their distributional properties in language (Andrews et al., 2014).

A range of other theories about abstract concepts have been proposed in recent years,

going beyond either embodied or distributional semantic accounts (for an overview, see

Borghi et al., 2017). For example, according to the conceptual metaphor theory, abstract

concepts are represented in terms of metaphors derived from concrete domains; this pro-

cess provides a perceptual grounding for abstract meaning (Lakoff & Johnson, 2008). We

focus here on a different view that highlights the role of affect in particular, known as

the Affective Embodiment Account (AEA). The AEA posits that abstract concepts are

grounded in internal affective states (Vigliocco et al., 2009). The grounding is quite

broad, covering not just abstract words for emotions but also words that evoke an affec-

tive state like cancer or birthday (Kousta, Vinson, & Vigliocco, 2009). Consistent with

this, emotional valence leads to a processing advantage for abstract words in a lexical

decision task, even when confounding factors like imageability or context availability are

taken into account (Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011).

Further evidence that supports the AEA comes from a study in which brain activation

was predicted by linguistic representations derived from word embedding models as well

as experiential (e.g., visual, affective) representations derived from a feature rating task

(Wang et al., 2017). Both types of representations were only weakly correlated with each

other. When Wang et al. (2017) related the neural activation during a word familiarity

judgment task with the linguistic and affective experiential representations using features

like valence, arousal, emotion, or social interaction for the same words, they found disso-

ciable neural correlates for each. Notably, affective experiential features were sensitive to

areas involved in emotion processing. A subsequent principal component analysis of the

whole-brain activity pattern showed that the first neural principal component, which cap-

tured most of the variance in abstract concepts, was correlated significantly with experi-

ential information but not linguistic information. Moreover, the correlation was stronger

for valence than other factors such as social interaction, which have been proposed as

other factors in which abstract concepts could be embodied.

1.3. Current study

This study aims to investigate how and to what extent distributional models based on word

associations or word co-occurrences derived from natural language are able to capture the
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meaning of concrete and abstract words. In the word association model the meaning of a word

is measured as a distribution of respectively weighted associative links encoded in a large

semantic network, whereas the distributional linguistic model derives word meaning from

word co-occurrences derived from large text corpora. Both models are considered to be pri-

marily linguistic in nature. However, for word associations, we expect that associations reflect

access to not only the language modality but nonlinguistic sensory modalities as well.

Our second aim is to measure the extent to which distributional models based on word

association and word co-occurrence models can be improved by adding nonlinguistic

visual and affective information. Our research is motivated by several observations. First,

recent performance improvements by corpus-based distributional semantic models (e.g.,

Mikolov, Chen, Corrado, & Dean, 2013) have led to suggestions that these models might

learn representations like humans do (Mandera, Keuleers, & Brysbaert, 2017). Our work

evaluates to what extent this is the case. Second, models that learn visual categories have

recently shown a similarly striking improvement in their ability to correctly identify a wide

range of concrete objects (Chatfield et al., 2014; He et al., 2016; Lazaridou et al., 2015).

Our study investigates new multimodal models that integrate visual and linguistic

information. Our goals is to evaluate the extent to which such hybrid models capture

human performance and to explore what insights they can provide about how humans use

environmental cues (linguistic or visual) to build and represent semantic concepts.

Our final aim is motivated by the observation that previously reported gains of multi-

modal models over purely linguistic models in predicting human performance have been

fairly modest (e.g., Bruni et al., 2014). This leaves some uncertainty about whether language

in itself is sufficiently rich to encode detailed perceptual information (see Louwerse, 2011).

This study goes further by looking beyond concepts consisting of concrete nouns to

determine whether multimodal representations for abstract words provide better predic-

tions of behavioral measures of word meaning. In particular, we computationally test a

corollary from the AEA hypothesis, namely that internal affective states provide the foun-

dation for the meaning of abstract concepts.

We achieve these ends by extending existing multimodal models to incorporate both

affective and visual multimodal representations. Our performance evaluation focuses on

basic-level concepts within a superordinate category, and it compares text-based linguistic

distributional models to models derived from experimental word association data that

might reflect access to both linguistic and experiential representations. As described

below, these aspects of our approach enable us to better interpret the performance of the

models and what they mean about human cognition.

1.3.1. Comparisons between basic-level concepts within a superordinate category
In this work, we evaluate models by evaluating their performance on basic-level con-

cepts (apple, guitar, etc.) belonging to natural language superordinate categories (fruit,
musical instruments, etc.). The basic level is the most inclusive one within which the

attributes are common to all or most members of the category (Rosch, 1978). Basic-level

concepts are not only the most informative; they are also acquired early and tend to be

easy to form an image of (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Tversky
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& Hemenway, 1984). They are also the default label: For instance, in picture naming

studies, subordinate items are usually named at the basic level, even when subordinate

names are known (Rosch, 1978).

Given these factors as well as the fact that visual features are shared to some extent

between basic-level objects, one might expect comparisons between them (like apples to

pears) to provide a sensitive test of unimodal distributional linguistic models. Despite

this, the human similarity benchmarks used to evaluate such models in previous work

focus more on wider comparisons (like apples to food or tree). These non-basic-level and

more abstract comparisons might be more readily encoded through language. This could

explain the high correlations between model predictions and human similarity judgments

found in such studies (e.g., Mandera et al., 2017), as well as the low correlations found

in studies involving more concrete and basic-level objects (De Deyne, Peirsman, &

Storms, 2009). In this work, by focusing on basic-level concepts, we aim to better control

the nature of the semantic relationships and thereby clarify the utility of the information

encoded in both linguistic models and multimodal models.

Of course, while the notion of a basic level applies clearly to concrete concepts, it is

not obvious whether abstract concepts have a basic level. Nevertheless, we can make use

of the fact that abstract concepts can be described as a part of a taxonomic hierarchy.

Linguistic resources such as WordNet (Fellbaum, 1998) distinguish between superordi-

nate, coordinate, and subordinate abstract concepts. For example, a hyponym (subordi-

nate) listed in WordNet for the term envy is covetousness, whereas a hypernym

(superordinate) is resentment. This suggests that abstract concepts, like concrete ones, can

be described at a kind of “basic” level that has high cue validity and many shared attri-

butes.2 In this work we rely on WordNet to ensure that all of our basic-level (concrete

and abstract) concepts belong to superordinate concrete categories of similar size.

1.3.2. Comparison of distributional linguistic models to a word association baseline
To better understand to what degree linguistic information can predict human semantic

judgments, we will compare distributional (corpus-based) semantic models to a baseline

model designed to capture subjective meaning. A variety of methods have been proposed

to measure meaning, including semantic differentials (Osgood, Suci, & Tannenbaum,

1957), feature elicitation (De Deyne et al., 2008; McRae, Cree, Seidenberg, & McNorgan,

2005), and word association responses (De Deyne, Navarro, & Storms, 2013; Kiss, Arm-

strong, Milroy, & Piper, 1973; Nelson, McEvoy, & Schreiber, 2004). Distributional

semantic representations derived from all of these methods appear to reflect both linguis-

tic and nonlinguistic semantic information (Taylor, 2012). For example, modality-specific

brain regions related to imagery are also activated when participants generate semantic

features or word associations (Simmons, Hamann, Harenski, Hu, & Barsalou, 2008). In

the remainder of this article we will use the term "distributional linguistic model" to refer

to a distributional semantic model that uses language corpora.

In this study we derive our baseline model of semantic meaning using word association

data. This approach makes fewer assumptions than feature elicitation tasks and is relevant

for abstract words as well. If, as hypothesized, this model incorporates both linguistic and
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nonlinguistic information, we would expect that adding visual or affective features would

have little impact on the performance of the model. If, as the AEA account suggests,

visual and affective information cannot be derived from linguistic information alone, we

might expect that distributional corpus-based models would be improved by adding that

information.

Alternatively, if it is indeed the case that natural language does encode perceptual and

affective features in a sufficiently rich way, then adding visual or affective features to

these language models would have little impact on their performance. This possibility is

not unreasonable, given recent improvements in the ability of distributional semantic

models to predict a variety of human judgments (see, e.g., Mandera et al., 2017). These

improved models, which rely on word co-occurrence predictions (e.g., word2vec, Mikolov

et al., 2013) instead of co-occurrence counts (e.g., latent semantic analysis; Landauer &

Dumais, 1997), may thus capture more of the information inherent in linguistic data and

provide a better proxy of the world (Clark, 2006).

The structure of this paper is as follows. We first describe how the distributional lin-

guistic, word association, and experiential (visual or affective) models are constructed.

We then evaluate how the experiential information (visual or affective) augments the per-

formance of the distributional linguistic model and the word association baseline model

in two similarity judgment tasks. Study 1 required participants to pick the most related

pair out of three words (e.g., rose vs. tulip vs. daffodil) while Study 2 had participants

rate the similarity of pairs like rose and tulip on an ordinal scale.

2. Constructing unimodal and multimodal models

2.1. Distributional linguistic model

The linguistic model captures semantic representation from the distributional properties

in the language environment as is, without integrating it with information from other

modalities.

2.1.1. Corpus
The model was trained on a combination of different text corpora described in detail

in De Deyne, Perfors, and Navarro (2016). The corpora were constructed to provide a

reasonably balanced set of texts that is representative of the type and amount of language

a person experiences during a lifetime: formal and informal, spoken and written. It con-

tains four parts: (a) a corpus of English movies subtitles; (b) written fiction and nonfiction

taken from the Corpus of Contemporary American English (COCA; Davies, 2009); (c)

informal language derived from online blogs and websites available through COCA; and

(d) the Simple English Wikipedia, a version of Wikipedia with usually shorter articles

aimed at students, children, and people who are learning English (SimpleWiki, accessed

February 3, 2016). The resulting corpus consisted of 2.16 billion word tokens and

4.17 million word types. It thus encompasses knowledge that is likely available to the
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average person but is sufficiently generous in terms of the quality and quantity of data to

ensure that our models perform similarly to the existing state of the art.

2.1.2. Word2vec embeddings
Word embedding models have recently been proposed as an alternative to count-based

distribution models such as latent semantic analysis (Landauer & Dumais, 1997) or word

co-occurrence count models (e.g., HAL; Burgess, Livesay, & Lund, 1998). One of the most

popular word embedding algorithms consists of a simple neural network that predicts word

co-occurrence (Mikolov et al., 2013). In contrast to count-based models, networks like

word2vec are used to predict words from context (the CBOW or “continuous bag-of-

words” approach) or context from words (the skip-gram approach), which more closely

resembles human learning. Compared to count-based approaches, these embedding models

often lead to better accounts of lexical and semantic processing (Baroni, Dinu, & Krus-

zewski, 2014; De Deyne, Perfors, et al., 2016; Mandera et al., 2017).3

To train word2vec on this corpus, we used a CBOW architecture where the learn-

ing objective was to predict a word based on the context in which it occurs. A range of

parameters determines the efficiency and predictive performance. In this study, parameter

values were taken from previous research in which the optimal model was a network

trained to predict the context words using a window size of 7 and a 400-dimensional hid-

den layer from which word vectors are derived (De Deyne, Perfors, et al., 2016). This

was the best model on a wide range of similarity judgment studies, and it performs com-

parably with other published embeddings.

