Table 1.
Dataset |
|
va = Distributional linguistic model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unimodal | Multimodal | |||||||||||
|
CI95 | vb |
|
CI95 | β |
|
CI95 | Δr | CI95 | |||
Concrete | 300 | .64 | [0.57, 0.70] | Visual | .67 | [0.60, 0.73] | .48 | .75 | [0.70, 0.80] | .12 | [0.07, 0.17] | |
Concrete | 300 | .64 | [0.57, 0.70] | Affect | .21 | [0.10, 0.32] | .50 | .68 | [0.62, 0.74] | .04 | [0.02, 0.08] | |
Abstract | 300 | .62 | [0.54, 0.68] | Affect | .51 | [0.43, 0.59] | .58 | .74 | [0.69, 0.79] | .13 | [0.08, 0.19] |
Dataset |
|
va = Word association model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unimodal | Multimodal | |||||||||||
|
CI95 | vb |
|
CI95 | β |
|
CI95 | Δr | CI95 | |||
Concrete | 300 | .76 | [0.71, 0.80] | Visual | .67 | [0.60, 0.73] | .35 | .81 | [0.77, 0.85] | .05 | [0.03, 0.08] | |
Concrete | 300 | .76 | [0.71, 0.80] | Affect | .21 | [0.10, 0.32] | .38 | .78 | [0.74, 0.82] | .02 | [0.00, 0.05] | |
Abstract | 300 | .82 | [0.78, 0.86] | Affect | .51 | [0.43, 0.59] | .05 | .82 | [0.78, 0.86] | .00 | [−0.01, 0.01] |
Dataset |
|
va = Affective model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unimodal | Multimodal | |||||||||||
|
CI95 | vb |
|
CI95 | β |
|
CI95 | Δr | CI95 | |||
Concrete | 300 | .21 | [0.10, 0.32] | Visual | .67 | [0.60, 0.73] | .45 | .73 | [0.67, 0.77] | .52 | [0.41, 0.63] |
Note that the confidence intervals for Δr are based on testing significant differences for dependent overlapping correlations based on Zou (2007). This approach increases the power to detect an effect compared to Fisher's r to z procedure which assumes independence.