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Abstract. Marine ecosystems are prone to tipping points, particularly in coastal zones
where dramatic changes are associated with interactions between cumulative stressors (e.g.,
shellfish harvesting, eutrophication and sediment inputs) and ecosystem functions. A common
feature of many degraded estuaries is elevated turbidity that reduces incident light to the sea-
floor, resulting from multiple factors including changes in sediment loading, sea-level rise and
increased water column algal biomass. To determine whether cumulative effects of elevated tur-
bidity may result in marked changes in the interactions between ecosystem components driving
nutrient processing, we conducted a large-scale experiment manipulating sediment nitrogen
concentrations in 15 estuaries across a national-scale gradient in incident light at the seafloor.
We identified a threshold in incident light that was related to distinct changes in the ecosystem
interaction networks (EIN) that drive nutrient processing. Above this threshold, network con-
nectivity was high with clear mechanistic links to denitrification and the role of large shellfish
in nitrogen processing. The EIN analyses revealed interacting stressors resulting in a decou-
pling of ecosystem processes in turbid estuaries with a lower capacity to denitrify and process
nitrogen. This suggests that, as turbidity increases with sediment load, coastal areas can be
more vulnerable to eutrophication. The identified interactions between light, nutrient process-
ing and the abundance of large shellfish emphasizes the importance of actions that seek to
manage multiple stressors and conserve or enhance shellfish abundance, rather than actions
focusing on limiting a single stressor.

Key words: cumulative risk assessment; ecosystem function; ecosystem-based management; feedbacks;
interaction networks; tipping points.

INTRODUCTION

Humans have settled along coastal margins and estu-
aries throughout history because they provide vital food
resources and transport routes. However, major past and
ongoing changes to coastal ecosystems have resulted
from the development of ports, cities, agriculture, for-
estry, fishing, and industrialization (Nichols et al. 1986,
Cooper and Brush 1993). Despite the small proportion
of the marine environment classified as coastal or

estuarine (~4% land area and 11% ocean [Barbier 2017]),
these ecosystems are crucially important for global car-
bon and nitrogen cycling and other ecosystem services
yet are among the most impacted. With the increase in
global human populations around coastal margins, bio-
diversity loss and climate change impacts have escalated,
predisposing these systems to risk of abrupt nonlinear
shifts in ecosystem functioning (Lotze et al. 2006, Bar-
bier et al. 2008, Cloern et al. 2016). Tipping points move
a system between functionally different states, with
reversal difficult due to feedbacks that lock a system in a
degraded state (Nystr€om et al. 2012). Ecological tipping
points can occur through large changes in external fac-
tors (climate change, earthquakes, or resource
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extraction) or, more challengingly, through subtle and
gradual changes that influence interactions between
ecosystem components (Carpenter et al. 2001, Scheffer
et al. 2001, Hastings et al. 2018).
Predicting abrupt change in real-world ecosystems

remains a major challenge for ecology and, while improv-
ing the quality of long-term data is essential, it alone is
insufficient to allow us to develop the understanding that
will allow management actions that prevent rapid transi-
tions (Ratajczak et al. 2018, Hewitt and Thrush 2019).
Identifying the existence, location, and cause of threshold
changes is most clearly achieved by experimentation. Con-
ducting experimental manipulations on chronic and accu-
mulating stressors is difficult, requiring targeted studies
merging ecological theory with correlative and manipula-
tive studies. Such studies may prove highly effective in
driving insight into appropriate coastal management
strategies. These strategies are required as, despite the
need to address cumulative effects in management being
well-recognized and a number of frameworks existing
(Crain et al. 2008, Ban et al. 2010, HELCOM 2017, Stel-
zenm€uller et al. 2018), the use of additive effects models
to define environmental risks is widespread (Furlan et al.
2019). Interactions between stressors that change across
thresholds is a particularly important topic for coastal
ecosystems containing high proportions of soft sediment
habitats, within which strong interactions generally exist
between the resident species and the physical and chemical
environment.
In estuarine and coastal environments, shellfish beds