2.2. Word association model

Word associations have long been used as an experimental method to assess the

semantic knowledge a person holds about a word (e.g., Deese, 1965). In contrast to a

controlled task like feature listing, the free association procedure does not censor the type

of response. This makes it suitable for capturing the representations of all kinds of con-

cepts (including abstract ones) and all kinds of semantic relations (including thematic and

affective ones). It also avoids dissociating the lexicon in two different types of entities

(concepts and features), which allows us to represent all concepts in a single graph. The

resulting representation is thought to capture broad aspects of meaning, not solely those

reflecting our linguistic experiences (Mollin, 2009), since nonlinguistic (i.e., experiential

or affective) information is accessed when participants generate associates (Simmons

et al., 2008). If this is correct, then word associations can be best characterized as a mul-

timodal model. However, for the purpose of this exposition, unimodal models will refer

to either a distributional linguistic or a word association model, and multimodal models

will refer to a combination of these models with either visual or affective information.

2.2.1. Word association data
The current data were collected as part of the Small World of Words project,4 an ongo-

ing crowd-sourced project to map the mental lexicon in various languages. The SWOW-
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EN2018 data are those reported in De Deyne, Perfors, et al. (2016) and consist of associ-

ates given by 88,722 fluent English speakers. Each speaker gave three different responses

to between 14 and 18 cue words. For example, a person shown the cue word miracle
might respond magic, religion, and Jesus. The dataset contains a total of 12,292 cue

words for which at least 300 responses were collected for every cue.

2.2.2. Semantic network
In line with previous work, we constructed a semantic weighted graph from these data

in which each edge corresponds to the association frequency between a cue and a target

word. The graph was constructed by only including responses that also occurred as a cue

word and keeping only those nodes that are part of the largest connected component (i.e.,

nodes that have both in- and out-going edges). The resulting graph consists of 12,217

nodes, which retains 87% of the original data.

Following De Deyne, Navarro, Perfors, and Storms (2016) and De Deyne, Navarro,

Perfors, Brysbaert, and Storms (2019), we first transformed the raw association fre-

quencies using positive point-wise mutual information (PPMI). Next, a mechanism of

spreading activation through random walks was used to allow indirect paths of varying

length connecting any two nodes to contribute to their meaning. The random walks

can be thought of as a vector with the same dimensionality as the number of nodes in

the graph where each element corresponds to a weighted sum of direct and indirect

paths, with longer paths receiving a lower weight. The random walks implement the

idea of spreading activation over a semantic network. To limit the contribution of long

paths, a decay parameter α was set to 0.75, in line with De Deyne, Navarro, et al.

(2016). This algorithm is similar to other approaches (Austerweil, Abbott, & Griffiths,

2012), but differs by taking an additional PPMI weighting of the graph with indirect

paths to avoid a frequency or degree bias and to reduce spurious links (for a discus-

sion, see Newman, 2010).

2.3. Visual feature model

We constructed a model based on visual information using ImageNet as the source of

the data encoding visual information (De Deyne, Perfors, et al., 2016); it is currently the

largest labeled image bank and includes over 14 million images. It consists of images for

the concrete nouns represented in WordNet, a language-inspired knowledge base in which

synonymous words are grouped in synsets and connected through a variety of semantic

relations (IS-A, HAS-A, etc.). With 21,841 synsets, ImageNet captures a large portion of

the concrete lexicon represented in WordNet. A small part of synsets encoded in the

WordNet is shown in Fig. 1.

Visual features were obtained by applying ResNet (He et al., 2016), a pre-trained

supervised convolutional neural network, to each concrete synset that had at least 50

images. The 2,048-dimensional activation of the last layer (before the softmax layer) of

the network is taken as a visual feature vector as it contains higher level features. Finally,

we obtained a single 2,048-dimensional vector to represent each WordNet synset by
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averaging the feature vectors from its associated individual images. Each image vector

was then mapped to a WordNet synset.

The words in this study corresponded to synset labels that could occur both as inner

nodes (e.g., mammal) or leaf nodes (e.g., hedgehog) depending on their level of abstrac-

tion. In some cases, a word corresponded to a synset with multiple labels. For example,

in Fig. 1 the word hedgehog is found in two different synsets (one labeled “hedgehog,
Erinaceus europaeus” and one “porcupine, hedgehog”). To map these synsets to a single

word, the synset labels were split and the corresponding image vectors averaged. Of the

18,851 parsed synset labels in ResNet, 4,449 labels were shared with the SWOW-

EN2018 cue words. Of these 4,449 cues, 910 cues mapped onto more than one synset

and were averaged. Previous research on high-dimensional distributional language models

has shown that point-wise mutual information (PMI), which assigns larger weights to

specific features, improves model predictions (De Deyne et al., 2019; Recchia & Jones,

2009). An exploratory analysis showed that this was also the case for the image vectors;

we therefore use weighted PMI image vectors throughout this work.

2.4. Affective feature model

Affective factors like valence or arousal capture a significant portion of the structure in

the mental representation of both adjectives (e.g., De Deyne, Voorspoels, Verheyen,

Navarro, & Storms, 2014) and nouns (e.g., Osgood et al., 1957).The validity of the

Fig. 1. Part of the WordNet hierarchy for concrete synsets that are covered by ImageNet. Synsets can occur

at different hierarchical levels and are labeled by one or multiple words that can overlap with other branches

in the tree; this is illustrated for the case “hedgehog.”
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subjective judgments of affective factors is supported by recent work that demonstrated

that human affective ratings predict the modulation of the potential neural activity signal

in areas associated with affective processing (Vigliocco et al., 2013). According to the

AEA theory (Vigliocco et al., 2009), these affective factors provide the necessary multi-

modal grounding for abstract concepts, which lack any physical referents. We constructed

the features of the affective model based on human ratings for valence, arousal, and dom-

inance for nearly 14,000 words (Warriner, Kuperman, & Brysbaert, 2013). The ratings by

males and females were treated as separate features and supplemented with three addi-

tional features for valence, arousal, and dominance from a more recent study based on

20,000 English words (Mohammad, 2018). The norms from the latter study were some-

what different than those from Warriner et al. (2013) in two ways. First, they used best–-
worst scaling, which resulted in more reliable ratings. Second, they operationalized

arousal differently, resulting in ratings that were less correlated with valence. Each indi-

vidual word was thus represented by nine features: valence, arousal, and potency judg-

ments for men and women from Warriner et al. (2013) and valence, arousal, and

dominance judgments from Mohammad (2018). For example, the representation for the

word rose would be: [5.9 3.1 6.4 8.1 2.6 6.0 7.8 2.5 3.5]. The first six values correspond

to the male ratings for valence, arousal, and potency and the female ratings for valence,

arousal, and potency (Warriner et al., 2013). The last three values correspond to rescaled

valence, arousal, and dominance for men and women from Mohammad (2018). None of

the features were perfectly correlated with each other, which allowed them to each con-

tribute.

2.5. Multimodal models that combine linguistic models with experiential representations

To investigate how adding visual or affective information to our linguistic or word

association model affects their performance, we created multimodal models that incorpo-

rate both kinds of information. There are multiple efficient ways to combine different

information sources; these include auto-encoders (Silberer & Lapata, 2014), Bayesian

models (Andrews et al., 2014), and cross-modal mappings (Collell, Zhang, & Moens,

2017). We employ a late fusion approach in which features from different modalities are

concatenated to build multimodal representations. This approach performs relatively well

(e.g., Bruni et al., 2014; Johns & Jones, 2012; Kiela & Bottou, 2014) and enables us to

investigate the relative contribution of the modalities directly. This is achieved by a sin-

gle dataset-level tuning parameter β, ranging from 0 to 1, which allows us to vary and

quantify the relative contribution of the different modalities. The multimodal fusion M of

the modalities a and b corresponds to M¼ β�va� 1�βð Þ� vb where � denotes concate-

nation, va is the vector representation for the linguistic or word association information,

and vb is the vector representation for the affective or visual information. Since the fea-

tures for different modalities can have different scales, they were normalized using the

L2-norm prior to concatenation, which puts all features in a unitary vector space (Kiela &

Bottou, 2014).
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3. Study 1: Basic-level triadic comparisons

The first study compares how well each of the models above predicts human similarity

judgments. Participants rated similarity in a triadic comparison task in which they were

asked to pick the most related pair out of three words. There were two conditions, one in

which the words were CONCRETE and one in which they were ABSTRACT. Compared to pair-

wise judgments using rating scales, the triadic task has several advantages: Humans find

relative judgments easier, it avoids scaling issues, and it leads to more consistent results

(Li, Malave, Song, & Yu, 2016).

3.1. Method

3.1.1. Participants
Forty native English speakers between 18 and 49 years old (21 females, 19 males,

average age 35) were recruited in the CONCRETE condition and forty native English speak-

ers aged 19–46 years (16 females, 24 males, average age = 32) in the ABSTRACT condition.

The participant sample size (and number of stimuli) was informed by a previous work on

triadic judgments (De Deyne, Navarro, et al., 2016). Data were collected in two online

studies through Prolific Academic. We first collected for the abstract study and when

enough participants completed the task, the concrete task was administered. All partici-

pants signed an informed consent form and were paid £6/h. The procedures were

approved by the Ethics Committee of the University of Adelaide.

3.1.2. Stimuli
The CONCRETE stimuli consisted of 100 triads constructed from a subset of 300 nouns

present in the lexicons of all of our models and for which valence and concreteness

norms were available (Brysbaert et al., 2014; Warriner et al., 2013). All 300 words were

selected from a set of superordinate categories identified in previous work (e.g., Battig &

Montague, 1969; De Deyne et al., 2008). Approximately half of the triads belonged to

natural kind categories (Fruit, Vegetables, Mammals, Fish, Birds, Reptiles, Insects, Trees)
and the other half to human-made categories (Clothing, Dwellings, Furniture, Kitchen
utensils, Musical instruments, Professions, Tools, Vehicles, Weapons). Each triad was

composed of three basic-level words that belong to the same superordinate category (e.g.,

falcon, flamingo, penguin) and was constructed by randomly combining category exem-

plars, subject to the constraint that none of the words occurred more than once across

any of the triads. Table A1 of Appendix A contains a list of all the stimuli.

The ABSTRACT stimuli consisted of 100 triads and were also constructed from words

that were present in the lexicons of all our models and where norms for concreteness and

valence were available (see concrete triads). To ensure that the words were abstract, we

removed any words with concreteness ratings of over 3.5 on a 5-point scale (Brysbaert

et al., 2014). The average concreteness was 2.6. Moreover, all words were well known,

with at least 90% of participants in the word association study indicating that they knew

12 of 44 S. De Deyne et al. / Cognitive Science 45 (2021)



the word. The resulting set of 29 categories covered a variety of abstract domains, includ-

ing emotions, attitudes, abilities, social groups, and beliefs. A list of the stimuli together

with their category label is presented in Table A2 of Appendix A.

To identify superordinate and basic-level words for abstract categories, we used Word-

Net (Fellbaum, 1998), selecting stimuli corresponding to categories in the WordNet hier-

archy at a depth of 4–8 in the taxonomy. This ensured that the exemplars were neither

overly specific nor overly general. For example, the triad bliss–madness–paranoia con-

sists of three words defined at depths 8, 9, and 9 in the hierarchical taxonomy, with the

most specific shared category label or hypernym at depth 6.

3.1.3. Procedure
For each of the 100 triads, participants were instructed to select the pair of words (out

of the three) that was most related in meaning, or to indicate if any of the words is

unknown. They were asked to only consider the word meaning, ignoring superficial prop-

erties like letters, sound, or rhyme. The method and procedure for ABSTRACT stimuli were

identical to that for the concrete except that the example given to participants now con-

tained abstract words. The concrete task took 8 min, and the ABSTRACT one, 10 min.

3.1.4. Behavioral results
All three words in over 99% of concrete triads and 96% of abstract triads were consid-

ered known by participants. Similarity judgments were calculated by counting how many

participants chose each of the three potential pairs. Because the number of judgments var-

ied depending on whether participants judged them to be unknown, they were converted

to proportions. The Spearman split-half reliability was .92 for concrete triads and .90 for

abstract triads. These reliabilities provide an upper bound of the correlations that can be

achieved with our models.

3.2. Model evaluation

Human triad preferences were predicted by calculating the Pearson correlation with the

model preferences for either the distributional linguistic, word association, visual, and

affective vectors for each of the three word pairs in each triad. The model preferences

were calculated using the cosine similarities for all three pairs and rescaling them to sum

to one.5 Note that in all analyses that follow, no results are available for the visual fea-

ture model of abstract words for the obvious reason that abstract words are not found in

ImageNet. The correspondences between the human preferences and the model predic-

tions measured through Pearson correlations are shown in Table 1.

3.2.1. Distributional linguistic versus word association model comparisons
We first compared the performance of the distributional linguistic model against the

baseline word association model. The word association model showed a high correlation

with the triad preferences in both the CONCRETE, r(298) = .76, CI95 [0.71, 0.80], and AB-

STRACT tasks, r(298) = .82, CI95 [0.78, 0.86]. The correlations for the distributional
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linguistic model were considerably lower: r(298) = .64, CI95 [0.56, 0.70] for CONCRETE tri-

ads and r(298) = .62, CI95 [0.54, 0.68] for ABSTRACT triads. To test whether the difference

in correlation was significant, confidence intervals for correlation differences were calcu-

lated for dependent overlapping variables (Zou, 2007) using the cocor package in R

(Diedenhofen & Musch, 2015). The 95% confidence interval for the difference in correla-

tion was CI95 [0.06, 0.19] for the CONCRETE triads and CI95 [0.14, 0.27] for the ABSTRACT

triads, suggesting that the word association model better predicted human similarity judg-

ments for both kinds of words.

3.2.2. Visual and affective multimodal model comparisons
For the multimodal models, we were primarily interested in understanding how visual

information contributed to the representation of CONCRETE words and how affective

Table 1

Pearson correlations and confidence intervals for unimodal and multimodal models. The top panel shows the

performance when va corresponds to the distributional linguistic model, while the middle panel va corre-

sponds to the word association baseline. The bottom panel corresponds to purely experiential model where va
corresponds to the affective model and is added for completeness. In each panel, the unimodal columns show

the performance of that model (va) as well as the two experiential models (vb) on either the concrete or the

abstract words. The best-fitting multimodal models combining va and vb were found by optimizing the corre-

lation for mixing parameter β and are shown in column rvab . The improvement due to adding experiential

information (rvab � rva ) is shown in column Δr

Dataset n

va = Distributional linguistic model

Unimodal Multimodal

rva CI95 vb rvb CI95 β rvab CI95 Δr CI95

Concrete 300 .64 [0.57, 0.70] Visual .67 [0.60, 0.73] .48 .75 [0.70, 0.80] .12 [0.07, 0.17]

Concrete 300 .64 [0.57, 0.70] Affect .21 [0.10, 0.32] .50 .68 [0.62, 0.74] .04 [0.02, 0.08]

Abstract 300 .62 [0.54, 0.68] Affect .51 [0.43, 0.59] .58 .74 [0.69, 0.79] .13 [0.08, 0.19]

Dataset n

va = Word association model

Unimodal Multimodal

rva CI95 vb rvb CI95 β rvab CI95 Δr CI95

Concrete 300 .76 [0.71, 0.80] Visual .67 [0.60, 0.73] .35 .81 [0.77, 0.85] .05 [0.03, 0.08]

Concrete 300 .76 [0.71, 0.80] Affect .21 [0.10, 0.32] .38 .78 [0.74, 0.82] .02 [0.00, 0.05]

Abstract 300 .82 [0.78, 0.86] Affect .51 [0.43, 0.59] .05 .82 [0.78, 0.86] .00 [−0.01, 0.01]

Dataset n

va = Affective model

Unimodal Multimodal

rva CI95 vb rvb CI95 β rvab CI95 Δr CI95

Concrete 300 .21 [0.10, 0.32] Visual .67 [0.60, 0.73] .45 .73 [0.67, 0.77] .52 [0.41, 0.63]

Note. Note that the confidence intervals for Δr are based on testing significant differences for dependent

overlapping correlations based on Zou (2007). This approach increases the power to detect an effect com-

pared to Fisher’s r to z procedure which assumes independence.
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information contributed to the representation of ABSTRACT words. In contrast to abstract

words, it is also feasible to investigate a combination of both visual and affective infor-

mation for concrete words. For completeness we include this scenario for CONCRETE word

with vb = Affect as part of the results reported in Table 1.

The confidence intervals in the last column of Table 1 indicate that for CONCRETE

words, adding visual information helped both the distributional and the word association

models. The rvab values corresponding to the visual multimodal model are higher than the

rva values, and in both cases this difference was significant as the confidence interval of

the difference did not include zero. However, visual information improved performance

of the distributional linguistic model more (0.12 vs. 0.05, respectively). The bootstrapped

confidence interval of the difference between Δrs, CI95 [0.01, 0.12], did not include zero,

suggesting this difference was significant.6 This suggests that the word association model

may incorporate some visual information that the distributional linguistic model does not.

For completeness, Table 1 also shows the results for concrete triads using a multimodal

model based on affective information. Affective information by itself only weakly pre-

dicts the preferences in concrete triads (r(298) = .21), but it offers a small multimodal

gain when combined with the distributional linguistic model (Δr = .04, CI95 [0.02, 0.08])

and the word association model (Δr = .02, CI95 [0.00, 0.05]).

For ABSTRACT words, we found that affective information improved the performance of

the distributional linguistic model substantially (from rva 298ð Þ¼ :62 to rvab 298ð Þ¼ :74).
This improved performance is consistent with the AEA hypothesis by Vigliocco et al.

(2009) and suggests that the decisions made by people in the triad task were based in part

on affective information. Indeed, the affective model predictions alone did capture a sig-

nificant portion of the variability in the abstract triads, r(298) = .51, CI95 [0.43, 0.59],

which is remarkable considering that the model consists of only nine features. Interest-

ingly, affective information did not improve the performance of word association model,

suggesting that word association data already incorporates affective information. More-

over, the multimodal gain for the distributional linguistic model (0.13, compared to 0.00

for word associations) was significantly larger, with a bootstrapped confidence interval of

the difference between Δrs CI95 [0.07, 0.19].
To further explore the effect of adding visual or affective information, Fig. 2 plots

the performance of each model as a function of the β-weighted proportion of experi-

ential information added when the words are either CONCRETE (left panel) or ABSTRACT

(right panel). The word association model performs best, with small improvements

from visual features (Δr = .05, β = 0.35, see Table 1). For the CONCRETE triads, we

examine the effect of adding visual information. The distributional linguistic model

performs worse but improves slightly more when visual features are added (r increase

of .07). For completeness, we also included a model where va is affective and vb is

visual for the concrete triads. For the concrete triads, the affective model, shown in

orange and included in Table 1, is easily the worst of the three. For the ABSTRACT tri-

ads, we examine the effect of adding affective information. When this is done, the

word association model does not improve, but the distributional linguistic model

improves considerably.
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Overall, word association models outperformed distributional linguistic models at the

optimal β value, even when these models included visual (respectively 0.81 vs. 0.75, CI95
[0.02, 0.09]) or affective (respectively 0.82 vs. 0.74, CI95 [0.03, 0.13]) information.

3.3. Robustness

Thus far, our results support the hypothesis that the model of meaning based on word

associations captures visual information in concrete words and affective information in

abstract words. The performance of the distributional linguistic model was worse than the

word association baseline for both CONCRETE and ABSTRACT words. The distributional lin-

guistic models were most improved by adding affective information, consistent with the

AEA hypothesis that the meaning of abstract words, like concrete words, relies on experi-

ential information. To what degree do these findings reflect the specific choices we made

in setting up our models? To address this question, we tested how robust our results were

when compared against alternative models based on different corpora and different

embedding techniques.

3.3.1. Distributional linguistic models
First, we investigated whether the linguistic model performance was due to the specific

embeddings used. To test this, we chose GloVe embeddings as an alternative distribu-

tional linguistic model (Pennington, Socher, & Manning, 2014). In contrast to word2-
vec embeddings, GloVe does not incrementally learn embeddings but is based on a

factorization of a global word co-occurrence matrix, which can lead to improved
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Fig. 2. The effect of adding visual or affective experiential information to predict triadic preferences for CON-

CRETE (first and second panels) and ABSTRACT (third panel) word pairs. Each panel shows the unimodal distri-

butional linguistic and word association rva correlations on the left side of the x-axis and the unimodal

experiential (affective or visual features) rvb correlations on the right side. Intermediate values on the x-axis
indicate multimodal models. In the first panel, visual information is added: Larger β values correspond to

models that weight visual feature information more. In the second and third panels, affective information is

added: Larger β values correspond to models that weight affective information more. Peak performance for

all models usually occurs when about half of the information is experiential.
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predictions in certain tasks. We used the published word vectors for a model of compara-

ble size to our corpus consisting of 6 billion (B) tokens derived from the GigaWord 5

and Wikipedia 2014 corpus. We also included an extremely large corpus consisting of

840B words from the Common Crawl project.7 As before, the distributional linguistic

vectors (va) were combined with visual or affective information (vb) to create a multi-

modal model that was optimized by fitting values of β. Fig. 3 shows the unimodal distri-

butional linguistic model correlations and the optimal multimodal correlations.

For unimodal predictions of concrete items, the Glove-840B was better than

word2vec (CI95 [−0.15, −0.04]) and Glove-6B (CI95 [−0.17, −0.07]), but the
smaller Glove-6B was not significantly different from word2vec. The multi-

modal predictions of CONCRETE items followed the same pattern, with only GloVe-
840B better than word2vec (CI95 [−0.07, −0.01]), and Glove-6B (CI95
[−0.07, −0.02]). For the unimodal prediction of ABSTRACT items, word2vec outper-

formed both GloVe-6B (CI95 [0.02, 0.14]) and GloVe-840B (CI95 [0.01, 0.13]).

However, once affect was added in the multimodal model, the distinct models did not

obtain significantly different correlations.

Does adding experiential information improve performance for the GloVe models,

as it did for word2vec? For CONCRETE items for Glove-6B, it appeared to: Pre-

dictions using Glove-6B were significant (the Δr = .13 had a confidence interval that

did not overlap with zero, CI95 [0.09, 0.19]). The same was true for Glove-840B
(Δr = 0.06, CI95 [0.03, 0.10]). The pattern was the same for ABSTRACT words: Adding

experiential information resulted in a significant improvement for both GloVe-6B
(Δr = .18, CI95 [0.12, 0.24]) and GloVe-840B (Δr = .17, CI95 [0.12, 0.24]).
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Fig. 3. Evaluation of alternative distributional linguistic models on CONCRETE and ABSTRACT words in the triad

task. The figure shows the correlations and 95% confidence intervals for unimodal and multimodal (visual

left, affective right panel) models using the standard word2vec based on 2B token corpus and two

embeddings based on GloVe, trained on a corpus of either of 6B and 840B tokens.