influence many important functions that maintain ecosys-
tem health. Bivalves that protrude from the sediment
affect boundary flows and provide refugia and settlement
surfaces for other species, thus enhancing biodiversity
(Hewitt et al. 2005). Suspension feeding bivalves play cru-
cial roles in actively filtering (and clearing) the water col-
umn and depositing organic rich biodeposits on the
sediment surface (Norkko et al. 2006). Bivalves that live in
the sediment move and mix sediment particles, with spe-
cies at the sediment–water interface (e.g., Austrovenus
stutchburyi) indirectly changing sediment topography via
bulldozing and biodeposit production (Woodin et al.
2016). Subsurface species (such as Macomona liliana)
influence nutrient cycling by generating pore water pres-
sure waves that produce rapid redox oscillations deep in
the sediment (Volkenborn et al. 2012). Thus, at sufficient
abundance and biomass, shellfish can profoundly alter
how coastal ecosystems function through changes to
water quality, sediment biogeochemistry and, in particu-
lar, the remineralization of organic matter, and the flux of
nutrients and oxygen across the sediment water interface.
As a major fraction of the increasing load of nitrogen
entering the coastal zone is denitrified in coastal sediments
(Middelburg et al. 1996, Galloway et al. 2008), it is likely
that shellfish play a critical role in regulating ecosystem
responses to eutrophication.
However, shellfish beds are critically degraded in

many coastal habitats (Airoldi and Beck 2007, Beck

et al. 2011), not only impacted by common stressors (eu-
trophication, sedimentation, and habitat disturbance)
but also by human harvesting. The snowballing effects
of the functional extinction of shellfish beds coupled
with elevated nutrient and sediment delivery to coasts
may lead to rapid changes disproportional to nutrient
loading, predisposing the ecosystem to a functional tip-
ping point. As a result, management actions need to be
based on an understanding of the complexities, includ-
ing nonlinear interactions, of multiple stressors on over-
all ecosystem functioning.
There are a wide variety of model-based approaches

that have been developed to identify tipping points and
thresholds and inform management and policy (Sam-
houri et al. 2010, Kelly et al. 2015), (Samhouri et al.
2017). These are typically applied to detect thresholds
after the event (Carpenter et al. 2001, Clements and
Ozgul 2018). One strategy for unravelling complexities
in real-world ecosystems is to develop ecosystem interac-
tion networks (EIN) (Thrush et al. 2014). EINs are mod-
els based on connections between ecosystem
components, although generally only a subset of compo-
nents that represent a full ecosystem are included. EINs
allow exploration of feedbacks, direct and indirect
effects and modifiers, all of which are important factors
for understanding the potential for cascading effects and
self-regulation. Thus, EINs allow us to shift our focus
from recognizing simple cause–effect relationships to
understanding interactions across critical ecosystem
components and can be used to identify key connections
upon which a network is dependent. These key connec-
tions may be state dependent, i.e., may change as a
threshold is crossed, thus, combined with approaches
that specifically identify threshold responses between
variables, EINs can be a powerful tool to demonstrate
environmental risks.
In this study, we defined a hypothesized EIN for the

functioning of shallow coastal areas involving shellfish,
denitrification, ammonium and oxygen fluxes between
the sediment and the water column, benthic primary
production, sediment grain size, nitrogen, light, and tem-
perature (Fig. 1 and Appendix S1). The connections
between, and the relative importance of, components of
the EIN were predicted to change with chronically ele-
vated turbidity, particularly components related to the
ability to process nitrogen with increasing nitrogen. This
hypothesis was tested with data from a long-term large-
scale field experiment. This experiment allowed us to
assess how the effect of nitrogen additions (experimental
manipulation), site-dependent variations in turbidity
and the cumulative effects of the two stressors influenced
the architecture of the EIN. Pore-water nutrient concen-
trations were manipulated at sites arrayed along a tur-
bidity gradient (as a proxy of suspended sediment
concentrations driven by terrestrial soil erosion). The
experiment spanned 10° of latitude at 24 sites in 15 estu-
aries, allowing us to generalize cumulative effects and
determine real-world thresholds at a national scale.
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Specifically, we predicted that there exists a threshold in
the amount of light available for photosynthesis at the
seafloor (associated with suspended sediment) below
which (1) the ecosystem interaction network would be
relatively simple, (2) the importance of shellfish in the
processing of nutrients would be reduced, and (3) the
ecosystem would be less able to cope with increased
nutrients. That is, rather than nitrogen and turbidity
being additive stressors, there would be an interaction
between them that included a threshold.

MATERIALS AND METHODS

Study design

Using local knowledge, we identified 24 sites in 15
estuaries across New Zealand (Fig. 2) that encompassed
a wide variation in water turbidity. Utilizing a latitudinal
gradient of 10 degrees we designed the experiment to
obtain a turbidity gradient that was not spatially con-
founded. Data collected in the experiment (Data collec-
tion) confirmed that latitude was not a strong driver of
turbidity or ambient nutrient conditions (control pore
water ammonium concentrations) at our sites, with all
Pearson’s (and Spearman’s) correlations coefficients
between these three variables being <0.25).

Sites were situated at about mid-tide level, on sandy
permeable sediments and in areas occupied by the func-
tionally important bivalves Macomona liliana and Aus-
trovenus stutchburyi at their natural densities (see
Results). At each site we established three 9-m2 plots for
each of three treatments, high fertilizer 600 g N/m2,
medium fertilizer 150 g N/m2, and disturbance controls.
We used Nutricote (Chisso-Asahi Fertilizer Co., Ltd,
Tokyo, Japan) slow release fertilizer (40-0-0 N:P:K)
injected uniformly into the sediment at a depth of 15 cm
to elevate porewater nitrogen concentrations for
extended periods (Douglas et al. 2016, Douglas et al.
2018). In the context of our experiment, we are not using
the nutrient treatments to test for treatment differences
as we would in a classical hypothesis testing experiment,
rather we are using the treatments to investigate the
ecosystem’s nutrient response in the context of the EIN
typology. The experimental plots throughout the coun-
try were set up March–April 2017.

Data collection

At each site for the duration of the experiment, we
deployed water column photosynthetically active radia-
tion (PAR) sensors recording every 10 minutes (fixed
vertically 10 cm above sediment surface; Odyssey,

FIG. 1. Hypothesized interaction network linking shellfish (Austrovenus stutchburyi and Macomona liliana) to sediment proper-
ties and ecosystem functions (see Appendix S1: Table S1 for details and references of the connections). To differentiate the types of
variable, teal background indicates external drivers; red indicates shellfish; purple indicates sediment (mud, particles < 63lm in sed-
iment; gravel, particles >2 mm in sediment [generally shell hash]; OM, organic matter); blue indicates benthic oxygen consumption
(BOC), green indicates plants (benthic chl a, standing stock of microphytobenthos); yellow indicates nitrogen (den, denitrification
(N2); NH4 flux, flux across the sediment–water interface.
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Dataflow Systems, Christchurch, New Zealand) and sed-
iment temperature sensors logging temperature every
30 minutes (buried at depths of 3 and 7 cm; i-Buttons,
Maxim Integrated Products, San Jose, California, USA)
to establish records of environmental change over the
course of the experiment. The plots were occasionally
checked to service loggers but left undisturbed for the
next 7 months. After downloading, the PAR readings
during submersion were summarized into daily averages,
maximums and minimums. Averages of these were cre-
ated for each site (ADAL, average daily average;
ADML, average daily maximum; and ADLL, average
daily minimum) for use within the statistical analyses.
The experimental plots were sampled for macrofauna,

sediment characteristics, and biogeochemical fluxes in
October–November 2017 (springtime in New Zealand).
We used multiple teams around the country to optimize
sampling relative to the timing of tides. Five sediment
cores (2.6 cm diameter, 2 cm depth) were collected and
pooled from each plot for analysis of sediment chloro-
phyll a, grain size, and organic content, and stored fro-
zen (�20°C). Sediment grain size was measured with a
Malvern Mastersizer-3000 (Malvern, UK) (particle size
range 0.01 to 3,500 µm) after removal of organic matter