S. De Deyne et al. / Cognitive Science 45 (2021) 17 of 44



To summarize, the unimodal results indicate that a very large corpus based on 840 bil-

lion (B) tokens improves performance for concrete items but results in lower correlations

for abstract ones. This suggests that visual language about concrete entities might be rela-

tively underrepresented in all but the largest corpora. The current word2vec model

based on 2 billion (2B) performs favorably compared to the 6B GloVe embeddings

trained on a corpus more similar in size. For the multimodal comparisons, regardless of

the nature of the distributional linguistic model, adding experiential information improved

performance. Overall, the findings are robust regardless of the corpus or embedding

method used. In other words, the results for these distinct distributional linguistic models

are not very different, despite both architectural (word2vec vs. GloVe) and corpus

differences (2B words for the current corpus, 6B or 840B words used to train GloVe).

3.3.2. Word association model
There were fewer parameters and degrees of freedom in the word association model

than the distributional linguistic model, since its behavior is determined by a single acti-

vation decay parameter α, which we set at 0.75 in line with previous work (De Deyne,

Perfors, et al., 2016). However, this might have had some effect on model performance:

Especially for basic-level comparisons, a high value of α might introduce longer paths,

which might add more thematic information at the expense of shorter category-specific

paths. For this reason, we also evaluated performance for other values of α.
Fig. 4 shows that performance was reasonably robust over all values of α. Smaller α

values did occasionally improve the results, but only for the unimodal results with CON-

CRETE words: rα=0.05(298) = .80 compared to the default rα=0.75(298) = .76, Δr = −.04,
CI95 [−0.07, −0.02]. For ABSTRACT words, the optimal performance was obtained when

α = 0.85 and was not significantly different from the default setting (α = 0.75). One

interpretation of this is that the representation of concrete words does not reflect indirect

paths as much as the representation of abstract concepts. Regardless, this pattern suggests

that even the modest improvement found when visual information was added to the word

association model was probably somewhat overestimated relative to what would have

been obtained using the optimal value for α.

4. Study 2: Pairwise similarity experiments

Study 1 evaluated the performance of distributional linguistic and word association

models when participants perform relative similarity judgments between basic-level con-

crete or abstract words. To see if these findings generalize to a broader set of concepts

and a different paradigm, we evaluated the same models on multiple datasets containing

pairwise semantic similarity ratings, including some that were explicitly collected to com-

pare language-based and (visual) multimodal models.

Unlike the CONCRETE triad task in Study 1, most of the existing datasets include a wide

range of concrete semantic relations rather than just taxonomic basic-level ones. Accord-

ing to Rosch et al. (1976), “basic-level categories are shown to be the most inclusive
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categories for which a concrete image of the category as a whole can be formed and to

be the first categorizations made during the perception of the environment” (p. 382). With

this in mind, investigating the similarity of items from different categories (e.g., butter—
croissant; passion—justice) might be a relatively insensitive way of gauging the effect of

additional visual or affective information.

Fortunately, the large size of previously published datasets allows us to impose restric-

tions and compare items where both words belong to the same basic-level category, as

well as to evaluate only abstract concepts. By comparing concepts of different types, we

will be able to investigate whether the results from Study 1 only apply to concrete con-

cepts on the basic level or whether they generalize further. In addition, while most of the

new datasets contain primarily concrete nouns, some of them include a sufficient number

of abstract words as well. Given the finding in Study 1 that affective information is

important to the representation of those concepts, it is essential to determine whether this

finding replicates and generalizes to different tasks.

4.1. Datasets

We consider five different datasets of pairwise similarity ratings.8 Three of these data-

sets, the MEN data (Bruni, Uijlings, Baroni, & Sebe, 2012), the MTURK-771 data

(Halawi, Dror, Gabrilovich, & Koren, 2012), and the SimLex-999 data (Hill, Reichart, &

Korhonen, 2016), are commonly used as a general benchmark for semantic and distribu-

tional models. Two more recent datasets were additionally included because they allow

us to more directly address the role of visual and affective information. The first one was

the Silberer2014 dataset (Silberer & Lapata, 2014), which was collected with the specific

purpose of evaluating visual and semantic similarity in multimodal models. The second

dataset was SimVerb-3500 (Gerz, Vulić, Hill, Reichart, & Korhonen, 2016), which
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Fig. 4. Evaluation of alternative word association models on CONCRETE and ABSTRACT words in the triad task.

The left panel multimodal model includes visual information; the right multimodal panel includes affective

information. The length of the random walk was varied by setting α, and the maximal and minimal values of

r were overall similar regardless of α.
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contains a substantial number of abstract verbs. It thus allows us to extend our findings

beyond concrete nouns to verbs and investigate whether the important role of affective

information in abstract concepts found in Study 1 replicates here. Each of the datasets is

slightly different in terms of procedures, stimuli, and semantic relations of the word pairs

being judged. The next section briefly explains these differences and reports on their

internal reliability, which sets a bound on the maximal correlation of the models we want

to evaluate.9

4.1.1. MEN
The MEN dataset (Bruni, Uijlings, et al., 2012) consists of 3,000 word pairs con-

structed specifically for testing multimodal models, and thus most words were concrete.

The words were selected randomly from a subset of words occurring at least 700 times in

the ukWaC and WaCkypedia corpus. Next, semantic vectors derived from these corpora

models were used to derive cosine values from the first 1,000 most similar items, 1,000

pairs were sampled from the 1,001–3,000 most similar items, and the last 1,000 items

from the remaining items. As a result, the MEN consists of concrete words that cover a

wide range of semantic relations. The estimated reliability that serves as an upper bound

was ρ = 0.84 (Bruni, Uijlings, et al., 2012).

4.1.2. MTURK-771
The MTURK-771 dataset (Halawi et al., 2012) consists of 771 word pairs and was

constructed to include various types of relatedness. It consists of frequent nouns taken

from WordNet that are synonyms, have a meronymy relation (e.g., leg—table), or a holo-

nymy relation (e.g., table—furniture). The authors converted WordNet to an undirected

graph and only included words with graph distances between 1 and 4. The variability of

distance and type of relation suggests that this dataset is quite varied. The reliability, cal-

culated as the correlation between randomly split subsets, was 0.90.

4.1.3. SimLex-999
The SimLex-999 dataset (Hill et al., 2016) consists of 999 word pairs and is different

from all other datasets in that participants were explicitly instructed to ignore (associa-

tive) relatedness and only judge “strict similarity.” It also differs from previous

approaches by using a more principled selection of items consisting of adjective, verb,

and noun concept pairs covering the entire concreteness spectrum. A total of 900 word

pairs were selected from all associated pairs in the USF association norms (Nelson et al.,

2004) and supplemented with 99 unassociated pairs. None of the pairs consisted of mixed

part-of-speech. In this task, associated non-similar pairs in this list would receive low rat-

ings, whereas highly similar (but potentially weakly associated) items would be rated

highly. The reported average pairwise agreement was higher for abstract than concrete

concepts (ρ = 0.70 vs. ρ = 0.61). This is relevant for current purposes as a separate anal-

ysis for abstract concepts is reported below. The overall inter-rater reliability calculated

over split-half sets was 0.78 (Gerz et al., 2016).
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4.1.4. Silberer
The Silberer dataset (Silberer & Lapata, 2014) consists of all possible pairings of the

nouns present in the McRae et al. (2005) concept feature norms. For each of the words,

30 randomly selected pairs were chosen to cover the full variation of semantic similarity.

The resulting set consisted of 7,569 word pairs. In contrast to previous studies, the partic-

ipants performed two rating tasks, consisting of both visual and semantic similarity judg-

ments. The inter-rater reliability, calculated as the average pairwise ρ between the raters,

was 0.76 for the semantic judgments and 0.63 for the visual judgments.

4.1.5. SimVerb-3500
The SimVerb-3500 dataset (Gerz et al., 2016) consists of 3,500 word pairs and was con-

structed to remedy the bias in the field toward studying nouns, and thus consists of an

extensive set of verb ratings. Like the SimLex-999 dataset, it was designed to be represen-

tative in terms of concreteness and constrained the judgments explicitly by asking partici-

pants to judge similarity rather than relatedness. The items were selected from the

University of South Florida association norms and the VerbNet verb lexicon (Kipper, Sny-

der, & Palmer, 2004), which was used to sample a large variety of classes represented in

VerbNet. Inter-rater reliability obtained by correlating individuals with the mean ratings

was high (ρ = 0.86). Note that since the visual feature model trained on ImageNet only

contains nouns, SimVerb-3500 cannot be used to study the impact of visual information.

4.2. Evaluation of multimodal visual models

The similarity judgments are predicted by the word2vec distributional linguistic model

and word association model, each respectively combined with the visual information to

create the multimodal model. As in Study 1, the relative contribution of either the distri-

butional linguistic word associations representation versus visual information will be

determined by the best fit of the mixing parameter β.

4.2.1. Datasets involving diverse semantic comparisons
We first consider the three datasets corresponding to a mixed list of word pairs cover-

ing a variety of taxonomic and relatedness relations. Of these, the MEN and MTURK-

771 datasets are most similar to each other, since they consist of pairs that include both

similar and related pairs across various levels of the taxonomic hierarchy. The first set of

comparisons involves multimodal models with visual information, and consequently, the

analyses are restricted to those pairs that are present in the linguistic, word association,

and visual models. The results reveal that adding visual information only improved the

word association model for the MEN data but not for MTURK-771 (Δr respectively .02

CI95 [0.01, 0.02] and .00, CI95 [−0.01, 0.02]). However, visual information significantly

improved the distributional linguistic model on both datasets (Δr respectively .03 CI95
[0.02, 0.04] and .04 CI95 [0.01, 0.08]).

The SimLex-999 dataset is slightly different than all others, in that participants were

explicitly instructed to only evaluate strict similarity, ignoring any kind of associative
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relatedness between the two items. The unimodal word association model performed far

better than the distributional linguistic model on this dataset (r(298) = .72 vs. .43, Δr =
.29, CI95 [0.22, 0.48]). Adding visual information did not improve the performance of

the association model but resulted in considerable improvement in the distributional lin-

guistic model (r(298) = .14, CI95 [0.07, 0.21]). A potential explanation for the difference

between datasets is that SimLex-999 focused on strict similarity, whereas MEN and

MTURK-771 covered a broader range of semantic relations, including thematic ones, for

which visual similarity is of limited use. Note the relative small number of cases

(n = 300) in SimLex-999. Table 2 reflects the fact that abstract word pairs are not

encoded in the visual model, whereas most items are encoded in the affective model in

Table 4.

Of the remaining datasets, the Silberer one is most directly relevant to evaluate the role

of visual information. The words in this study consisted of concrete nouns taken from the

McRae feature generation norms (McRae et al., 2005). However, since words across dif-

ferent categories were compared, the ratings occur between entities specified at different

taxonomic levels. This might provide less of a challenge for distribution-based language

models to predict due to large perceptual differences. In contrast to the other studies, two

types of ratings were collected—semantic and visual. Semantic ratings are similar to

Table 2

Pearson correlation and confidence intervals for correlation differences Δr between unimodal and multimodal

visual models. The top part of the table shows the results for the distributional linguistic model, whereas the

bottom part shows the results for the word association model

Dataset n

va = Distributional linguistic, vb = Visual

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MEN 942 .79 [0.77, 0.82] .66 [0.62, .70] 0.38 .82 [0.80, 0.84] .03 [0.02, 0.04]

MTURK-771 260 .67 [0.59, 0.73] .49 [0.39, 0.58] 0.38 .71 [0.64, 0.76] .04 [0.01, 0.08]

SimLex-999 300 .43 [0.33, 0.52] .54 [0.45, 0.61] 0.55 .56 [0.48, 0.64] .14 [0.07, 0.21]

Silberer (Sem.) 5,799 .73 [0.71, 0.74] .78 [0.77, 0.79] 0.53 .82 [0.82, 0.83] .10 [0.09, 0.10]

Silberer (Vis.) 5,777 .59 [0.57, 0.61] .74 [0.73, 0.75] 0.65 .75 [0.74, 0.76] .16 [0.15, 0.17]

Average .55 .55 .64 .08

Dataset n

va = Word association, vb = Visual

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MEN 942 .79 [0.76, 0.81] .66 [0.62, 0.70] 0.45 .81 [0.78, 0.83] .02 [0.01, 0.02]

MTURK-771 260 .74 [0.68, 0.79] .49 [0.39, 0.58] 0.33 .75 [0.69, 0.79] .00 [−0.01, 0.02]
SimLex-999 300 .72 [0.66, 0.77] .54 [0.45, 0.61] 0.43 .73 [0.68, 0.79] .01 [−0.01, 0.03]
Silberer (Sem.) 5,799 .84 [0.83, 0.85] .78 [0.77, 0.79] 0.58 .87 [0.86, 0.88] .03 [0.03, 0.04]

Silberer (Vis.) 5,777 .73 [0.72, 0.74] .74 [0.73, 0.75] 0.65 .79 [0.78, 0.80] .06 [0.05, 0.07]

Average .71 .55 .73 .02
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other studies and involve participants judging similarity. Visual ratings, however, only

involve judging the similarity of the appearance of the concepts. One might thus expect

that models based on visual features will predict visual similarities better than semantic

ratings.

The results indicate that for the word association model, adding visual information

resulted in significant improvement; however, the improvements were small (relative to

the distributional model) even for the visual ratings (Δr = .03, CI95 [0.03, 0.04] for the

semantic judgments and Δr = .06, CI95 [0.05, 0.07] for the visual judgments). For the

distributional linguistic model, adding visual information resulted in an improved predic-

tion for both judgments, especially the visual ones (Δr = .10, CI95 [0.09, 0.10], for the

semantic judgments and Δr = .16, CI95 [0.15, 0.17] for the visual judgments). Consistent

with both of these sets of findings, the word association model better predicts people’s

similarity judgments than the distributional linguistic judgments (the difference was .11

CI95 [0.10, 0.12] for the semantic and .14, CI95 [0.13, 0.16] for the visual judgments).

To summarize, the contribution of visual information in the multimodal word associa-

tion model was relatively small compared to the distributional linguistic model. The aver-

age gain across datasets was .02 for the former compared to .08 for the latter (see

Table 2).

4.2.2. Comparisons at the basic level
The complete Silberer dataset that we evaluated above contains both basic-level

within-category comparisons like dove—pigeon as well as broader comparisons across

categories like dove—butterfly. Since Study 1 involved only basic-level comparisons

within superordinates, in order to provide a better comparison between it and the Silberer

data, we did an additional analysis only on the basic-level terms in the Silberer data. To

achieve this, we annotated the Silberer2014 dataset with superordinate labels for common

categories taken from Battig and Montague (1969) and De Deyne et al. (2008) such as

bird, mammal, musical instrument, vehicle, furniture, and so on. We then restricted the

analysis to only the basic-level terms within those superordinate categories. Words for

which no clear common superordinate label (see above) could be assigned were not

included. This reduced the number of pairwise comparisons from 5,799 to 1,086, which

is still sufficiently large for the current purposes.

As the two right panels of Fig. 5 demonstrate, the overall correlations were lower for

basic-level terms than those for the complete set of items. For the word association

model, the difference was respectively .19, CI95 [0.16, 0.23] and .21, CI95 [0.17, 0.26].

For the distributional linguistic model, the results were respectively a difference of .27,

CI95 [0.22, 0.34] and .24, CI95 [0.19, 0.30]. These results support the idea that compared

to mixed lists of items, comparisons at the basic level present a considerable challenge.

Moreover, adding visual information results in a larger improvement (relative to the uni-

modal model) for basic-level items. For the semantic comparisons using distributional lin-

guistic representations, the multimodal difference Δr was .10 for the full datasets versus

.16 for the basic-level data (see Tables 2 and 3). A bootstrapped test confirmed that the
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difference between the full and basic-level correlation was significant, CI95 [−0.03,
−0.09].

Finally, in line with Study 1, we found that the visual information improved perfor-

mance more for the distributional linguistic model than the word association model: The

difference between Δr = .16 and Δr = .04 was significant, CI95 [0.10, 0.16]. For com-

pleteness, Table 3 and Fig. 5 also show the results for the visual judgments. The main

finding here is that when comparisons are restricted to visual judgments at the basic level,

the unimodal visual model (when β = 1.0) is clearly superior to both the word association

(rvb − rva = .15, CI95 [0.11, 0.20]) and distributional linguistic (rvb − rva = .33, CI95
[0.27, 0.37]) model, in line with earlier argument that basic-level comparisons rely

strongly on visual information.

4.3. Evaluation of multimodal affective models

To investigate the effect of affective information, we supplemented the datasets in the

previous section with SimVerb-3500 (Gerz et al., 2016), which contained pairwise simi-

larity ratings for verbs as described before. Most words in SimVerb-3500 (2,926 out of

3,500) were included in the affective norms of Warriner et al. (2013). The results are

shown in Table 4. In contrast to the findings for visual information and the ABSTRACT tri-

ads in Study 1, most of our datasets show no improvement when affective information is

added. The only exceptions are the SimLex-999 and SimVerb-3500 datasets, where add-

ing affective information improved the distributional linguistic model, Δr = .07, CI95
[0.04, 0.10] and Δr = .11, CI95 [0.008, 0.13], respectively.
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Fig. 5. Results of multimodal models (created by combining either distributional linguistic or word associa-

tion models with visual features) based on pairwise similarity ratings from the Silberer dataset. The plots

show correlations between human judgments and models together with 95% confidence intervals (shaded).

The two left panels show the semantic and visual judgments for all items, whereas the two right panels show

performance on the subset of basic-level items in which the word pairs belong to the same superordinate cat-

egory.
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Again we find that the word association model provides better estimates of pairwise

similarity than the distributional linguistic model, except for the MEN dataset, where they

are on par (CI95 [−0.01, 0.02]). The unimodal word association correlation for the addi-

tional SimVerb-3500 dataset, r(2924) = .64, was similar in magnitude to the SimLex-999

task (r(911) = .68) and was somewhat lower than the other datasets. For the distributional

linguistic model, the SimVerb-3500 correlations was also moderate, r(2924) = .33, which

might reflect the difficulty of this model in handling strict similarity and accurately repre-

senting verb meaning.

To conclude, on average the multimodal affective gain was limited in both the distri-

butional linguistic and word association model (respectively .03 and .02, see Table 4).

These results are different from Study 1, but there are at least two reasons why the affec-

tive information may have provided less benefit in this study. First, not all datasets here

involved comparisons between basic-level items within a superordinate category. Second,

none of the datasets were constructed to investigate abstract words, and it is for these that

we might expect affective information to be most important.

4.3.1. The role of affect in abstract words
Unlike the abstract condition in Study 1, some of the pairwise datasets contain both

concrete and abstract words. To test whether the presence of concrete words masked the

effect of the multimodal affective model, we screened how abstract the stimuli were in

each dataset using the concreteness norms from Brysbaert et al. (2014). As in Study 1,

we only included similarity judgments for which the average concreteness rating of both

words in the pair was smaller than 3.5 on a 5-point scale. MEN only had 41 pairs (2.1%

of words) and no pairs matched in the Silberer dataset. The MTURK-777, SimLex-999,

and SimVerb-3500 datasets had a reasonable number of abstract words (respectively 121

or 18.6%, 42.8% or 391 words, and 67.4% or 1,973 words) and for these datasets we

tested whether adding affective information results in a larger improvement (relative to

Table 3

Replication of Table 2 restricted to basic-level word pairs in the Silberer dataset

Dataset n

va = Distributional linguistic, vb = Visual

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

Basic-Sem. 1,086 .46 [0.41, 0.50] .56 [0.52, 0.60] 0.55 .61 [0.58, 0.65] .16 [0.12, 0.19]

Basic-Vis. 1,086 .35 [0.29, 0.40] .67 [0.64, 0.70] 0.70 .68 [0.64, 0.71] .33 [0.28, 0.38]

Dataset n

va = Word association, va = Visual

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

Basic-Sem. 1,086 .64 [0.61, 0.68] .56 [0.52, 0.60] 0.43 .68 [0.65, 0.71] .04 [0.03, 0.06]

Basic-Vis. 1,086 .52 [0.47, 0.56] .67 [0.64, 0.70] 0.55 .69 [0.66, 0.72] .17 [0.14, 0.21]
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the unimodal model) for abstract pairs compared to all pairs. The results are shown in

Table 5 and Fig. 6.

For the word association model, the multimodal gain for all pairs was Δr = .00 for

MTURK-771 and Δr = .01 for both SimLex-999 and SimVerb-3500 (see Table 4). These

values were smaller than the corresponding Δrs of .01, .06, and .04 for the subset of

abstract items of the respective datasets (see Table 5). A bootstrapped test confirmed that

the difference between the correlation for all versus abstract items using the word associ-

ation model was significant for both SimLex-999, CI95 [−0.07, −0.02] and SimVerb-

3400, CI95 [−.02, −.00] but not for MTURK-771, CI95 [−0.02, 0.01].
For the distributional linguistic model, the multimodal gain was Δr = .01 for

MTURK-771, Δr = .07 for SimLex-999, and Δr = .11 for SimVerb-3500 for all pairs

(see Table 4). These values were smaller than the corresponding Δrs of .02, .21, and .19

for the subset of abstract items of the respective datasets (see Table 5). A bootstrapped

test confirmed that the difference between the correlation for all versus abstract pairs was

significant for both SimLex-999, CI95 [−0.03, −0.09] and SimVerb-3500, CI95 [−0.03,
−0.09], but not for MTURK-771, CI95 [−0.03, 0.02].