with 10% hydrogen peroxide (Singer et al. 1988). Chloro-
phyll a and phaeopigments were extracted from sedi-
ment in 90% buffered acetone and measured before and
after acidification using a Turner Designs (San Jose,
California, USA) 10-AU fluorimeter (Arar and Collins
1997). Sediment organic matter content was determined
by weight loss on ignition (60°C for 24 h or until stable
mass + combustion for 4 h at 550°C; Dean 1974).
Two macrofauna cores (13 cm diameter, 15 cm deep)

were collected from each plot, sieved (500-µm mesh),
and preserved in 70% isopropyl alcohol. Macrofauna
were stained with Rose Bengal, sorted, and identified.
Macomona and Austrovenus were measured (longest
shell dimension) and the numbers of individuals sized
>20 mm were totaled, for each species, across the two
replicate cores for each plot. This size of bivalves was
selected to represent the large adults that previous stud-
ies have shown to play important roles in sediment func-
tioning (Thrush et al. 2006, Jones et al. 2011, Thrush
et al. 2014, Woodin et al. 2016).
Benthic flux chambers were used to determine biogeo-

chemical fluxes. We had multiple teams operating
around the country to minimize variation in sampling
dates between locations (26 October–27 November
2017) while ensuring that chambers were deployed on
sunny days with mid-day high tides. Hobo temperature
loggers (Onset HOBO Pendant Temperature/Light Data
Logger, Bourne, Massachusetts, USA) were deployed in
chambers in case temperature was required for the EINs.
Biochemical measures made were net sediment–water
O2, N2, and NH4 fluxes. NOx and P fluxes were also
measured but as a large proportion of the data was close
to detection limits, these variables were not included in
our analyses. In each plot, we deployed two chamber
bases (50 9 50 9 15 cm height) pressed 5 cm into the
sediment during low tide. On the incoming tide (water
depth ~50 cm), acrylic dooms sealed ~40 L of ambient
seawater over the sediments. Opaque shade cloth pre-
vented light entering one chamber from each plot.
Chambers were incubated for ~4 h over a midday high
tide. Water samples (1 9 60 mL syringe for solute, and
2 9 60 mL airtight syringes for gas concentrations)
were withdrawn from the chambers through sampling
ports at the beginning and end of the incubation period.
Dissolved O2 concentrations in the water samples were
measured using an optical probe (ProODO YSI, Yellow
Springs, Ohio, USA). Samples were then filtered through
a 0.45-µm Whatman GF/C glass fiber filter and stored
frozen (�20°C) prior to analysis of NHþ

4 -N Water from
airtight syringes were preserved in zinc chloride and
stored in gas tight exetainers (Labco, Ceredigion, UK)
at 4°C until analysis of N2 concentration. Solute and gas
fluxes were calculated as (Cend � Cinitial 9 V)/A 9 T,
where C is nutrient or oxygen concentration
(µmol�L�1�L�1), V is the volume of seawater inside the
chamber (L), A is the area of sediment enclosed by the
chamber (m2), and T is the elapsed time between initial
and final samplings (h).

FIG. 2. New Zealand with the locations of the 15 study
estuaries marked (some estuaries had multiple sites with a total
of 24 experimental sites). WRG, Whangarei Harbour;
WGT, Whangateau Harbour; MAH, Mahurangi Harbour;
WHI, Whitianga Harbour; RAG, Raglan Harbour; TAU, Tau-
ranga Harbour; DEL, Delaware Inlet; WMA, Waimea Inlet;
AVO, Avon-Heathcote Estuary; AKA, Akaroa Harbour;
BLU, Blueskin Bay; WKW, Waikawa Estuary; NEW, New
River Estuary; JAC, Jacobs Creek Estuary.
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Water samples collected from the chambers were ana-
lyzed for NHþ

4 with a Lachat QuickChem 8000 Series
FIA+ (Zellweger Analytics, Milwaukee, Wisconsin,
USA) using standard operating procedures for flow
injection analysis (NH4

+-N detection limit of 0.07 lmol/
L). N2 gas fluxes were analyzed on a quadrupole mem-
brane inlet mass spectrometer (MIMS; Bay Instruments,
Cambridge, Maryland, USA) using the N2/Ar method
(analytical precision <0.03%; [Kana et al. 1994]). Loss of
samples in transit meant that data for MIMS analysis
were lost from the JAC, NEW, WKW, and BLU sites.

EIN analyses

While we had a priori predicted that there would be
a primary threshold associated with light, we tested
for nonlinear relationships between our ecosystem
components and both light and nutrients. Regression
trees were then used to objectively determine the posi-
tion of any break points associated with our predictor
variables (submerged daily average PAR reading [aver-
aged across the experimental duration; hereafter called
ADAL] and nutrient treatment) for three of the
ecosystem components thought to be most likely to be
directly affected (denitrification, NH4 efflux, and ben-
thic oxygen consumption). Regression trees explain
variation in a single response variable by repeatedly
splitting the data into two more homogeneous groups,
using the best explanatory variable in each case, and
thus the break point delineates a (significant) change
in the relationship between the stressor and the ecosys-
tem function. We also tested to ensure that the regres-
sion tree gave better results than a linear regression
(i.e., we truly did have a nonlinear response). Linear
regressions detected no significant relationships and
explained <10% of the variance. However, the regres-
sion tree results were all significant and varied between
explaining 20% to 33% of the variance, suggesting that
relationships were nonlinear and the breakpoints
detected were useful.
Regression tree analyses were conducted using the

RPART package (Therneau et al. 2014). Tree growth
was constrained to have a minimum of 20 observations
in a node (group) before attempting a split; the split had
to increase the fit (represented by the R2) by ≥0.03 and
each terminal node (final most homogeneous group)
had to contain at least 10 data points (i.e., two sites).
Cross validation and tree pruning were not used.
ADAL was the most important driver of variability

for all three of the variables, forming the first tree split
(Table 1). Regression tree analyses were then conducted
with only ADAL as a predictor variable. These analyses
demonstrated the majority of break points occurred at
or between 350 and 420 lmol�L�1�m�2�s�1 PAR
(Fig. 3). Once we knew that the regression tree analysis
not only suggested a nonlinear response but that the sug-
gested break points for PAR were similar across the
selected ecosystem functions, we could then go on to

analyze whether there was a difference between the net-
works associated with the suggested break points. There-
fore, our data were broken into three groups: Clear sites
with >420 lmol�L�1�m�2�S�1 PAR, turbid sites with
<350 lmol�L�1�m�2�S�1 PAR; and an intermediate set
with too few data points to warrant further analysis.

EIN derivation using Structural Equation Models (SEM)

SEM (Grace et al. 2010, Kline 2011) were used for our
EIN as this approach starts with the definition of the
potential interaction network, built using expert opinion
and literature (Fig. 1 and Appendix S1: Table S1). Our
network encompassed the main linkages between sedi-
ments, nutrients, bivalves, and light. SEM analysis was
conducted on the clear and turbid groups separately; the
intermediate group was not analyzed as it contained few
data points. Information from the three replicate plots of
each treatment at each site was included as plot-specific
data on all variables (with the exception of ADAL) was
available. SEMs were developed on standardized data
using M-Plus software (Muth�en and Muth�en 2007).
Data transformations (loge) to improve the linearity of
responses, or normality of errors, were needed for ben-
thic oxygen consumption and average daily maximum
PAR. The hypothesized EIN was pruned for the clear
and turbid data separately by removal of direct path-
ways based on parameter tests of significance (attempt-
ing to remove pathways with P > 0.10), while
maintaining non-significance tests for overall SEM
goodness of fit (v2) and the root mean square error of
approximation, increasing values of the comparative fit
index (above 0.95; Vile et al. 2006) and decreasing values
of Akaike’s Information Criterion (Table 2). We com-
pared the two pruned EINs based on differences in
ecosystem components retained, network typology, and
the directionality and strength of relationships between
ecosystem components.
We also determined whether there was real separation

between the two pruned EINs by testing the significance
and goodness of fit of the turbid EIN structure on the
clear data and vice versa. Imposing the turbid EIN

TABLE 1. Results of regression trees used to objectively
determine the position of break points for three variables
(denitrification, ammonium efflux, and benthic oxygen
consumption) with two explanatory variables, average daily
light when the sites were inundated (ADAL) and nutrient
treatment.