Table 4

Pearson correlation and confidence intervals for correlation differences Δr between unimodal and multimodal

affective models. The top part of the table shows the results for the distributional linguistic model, whereas

the bottom part shows the results for the word association model

Dataset n

va = Distributional linguistic, vb = Affect

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MEN 1,981 .80 [0.78, 0.81] .31 [0.27, 0.35] 0.45 .80 [0.78, 0.81] .00 [0.00, 0.00]

MTURK-771 653 .70 [0.66, 0.74] .26 [0.19, 0.33] 0.53 .71 [0.67, 0.75] .01 [0.00, 0.02]

SimLex-999 913 .45 [0.39, 0.50] .33 [0.27, 0.39] 0.65 .63 [0.47, 0.56] .07 [0.04, 0.10]

SimVerb-3500 2,926 .33 [0.30, 0.36] .33 [0.30, 0.36] 0.68 .44 [0.41, 0.47] .11 [0.08, 0.13]

Silberer (Sem.) 5,428 .74 [0.73, 0.75] .21 [0.19, 0.24] 0.33 .74 [0.73, 0.76] .00 [0.00, 0.00]

Silberer (Vis.) 5,405 .60 [0.58, 0.61] .16 [0.14, 0.16] 0.30 .60 [0.58, 0.61] .00 [0.00, 0.00]

Average .60 .27 .63 .03

Dataset n

va = Word association, vb = Affect

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MEN 1,981 .80 [0.78, 0.82] .31 [0.27, 0.35] 0.45 .81 [0.79, 0.82] .01 [0.00, 0.01]

MTURK-771 653 .77 [0.73, 0.80] .26 [0.19, 0.33] 0.45 .77 [0.74, 0.80] .00 [0.00, 0.01]

SimLex-999 913 .68 [0.65, 0.71] .33 [0.27, 0.39] 0.50 .69 [0.65, 0.72] .01 [0.00, 0.01]

SimVerb-3500 2,926 .64 [0.62, 0.66] .33 [0.30, 0.30] 0.50 .65 [0.63, 0.67] .01 [0.01, 0.02]

Silberer (Sem.) 5,428 .84 [0.84, 0.85] .21 [0.19, 0.24] 0.23 .84 [0.84, 0.85] .00 [0.00, 0.00]

Silberer (Vis.) 5,405 .73 [0.72, 0.74] .16 [0.14, 0.19] 0.00 .73 [0.72, 0.74] .00 [0.00, 0.00]

Average .71 .27 .73 .02
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Finally, in line with Study 1, we found that the affective information improved perfor-

mance more for the distributional linguistic model than the word association model in all

datasets but MTURK-771. For SimLex-999 the difference between Δr = .06 (associa-

tions) and Δr = .21 (distributional linguistic) was significant, CI95 [0.08, 0.21], and so

was the difference for SimVerb-3500, Δr = .04 (associations) and Δr = .19, CI95 [0.11,

0.19] (distributional linguistic).

So far, the role of affective multimodal information in abstract words was consistent

with the predicted pattern of a relatively larger gain for the distributional linguistic

model. However, the current findings for MTURK-771 indicate only a small multimodal

gain. While the number of abstract stimuli was not only smaller in MTURK-771 com-

pared to the other two datasets, further inspection also showed that the stimuli might have

been less varied. If the pairs are more neutral in terms of affect, then this might account

for the relatively small gain in the multimodal affective model. To verify whether this

was the case, we compared the distribution of valence in Warriner et al. (2013) with the

three datasets. For all 13,915 normed words in the Warriner norms, the 9-point scale

valence ratings quantiles were 1.26 (0%), 4.25 (25%), 5.20 (50%), 5.95 (75%), and 8.53

(100%). For MTURK-771, 91.7% of words fell in the middle range (25%–75%), whereas

for Simlex-999 and SimVerb-3500 this was respectively 65.4% and 44.8% for SimVerb-

3500. This suggests that the relative multimodal gain in MTURK-771 might be due to a

restricted subset of abstract items in terms of emotion.

In line with the averages across datasets in Table 6, we conclude that the role of affec-

tive information in multimodal models was consistent with Study 1 and extends its results

to a different task and a more varied set of words, including verbs.

Table 5

Replication of the results reported in Table 4 restricted to abstract word pairs in the MTURK-771, SimLex-

999, and SimVerb-3500 datasets

Dataset n

va = Distributional Linguistic, vb = Affect

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MTURK-771 121 .67 [0.56, 0.76] .31 [0.14, 0.46] 0.53 .70 [0.59, 0.78] .02 [−0.01, 0.06]
SimLex-999 336 .43 [0.34, 0.52] .51 [0.42, 0.58] 0.68 .64 [0.58, 0.70] .21 [0.14, 0.28]

SimVerb-3500 1,466 .28 [0.23, 0.32] .40 [0.36, 0.45] 0.73 .47 [0.43, 0.51] .19 [0.15, 0.23]

Average .46 .41 .60 .14

Dataset n

va = Word association, vb = Affect

Unimodal Multimodal

rva CI95 rvb CI95 β rvab CI95 Δr CI95

MTURK-771 121 .77 [0.69, 0.83] .31 [0.14, 0.46] 0.45 .78 [0.70, 0.84] .01 [−0.02, 0.04]
SimLex-999 336 .67 [0.61, 0.73] .51 [0.42, 0.58] 0.58 .74 [0.69, 0.78] .06 [0.03, 0.10]

SimVerb-3500 1,466 .65 [0.62, 0.68] .40 [0.36, 0.45] 0.53 .69 [0.66, 0.71] .04 [0.03, 0.05]

Average .70 .41 .71 .04
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4.4. Robustness

As in Study 1, we here perform a series of additional analyses to evaluate the extent to

which our results depend on specific modeling choices. We focused on alternative distri-

butional linguistic models and report the results for GloVe trained on 6 billion

(GloVe-6B) and 840 billion GloVe-840B tokens. If the results from Study 1

replicate, we would expect performance to be similar to the distributional linguistic model

based on word2vec, except when the corpus size is extremely large. In that case, we

Table 6

Comparison between Study 2 results and previously published studies. The correlations reported are between

the human ratings and either the unimodal distributional linguistic model in question (va), the visual model in

that study (vb), and the multimodal model that combines both va and va (vab)

Silberer2014 (Semantic judgments)

Study va description vb description rva rvb rvab

Silberer et al. (2013) feature ratings visual attributes ImageNet .71 .49 .68

Lazaridou et al. (2015) word2vec CNN-features .62 .55 .72

De Deyne, Navarro,

Collell and Perfors (2020)

word2vec CNN-features .73 .78 .82

De Deyne et al. (2020) word associations CNN-features .84 .78 .87

Silberer2014 (Visual judgments)

Study va description vb description rva rvb rvab

Silberer et al. (2013) feature ratings visual attributes ImageNet .58 .52 .62

Lazaridou et al. (2015) word2vec CNN-features .48 .54 .63

De Deyne et al. (2020) word2vec CNN-features .59 .74 .75

De Deyne et al. (2020) word associations CNN-features .73 .74 .79

MEN

Study va description vb description rva rvb rvab

Bruni et al. (2014) count model Bag-of-visual features .73 .43 .78

Kiela and Bottou (2014) word2vec SIFT features .62 .40 .70

Kiela and Bottou (2014) word2vec CNN-features .62 .63 .72

Lazaridou et al. (2015) word2vec CNN-features .68 .62 .76

De Deyne et al. (2020) word2vec CNN-features .79 .66 .82

De Deyne et al. (2020) word associations CNN-features .79 .66 .81

SimLex-999

Study va description vb description rva rvb rvab

Lazaridou et al. (2015) word2vec CNN-features .29 .54 .53

De Deyne et al. (2020) word2vec CNN-features .43 .54 .56

De Deyne et al. (2020) word associations CNN-features .72 .54 .73
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would expect performance to be improved for comparisons that involve more visual cate-

gories.

The results, shown in Fig. 7A, are consistent with this: The overall correlations using

the 6 billion word GloVe-based linguistic model (r = .60 on average) and the one

using 840 billion words (r = .66 on average) were similar to those obtained using the

word2vec-based one (r = .64 on average). When visual information was added, cor-

relations were virtually identical for all three distributional linguistic models (between

r = .73 and r = .74).

In Study 1, the GloVe-based models had the best performance for concrete words

when based on extremely large corpora (840B words), which suggested that the improved

quality of the model primarily reflected taking advantage of the information contained in

such large texts rather than the specific embedding technique or parameters. This is con-

sistent with previous research indicating that GloVe improves with size (Pennington

et al., 2014). Here as well, we find that comparisons at the basic level, which presumably

encode more perceptual properties, were better predicted with a larger corpus (see Fig. 7

C). In line with Study 1, the distributional linguistic model based on the larger corpus did

not lead to substantial improvements for abstract concepts (Fig. 7D) compared to the 6B

corpus model. Regardless of the model, correlations improved markedly when affective

information was included (Δr between .18 and .19 for all three models). This is consis-

tent with our initial findings of Study 1 (Δr = .13) suggesting that distributional linguistic

models specifically lack the affective information that is important for representing

abstract concepts.
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Fig. 6. Investigation of the role of affective information for abstract words comparing the full set (all pairs)

with a subset of abstract words taken from the SimLex-999 and SimVerb-3500 datasets. Results qualitatively

replicate the finding in Study 1 that adding affective information improves the performance of the distribu-

tional linguistic model but not the word association model when the abstractness of the words is considered.
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4.5. Comparison to previous work

Because the datasets in Study 2 have appeared in several recent studies that investi-

gated multimodal visual models, we can compare between our results and theirs.10 An

overview of the results is shown in Table 6. For the purpose of current comparisons, we

focus on the findings reported in four studies: Silberer et al. (2013), Bruni et al. (2014),

Lazaridou et al. (2015), and Kiela and Bottou (2014). Each of these studies compared

both unimodal distributional linguistic and visual feature models with multimodal models

that combined both types of information.
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Fig. 7. A comparison of the unimodal and multimodal model performance in three different distributional

linguistic models: word2vec and GloVe-6B (6 billion words) and GloVe-840B (840 billion

words). Multimodal models reflect the optimized Pearson correlation for mixing parameters β. Top panels

show Pearson correlations and 95% confidence intervals for the visual multimodal models (Panel A) and

affective multimodal models (Panel B). The bottom panels show the findings when considering a subset of

concrete word pairs at the basic level (Panel C) and abstract affective words (Panel D).
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In the study by Silberer et al. (2013), multimodal representations were derived by com-

bining a distributional model induced from human feature generation norms with a visual

model that was trained to predict visual attributes for the corresponding images in Ima-

geNet. The feature norms are of direct interest because they provide an alternative experi-

mental measure to contrast with the word association model. Feature norms allow more

precise propositional statements that capture something about the semantic relationships

(a duck <has a> bill, <is a> bird, etc.). Moreover, in contrast to word associations, the

instructions in feature-rating tasks appeal to core objective properties that define meaning

and exclude affective and attitudinal aspects of meaning (De Deyne, Verheyen, Navarro,

Perfors, & Storms, 2015).

The second study by Bruni et al. (2014) consists of a count-based linguistic model

using a sliding window and a large text corpus constructed from Wikipedia and other

material taken from the internet. For the visual information, a scale-invariant image fea-

tures transformation (SIFT) was used to extract features, which were then treated as

visual “words” in a bag-of-words representation. This bag-of-visual words approach was

applied to an image corpus of 100K labeled images derived from the ESP-Game data set

(Von Ahn, 2006).

The third study by Kiela and Bottou (2014) used a distributional linguistic model that

was trained on Wikipedia and relied on the skip-gram word2vec model. Two differ-

ent methods were considered for the visual features: One consisted of a bag-of-visual

words approach with SIFT features, and the other used a CNN to extract features from

ImageNet.