Variable

ADAL
(lmol�L�1�m�2�

S�1 PAR)
Nutrient
addition

Denitrification 350 (1) >control (4)
NH4 flux 417 (1) <high (2)
Benthic oxygen consumption 340 (1)

Note: The values or treatments at which a split first occurred
are indicated along with the split level (in parentheses).
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structure on the clear data demonstrated that the empiri-
cal data could not support the model. Imposing the clear
EIN structure on the turbid data similarly demonstrated
that a lack of fit between the empirical data and the
model.

RESULTS

The experiment encompassed a wide range in each of
the parameters used to develop the SEMs, although the
interquartile ranges were more constrained (Fig. 4).
Model pruning resulted in an SEM for the turbid data
with a very good comparative fit index and no pathways
having P values > 0.10 (Tables 2, 3). However, for the
clear data, achieving a reasonable fit required retaining a
number of pathways of low significance (Table 4).
Removal of these pathways, including the variables pre-
dicted to affect NH4 flux, resulted in v2 values and

RMSEAwith P values�0.05 and CFIs below 0.9. Thus,
these pathways, while weak, are important.
The EINs derived from the experimental data demon-

strate distinct differences in ecosystem structure (the
components remaining as drivers) and connectivity
between clear (>420 lmol�L�1�m�2�s�1 PAR) and turbid
(<350 lmol�L�1�m�2�s�1 PAR) water sites (Fig. 5).
Most importantly, the EIN derived from the clear sites is
more complex, containing 22 connections (including
two-way links), whereas the turbid SEM contained only
9. In both cases, there are a similar ratio of positive to
negative relationships (clear: 11:11, turbid 4:5, +:�).
The experimental nutrient addition and the role of

light were decoupled from any components in the
EIN across the turbid sites, which together with the
lack of any predictive connections in the model to
denitrification, highlights reduced capacity of the
ecosystem to process nutrient additions. For the clear
data, however, denitrification was driven directly by
benthic oxygen consumption and organic matter (posi-
tive) and average daily maximum PAR (negative;
Table 3). Denitrification was reduced as nitrogen
increased through the indirect effect on reduced ben-
thic oxygen consumption. The strongest effect on ben-
thic oxygen consumption was by sediment-water flux
NH4 (highest standardized parameter estimate,
Table 4), followed by average daily maximum PAR,
chlorophyll, and Austrovenus.
The two shellfish (Macomona and Austrovenus) were

more involved in the EIN at the clear sites and directly
affected benthic oxygen consumption. Conversely, in
turbid sites, only chlorophyll a, reflecting microphyto-
benthos standing stock, affected oxygen consumption
(probably due to photosynthesis), and no components
affected denitrification. Interestingly, we did not find an
effect of nutrient addition on chlorophyll a in either clear
or turbid water.

FIG. 3. Regression trees used to objectively determine the position of any break points for three variables (denitrification,
ammonium efflux, and benthic oxygen consumption) related to the average daily average photosynthetically active radiation (PAR)
when the sites were inundated (ADAL).

TABLE 2. SEM results for the best model obtained for the
clear and turbid data sets.

Statistic Clear Turbid

Akaike information criterion (AIC) 1,162.1 883.5
Bayesian information criterion (BIC) 1,251.4 933.2
Sample-size adjusted BIC
(n* = (n + 2)/24)

1,119.2 863.9

v2 31.9 13.72
P 0.0598 0.6867
RMSEA 0.09 <0.01
P 0.149 0.824
CFI 0.951 0.999

Note: The v2 is for goodness of fit (P < 0.05 indicates model
significantly different from the empirical data); RMSEA, root
mean square error of approximation (close to zero is good fit
and P tests for difference from zero); CFI, comparative fit index
(ranges 0–1, with 1 being a perfect fit).
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DISCUSSION