The last study by Lazaridou et al. (2015) provides an even closer comparison to the

current study since it uses a CNN approach for the visual features and skip-gram for the

distributional linguistic representations. Although their linguistic model is unlikely to

reflect typical language-exposure—it is based on the entire English Wikipedia—it pro-

vides an approximation of what can be encoded through a slightly less natural language

register.

As can be seen from Table 6, our results are competitive for both the unimodal distri-

butional linguistic and visual feature models as well as the multimodal combination of

both models. We obtained correlations as high and often higher than previous work.

While we cannot rule out the possibility that a distributional linguistic model with differ-

ent parameters trained on the same input might provide higher correlations and poten-

tially reduce the multimodal benefit, the overall pattern of results is fairly robust to

choices of parameters, distributional linguistic model, and corpus. Finally, in the case of

word associations, the correlations are higher than studies that relied on feature ratings

used by Silberer et al. (2013), which are considered a gold standard.

5. General discussion

In two studies, we investigated how linguistic and multimodal representations of mean-

ing that include experiential features (visual and affective) can capture human semantic
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judgments of abstract and concrete concepts. In both studies, we find that multimodal rep-

resentations, which combine linguistic with affective or visual information, better predict

human similarity judgments. Our findings replicate and extend previous work addressing

visual multimodal models (Bruni et al., 2014; Kiela & Bottou, 2014; Lazaridou et al.,

2015; Silberer & Lapata, 2014) and identified a novel and substantial effect of affective

information for abstract concepts. Our results also identify systematic factors that deter-

mine to what degree experiential information improves on the performance of unimodal

models.

5.1. What factors determine the performance in multimodal models?

A first factor that determines the degree to which multimodal models improve over

unimodal ones is the nature of the experiential modality. In this study, we focused on

visual and affective experiential information. In a series of original experiments, we

found that adding experiential information to a distributional linguistic model improved

its correlation with human ratings by .12 for concrete words (for visual information) and .13

for abstract words (for affective information). In Study 2, these findings were replicated

using an extensive set of previously published similarity ratings. These results indicate that

the need to supplement distributional linguistic models with affective information is espe-

cially important for abstract concepts.

The second factor is the level of comparison: The performance of the models is quite

comparable when the semantic relationship extends beyond the basic level, but becomes

more differentiated at the basic level. This suggests a potential shortcoming of existing

benchmarks: Since they evaluate concepts across taxonomic levels, they might underesti-

mate the relative improvement offered by multimodal models over unimodal ones. Indeed,

when we reanalyzed the largest available dataset (Silberer & Lapata, 2014) from Study 2

to focus only on comparisons between basic-level concepts, the visual multimodal model

showed much larger improvements than when the full item set was included.

A third factor is the nature or modality of the experiential models. The current results

hinge on the visual and affective representations we derived. Given the recency of the

models we used, further improvements are to be expected, which could indicate that per-

ceptual and affective information is even more important than that estimated here. For

example, in the case of affect, the Osgood model based on three dimensions remains

somewhat coarse due to its low-dimensional nature. Instead of three factors, richer repre-

sentations of affect have also been proposed. This includes properties about social inter-

actions (Barsalou & Wiemer-Hastings, 2005), morality (Moll, Zahn, de Oliveira-Souza,

Krueger, & Grafman, 2005), and emotions. For example, Ekman (1992) distinguishes six

basic emotions (joy, sadness, anger, fear, disgust, and surprise), whereas Plutchik (1994)

extends this list with trust and anticipation as well. Some of these emotional features

were included in recent studies to map the meaning of abstract words. One example is

the work by Crutch, Troche, Reilly, and Ridgway (2013) in which an abstract conceptual

feature rating task was used where participants judged abstract words on nine cognitive

dimensions using a Likert-like scale. To explore properties beyond core affect, we ran a
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preliminary analysis to investigate this possibility using the NRC Emotion lexicon, which

contains judgments for the Ekman emotions for over 14,000 English words (Mohammad

& Turney, 2013). We found very limited evidence for any contribution of emotions above

that of affect: They did not capture the similarities derived from Study 1 or the rated sim-

ilarity datasets in Study 2 as well, despite having more features. Finally, if we look at the

absolute performance, we see that the correlations are high for some datasets, suggesting

that room for improvement is somewhat limited.

A fourth factor that needs to be considered is the nature of the distributional linguistic

model. Our work relies on the assumption that the current models are reasonable approxi-

mations of what meaning can be derived from text-based linguistic corpora.

We derived these models according to both theoretical considerations (are they appro-

priate given the words a human knows and is exposed to across the lifespan?) as well as

empirical ones (are the models on par with those reported in the literature?). It remains

possible that better distributional linguistic models might capture more visual or affective

information, which would reduce the difference with a multimodal model. However, in

both Study 1 and Study 2, our results for the most part did not depend on the size of the

corpus or the way the embeddings were obtained; the only (relatively minor) improve-

ments occurred when using extremely large corpora outstretching human information pro-

cessing capacities. Furthermore, comparing our results to previous work suggests that

both our distributional linguistic models and the visual feature models are representative

of the current state of the art.

Finally, there are a host of task and other stimuli factors that may have influenced our

results and could be considered in future work. For example, part of speech can strongly

determine how well different models perform: We observed large differences between

word association and distributional linguistic model performance based on whether the

items were verbs or not (see Table 4). However, it is unlikely that our main findings are

an artifact of the procedure or the specific stimuli. Study 2 demonstrated that the same

qualitative patterns emerge when considering different tasks, stimuli, and procedures. This

includes similarity judgments in triadic comparisons for basic-level categories, relatedness

judgments for a variety of semantic relations, strict similarity judgments in which partici-

pants were to ignore any kind of relatedness, and visual judgments instead of semantic

judgments.

5.2. Implications for distributional accounts based on word co-occurrences

In recent years, a new generation of lexico-semantic word co-occurrence models based

on word embeddings trained to predict words in context has been proposed as an alterna-

tive to earlier models that simply count word co-occurrences. The improvements from

prediction models are considered groundbreaking in how well they account for behavioral

measures such as similarity (Baroni et al., 2014; Mandera et al., 2017). The current

results might temper such conclusions as more stringent tests show that even these pre-

diction models only partially capture meaning. We suggest that many of the previous

evaluation tasks in the literature do not rely on visual or affective information, since they
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do not focus on the basic objects belonging to the same superordinate category (where

visual information is more relevant) or abstract categories (where affective information is

more relevant). In those cases, no advantage for experiential information would be found,

but that reflects the test items and not how people represent words in general.

The limitations of distributional linguistic models are evident when considering

abstract concepts as well. The fact that affective representations consisting of nine fea-

tures provide a better account of abstract words in two large datasets (SimLex-999 and

SimVerb-3500) raises questions about the extent to which the meaning of abstract words

is really fully captured by word co-occurrence models. This conclusion is consistent with

other work showing that distributional linguistic models only capture a fraction of the

variance in a task in which people are asked to judge unrelated words (De Deyne,

Navarro, et al., 2016; De Deyne, Perfors, et al., 2016). Altogether, these results suggest

that previously obtained high correlations between predictions derived from distributional

linguistic models and similarity ratings may have been to some extent an artifact of the

comparisons being evaluated. In particular, the lack of abstract concepts and verbs, as

well as the limited number of basic-level comparisons for the mostly concrete concepts,

might have inflated the performance of many of these models to a point where only ceil-

ing effects were obtained. In those cases, the efficacy of language-only models may have

been exaggerated.

5.3. Implications for models based on word associations

To provide context to the results obtained from the distributional linguistic model, we

used a model derived from word associations as a baseline measure. One of our most

consistent findings was that models using word associations resulted in correlations close

to the maximum allowed by the reliability of the similarity ratings. This is remarkable

because the comparisons at the basic level may especially rely on experiential visual or

affective information: Concrete words rely on perceptual features and abstract words

incorporate many affective properties. Despite this, providing additional visual or affec-

tive information improved the results of the word association model only slightly. This

contrasts with the distributional linguistic models, which benefited far more clearly from

additional visual and affective information.

Our results showing that visual and affective properties for categories like fruit, tools,
feelings, or states are sufficiently encoded in models built from word associations pro-

vides further evidence that word associations are not restricted to the language modality

but multimodal in the sense that the “first word that comes to mind” relies on imagery

and the recollection of affective states as well.

Instead of treating word associations merely as a dependent variable, the current work

is an example of how a dialectic approach (see Taylor, 2012) that contrasts text-based

distributional linguistic models with word-association-based models can be used to get a

deeper insight into the nature of the underlying representations. The finding that experien-

tial information is encoded in word associations challenges the tacit assumption that word

associations can be accurately predicted from language. As a consequence, if natural
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language and word associations capture different aspects of meaning, it would be

expected that the correlations between them would be moderate at best. The most recent

evidence along these lines comes from a study by Nematzadeh, Meylan, and Griffiths

(2017) that compared topic and word embedding models with word associations. The best

performing model correlated .27 with associative strength. This weak correlation may

reflect the fact that word associations tap directly into experiential types of representa-

tions. This lack of experiential grounding could also explain why text models struggle to

predict the color of objects (Bruni, Boleda, Baroni, & Tran, 2012) and do not capture the

association between concrete concepts and their typical attributes (Baroni & Lenci,

2008), both of which are often among the strongest associates to a cue word.

5.4. The contribution of affect to the meaning of abstract words

Consistent with our results, previous research suggests that multimodal models consis-

tently improve performance relative to unimodal ones (e.g., Bruni et al., 2014). However,

the gain was especially large for the affective multimodal model account of abstract con-

cepts, even though the underlying representation consisted of a handful of features. Indeed,

this simple affective model—consisting of only nine features by itself—provided a better

prediction for abstract concepts than linguistic models in both studies (see Tables 1 and 5).

This contribution of affective information is difficult to explain given that it is often

assumed that abstract concepts rely only on a verbal code to represent their meaning,

whereas concrete words rely on an imagery code as well (Paivio, 1971). If abstract words

are predominantly acquired through language exposure, distributional linguistic models

should correlate strongly with human judgments of abstract words, and potentially not as

strongly with judgments of concrete words. This advantage for abstract words was not

supported in Study 1 or in Study2.11

An outstanding issue is what sort of learning is required to acquire the core affective

properties of words. To what extent is nonverbal or embodied information necessary?

One might expect that language should a priori play an important role because affect and

emotions play a social role in communication. However, affect can be inferred from a

range of signals. Nonverbally, affect is communicated through facial expressions

(Cacioppo, Berntson, Larsen, Poehlmann, & Ito, 2000), and these expressions correspond

to an internal (embodied) state. Indeed, research suggests that nonlinguistic cues from

facial expressions provide information about core affect (valence and arousal), and might

also capture emotions like anger or fear when the context supports this (Barrett & Bliss-

Moreau, 2009). Besides facial expressions, affect might also be communicated through

auditory aspects of spoken language. The tone of voice and other acoustic cues contribute

to the affective state of the listener (Nygaard & Lunders, 2002) and lead to altered lexical

processing (Schirmer & Kotz, 2003). Language also provides useful cues about valence

in the form of the word; affective congruence between sound and meaning leads to a pro-

cessing advantage in word recognition (Aryani & Jacobs, 2018).