We were able to identify functionally important
changes in coastal soft sediments due to a threshold in
elevated turbidity interacting with shellfish densities.
Contrasts between the architecture of the two EINs
highlight a reduced capacity of the sediments to process
increased nutrients with elevated turbidity, which implies
a snowballing effect where the ecosystem effects of nitro-
gen loading can be amplified by the reduced capacity of
the sediments to process nitrogen. This result emphasizes
the importance of not only managing loadings of multi-
ple contaminants but also the ecosystem’s responses as
observed through the interactions of key ecosystem com-
ponents. Nitrogen loading and sediment runoff are
coastal and estuarine stressors of global significance
(Thrush et al. 2004, Diaz and Rosenberg 2008). Our

results highlight how these stressors can interact to gen-
erate cascading effects in the loss of ecosystem function.
Our finding that incident light to the seafloor is a criti-

cal threshold variable affecting system functionality, par-
ticularly N cycling, supports previous studies
emphasizing the importance of both the activity and
standing stock of microphytobenthos on intertidal flats
(Pratt et al. 2014, O’Meara et al. 2017, Douglas et al.
2018). The corroborative evidence of independent stud-
ies supports both the identification of thresholds and the
importance of managing systems to limit the risk of
crossing these thresholds. Previous research in New
Zealand estuaries revealed shifts in network architecture
across a benthic chlorophyll a threshold of 11.6 µg/g
(Thrush et al. 2012), with a similar threshold detected in
a field experiment that shaded the sediment–water inter-
face (Thrush et al. 2014). Limiting the light available to

FIG. 4. Box plots showing the median (mid line), interquartile range (box edges), and range (whiskers) for sediment, shellfish,
and ecosystem function variables used in the structural equation model (SEM).
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benthic microphytes when intertidal flats are inundated
affects the rates of organic matter and nutrient process-
ing, as well as the primary source of productivity (micro-
phytobenthos) that underpins many coastal food webs
and ecosystem services (Hope et al. 2019). There has
been a long history of using thresholds to inform envi-
ronmental management, for example using light thresh-
olds to determine the depth distribution or impact of
elevated turbidity on seagrass (Duarte 1991) or using
animal oxygen thresholds to determine species sensitivity
to hypoxia (Vaquer-Sunyer and Duarte 2008, 2011).
These species-based physiological thresholds are impor-
tant but they are not the same as defining a threshold in
the context of an EIN. EIN-derived thresholds are devel-
oped in the context of cumulative effects and mecha-
nisms of interactions between different ecosystem
components. This provides a new tool for managers
grappling to marry cumulative effects and ecosystem
dynamics with a mechanistic understanding of the inter-
actions between organisms, their environment and key
stressors. The mechanistic information serves two criti-
cal functions in a management context: ensuring appro-
priate information on processes and rates are included in
models relevant to management; and providing ecosys-
tem natural history information that can be communi-
cated across society to enhance ocean literacy. For
example, these features come together in the context of
managers coping with multiple stressor effects in estuar-
ies. The EINs imply that national or regional standards
for nitrogen loading are a blunt management tool in the
face of variations in turbidity, but equally the EINs draw
attention to the dynamics of ecosystem’s responses and
their capacity for denitrification and processing nitro-
gen.
The shellfish in the EIN represent the control parame-

ter that is likely to change the most slowly given the rela-
tive metabolic rates of microbes and macrofauna (see
Appendix S1: Table S1), highlighting a potential for their

functional extinction to induce significant change in
ecosystem function and result in a loss of adaptive
capacity. The nature of change in the EIN with increas-
ing turbidity (that is, simplification and a dependence on
a few strong connections) emphasizes the importance of
interactions between physical and biological ecosystem
components in changing ecosystem function. The appli-
cation of complex system theory to the resilience of eco-
logical systems has highlighted the importance of breaks
in feedback loops in generating tipping points (Scheffer
et al. 2001, Carpenter 2003, Scheffer 2009, Biggs et al.
2012, Selkoe et al. 2015). The differences we observed in
EIN architecture indicates that soft sediments in turbid
and clear water conditions operate in alternative states,
albeit with feedbacks present in both systems. While this
has been postulated from post hoc analysis of systems
that have passed a tipping point (Nystr€om et al. 2012),
our study shows, empirically, that there are changes in
the wiring of the EIN associated with small changes

TABLE 3. Turbid SEM parameter estimates and two-tailed
tests for whether the estimate differs from zero.