While all of these factors are likely to contribute to learning affect and the meaning of

abstract words, it is unlikely that any factor in itself is sufficient. Consider, for example,

S. De Deyne et al. / Cognitive Science 45 (2021) 35 of 44



factors such as facial expressions or tone. For many words, it is not directly clear how

acoustic or nonverbal information would provide sufficient affective grounding, as many

abstract words are acquired through written language only. Estimates by Brysbaert, Ste-

vens, Mandera, and Keuleers (2016) underline this point: A 20-year-old exclusively

exposed to social interaction would have encountered about 81,000 word types, whereas

a 20-year-old exclusively exposed to text will have encountered 292,000 types. Of course,

when visual or acoustic cues are absent, the acquisition of affective concepts can still rely

on embodied processes involving empathy, where people put themselves in someone

else’s situation and imagine how they would feel. This view would be mostly consistent

with the AEA (Kousta et al., 2009) as well.

Thus far, we have remained vague about whether affect extends beyond abstract con-

cepts and plays a role in certain concrete concepts as well. Partly, this reflects the fact

that investigations about affective grounding are relatively new. The current findings sug-

gest that the correlations between human similarity judgments and affective multimodal

models are much smaller for concrete than abstract words. This could be due to the fact

that we used a subset of mostly concrete nouns, whereas large effects for valence and

arousal have been found for adjective representations (De Deyne et al., 2014). Potentially,

many adjectives have more extreme valence or arousal values than most concrete nouns.

A second explanation might be that there is a trade-off in accessing the meaning of con-

crete nouns. According to this scenario, affective information would be an integral part of

the meaning of these words, but information from other modalities dominates. Affective

information is logically more salient in abstract concepts due to the limited contribution

of visual and other perceptual modalities. All this suggests a few interesting avenues in

which emotional-laden concrete words and abstract words might be compared in future

research.
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Notes

1. Often affective and emotive factors are confounded in the literature. Emotions are

not considered to be psychological primitives in the same sense that core affect

dimensions such as hedonistic valence and arousal are. For instance, in studies
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involving facial behaviors, reports of experience, and peripheral nervous system

activity, affect tends to be a stronger predictor than emotions categories (Barrett,

2006).

2. There are potentially other parallels between concrete and abstract basic-level con-

cepts; for instance, like concrete basic objects, some basic abstract concepts (e.g.,

good, bad ) might be learned earlier and more distinct in terms of affect.

3. Some studies have questioned the reported improvements of word embedding mod-

els over count models (De Deyne, Perfors, & Navarro, 2016; Levy, Goldberg, &

Dagan, 2015). In this study as well, the advantage over count models was rather

small. Still, we decided to included word embedding models because this makes it

easier to compare them with the most recent studies and benchmarks.

4. https://smallworldofwords.org/project/

5. For the distributional linguistic model, we additionally rescaled the cosine similar-

ity between the 0–1 range as word2vec produces a small proportion of nega-

tive similarities.

6. Non-parametric bootstrap confidence intervals were calculated using the R boot
package (Canty & Ripley, 2019) using default settings and a total of 10,000 repli-

cations.

7. Both pre-trained vectors can be obtained from https://nlp.stanford.edu/projects/

glove/. The Common Crawl project can be accessed from https://commoncrawl.org/

8. Most of these datasets were also used in a previous study which evaluated count-

based and prediction based linguistic models (De Deyne, Perfors, & Navarro,

2016). In this work we did not include some smaller datasets reported previously

such as the Radinsky dataset (Radinsky, Agichtein, Gabrilovich, & Markovitch,

2011), the Rubenstein and Goodenough dataset (Rubenstein & Goodenough, 1965),

and the WordSim dataset (Agirre & Soroa, 2009) because these had fewer compar-

isons for which both language and visual or affective information was available

(for visual, 18, 28, and 78 comparisons respectively; for affective, 18, 22, and 74

comparisons).

9. The different studies sometimes report different types of reliability and use differ-

ent rating methods of similarity. Across all studies the reported reliability should

be taken as a lower bound and procedural differences could explain why certain

correlations are somewhat lower: some studies report split half correlations while

others averaged correlations over individuals.

10. The comparison of the findings is complicated by the occasional use of different

metrics (Pearson r vs. rank correlations) and missing observations across the differ-

ent studies. However, the number of observations in the studies we consider here

tend to be large: SimLex-999 (n = 300), Silberer2014 (n = 5,799 for the semantic

judgments, n = 5,777 for the visual judgments), and MEN (n = 942). We will

therefore assume some robustness in the measures even when some items are miss-

ing.

11. The only case where the correlation was higher for abstract words in comparison to

concrete ones was in the comparison between the subset of abstract words in
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SimLex-999, r(391) = .47 (see Table 5) against all words in SimLex-999 r
(913) = .45 (see Table 4). However, the confidence interval for Δr = .02, CI95
[−0.11, 0.07] indicates that the null hypothesis of no difference is retained.
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Appendix A: Stimuli Study 1

Table A1

Concrete triad stimuli in Experiment 1

Natural Kinds
Birds: blackbird–eagle–raven, canary–duck–goose, chicken–parakeet–pigeon, crow–ostrich–owl,
falcon–flamingo–penguin, parrot–pelican–turkey. Body parts: ear–leg–thumb, elbow–nipple–skin,
face–foot–heel, finger–heart–toe, hand–lip–tongue. Colors: crimson–pink–yellow, green–khaki–purple.
Crustaceans: oyster–prawn–shrimp. Fish: carp–eel–herring, cod–octopus–tuna, dolphin–shark–whale,
goldfish–jellyfish–trout, salmon–squid–swordfish. Fruit: apricot–pear–raisin, banana–cherry–pineapple,
blueberry–fig–mango, coconut–melon–raspberry grape–lemon–lime, kiwi–peach–plum. Geological
formation: beach–cave–ravine, crater–glacier–volcano, grass–gully–mountain. Insects:
ant–cockroach–leech, beetle–flea–termite, butterfly–ladybug–worm, mosquito–moth–wasp,
slug–snail–spider. Mammals: bear–rat–tiger, beaver–goat–horse, camel–cow–otter, cat–dog–gorilla,
deer–hamster–lion, elephant–hyena–panther, giraffe–leopard–sheep, kangaroo–mouse–pony,
rabbit–walrus–zebra. Reptiles: alligator–cobra–lizard, crocodile–frog–tortoise. Trees: cedar–fir–willow.
Vegetables: artichoke–lettuce–tomato, avocado–cabbage–mushroom, broccoli–eggplant–onion,
carrot–radish–turnip, cucumber–spinach–zucchini

Artifacts
Breakfast: bread–muffin–oatmeal, jam–sandwich–toast. Buildings: apartment–hotel–temple,

cabin–castle–church, office–tent–trailer. Clothing: bikini–jacket–sweater, blouse–gown–suit,
coat–parka–swimsuit. Drinks: beer–milk–tea, champagne–lemonade–wine, coffee–vodka–whiskey.
Electronic devices: camera–projector–radio, computer–monitor–telephone. Fabrics: cotton–fleece–lace,
denim–silk–velvet, linen–satin–wool. Fashion accessories: bracelet–buckle–purse, button–lipstick–watch,
necklace–shawl–umbrella. Food: doughnut–fudge–lollipop, hamburger–lasagna–stew,
omelet–roll–spaghetti. Furniture: bath–bed–dresser, chair–couch–desk, cupboard–stool–table. Kitchen
utensils: blender–mixer–scissors, bottle–bowl–spoon, fork–spatula–toaster, kettle–oven–plate. Music
instruments: accordion–banjo–harp, clarinet–drum–piano, flute–harmonica–trombone,

guitar–triangle–violin. Professions: farmer–lawyer–secretary, gardener–nurse–scientist,
pilot–surgeon–teacher. Sports: archery–boxing–frisbee, baseball–golf–polo, cricket–squash–tennis. Tools:
anvil–chisel–hatchet, clamp–crowbar–hoe, rake–spade–wrench. Vehicles: airplane–cab–tractor,
boat–limousine–scooter, buggy–ferry–yacht, bus–jeep–sled. Weapons: bomb–grenade–spear,
bow–rope–shotgun, cannon–revolver–shield, dagger–harpoon–stick
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Table A2

Abstract triad stimuli in Experiment 1. Category labels refer to the most specific common hypernym in

WordNet found at depth [d]

Ability [5]: aptitude–breadth–invention, daydream–focus–method, fantasy–intellect–talent. Act [5]:
capture–expansion–pursuit. Action [6]: admission–courtesy–removal, debut–progress–violence,
flutter–rampage–selection, journey–rush–trick. Activity [6]: adoption–work–worship,
adventure–training–treatment, arrogance–endeavor–support, betrayal–espionage–hassle,
bribery–hoax–struggle, care–monopoly–treason, craft–crusade–raid, crime–research–scramble,

custom–education–rehearsal, gaming–restraint–role, mayhem–stealth–theft, mischief–nightlife–violation.
Attitude [5]: ideology–socialism–taboo. Basic cognitive process [6]: attention–memory–vogue. Belief
[5]: creed–phantom–religion, faith–magic–opinion. Bias [8]: bias–prejudice–racism. Change [7]:

breakup–rotation–voyage, gesture–reform–repair. Cognition [4]: estimate–sensation–wisdom,

folklore–intuition–regard, ghost–sight–theory, illusion–layout–respect. Cognitive state [7]:

certainty–disbelief–mystery. Content [5]: access–essence–idea, agenda–ignorance–rule. Cost [7]:
bounty–perk–ransom. Discipline [7]: economics–logic–sociology. Emotion [6]: happiness–panic–tantrum.

Feeling [5]: affection–ambition–heartache, amazement–outrage–rapture, anger–ecstasy–relief
anguish–dread–joy, awe–ego–love, boredom–devotion–empathy, contempt–grudge–remorse,

delight–horror–wonder, desire–relish–vanity, disgust–fondness–grief, dismay–distress–suspense,
emotion–enjoyment–envy, fear–jealousy–mood, fetish–lust–wrath, fury–hope–thrill, pity–pride–surprise.
Idea [6]: fallacy–notion–plan, feature–scheme–tactic. Location [4]: boundary–empire–zone. Magnitude
[5]: depth–majority–size, dimension–limit–number. Person [4]: addict–delegate–slob,
ancestor–believer–sir, brute–wanderer–weirdo, celebrity–foreigner–maniac, communist–fool–outsider,
corporal–expert–youth, counsel–foe–snob, darling–hero–thinker, disciple–fanatic–killer,
dreamer–hick–novice, follower–optimist–sinner, graduate–savior–scoundrel, guardian–liar–moron

heir–rebel–supporter, patriot–sweetie–whiz. Physical condition [6]: addiction–insomnia–plague,
complaint–harm–phobia, disease–sickness–thirst, frenzy–handicap–hunger. Process [5]:
hindsight–insight–sweetness. Psychological state [6]: annoyance–insanity–tension,
assurance–interest–sanity, bliss–madness–paranoia. Region [5]: district–homeland–region,
frontier–heaven–paradise, hell–premises–territory. Science [8]: algebra–geology–science,
astronomy–math–physics. Social group [4]: ally–meeting–monarchy, business–charity–reunion,
clan–dynasty–industry, enemy–seminar–sorority, minority–regime–utility. Statement [5]:
bargain–comment–summary, covenant–excuse–remark, evasion–notice–reply. Time period [5]:

birthday–evening–semester, century–holiday–maturity, childhood–era–year, morning–period–vacation.
Transferred property [5]: benefit–legacy–welfare, donation–rent–royalty
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