Predicted and explanatory effect Estimate P

Sediment–water flux NH4

Benthic oxygen consumption +0.03 0.0460
Austrovenus �0.03 0.0520

Benthic oxygen consumption
Chlorophyll a +0.40 0.0010

Chlorophyll a
Austrovenus +0.62 <0.0001
Denitrification +0.19 0.1000

Austrovenus
Mud +0.42 0.0150

Macomona
Mud �0.27 <0.0001

Mud
Organic matter +0.71 <0.0001
Chlorophyll a �0.50 0.0010

TABLE 4. Clear SEM parameter estimates and two-tailed tests
for whether the estimate differs from zero.

Predicted and explanatory effect Estimate P

Denitrification
Benthic oxygen consumption +0.46 0.0300
Average daily maximum PAR �0.42 0.2400
Organic matter +0.67 0.2340

Sediment–water flux NH4

Austrovenus +7.86 0.7860
Benthic oxygen consumption �13.49 0.7800
Macomona �2.13 0.7640
Mud +7.23 0.7760

Benthic oxygen consumption
Austrovenus +1.07 0.0210
Sediment–water flux NH4 +2.88 0.0380
Chlorophyll a �1.26 0.0860
Average daily maximum PAR +1.64 0.0730
Macomona +0.55 0.1760
Experimental N addition �0.55 0.1490

Average daily maximum PAR
Chlorophyll a �0.07 0.5830

Chlorophyll a
Austrovenus �1.21 0.3160
Denitrification �0.75 0.3720
Average daily maximum PAR +0.78 0.5100
Mud �1.75 0.4670

Austrovenus
Chlorophyll a +0.38 0.1960
Macomona �0.13 0.1980

Macomona
Mud +1.59 <0.0001
Organic matter �0.93 0.0130

Mud
Chlorophyll a +0.65 <0.0001

Organic matter
Mud +0.74 <0.0001

Note: PAR, photosynthetically active radiation.
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across a turbidity gradient (Fig. 5). Such a result offers
insight into how we can assist managers in developing
more adaptive and case specific policy and management
thresholds.
Our EIN analysis demonstrates how elevated turbidity

(in our case associated with sediment runoff) decouples
sediment nitrogen processes. As elevated turbidity
reduces the capacity to denitrify and thus remove nitro-
gen, it becomes more likely that there will be a tipping
point associated with eutrophication as the nitrogen
builds up more quickly in the system. While we cannot
“prove” this with the clarity and elegance of a theoretical
model, or the hindsight of an extensive time series, we
do provide empirical evidence, at a national scale, of
important functional shifts in these complex biogeo-
chemical systems. SEMs provide a way of analyzing
empirical data to identify the architecture of networks of
interactions, but they do have drawbacks, particularly
related to pinning down the form of specific relation-
ships, providing predictions and the amount of data
required for systems with multiple connected compo-
nents. They are also not temporally dynamic. In our
case, New Zealand has a very temperate climate and
does not experience the strong seasonality usually asso-
ciated with continental landmasses. Thus, seasonality is
not likely to be strong factor influencing our results.
However, to really demonstrate this we would have to
conduct our experiment at a number of sites at different
times of the year to include both large differences in tem-
perature and other likely seasonal drivers. Sediment

temperature was not included in our final models
(Fig. 5), because we sampled the experiment at a time of
the year when there were only small differences between
sites.
SEMs are not generally predictive models. Our SEMs

were explanatory in nature, developed using covariance
matrices and the maximum likelihood estimator. Partial
least squares path modelling (PLSPM) can be used to
create predictive SEMS in which case the composite
model is developed using multiple regression (Hair et al.
2017). However, some dispute over the utility of PLSPM
for prediction has been raised (Ronkko et al. 2016).
Regardless, SEM provide an important and much
needed link between empirical and theoretical research
(Hastings 2016), explicitly testing whether theories about
the degrees of connectivity and the importance of feed-
back loops matches the empirical data. In our experi-
ment we focused on ecosystem components that are
related to nutrient processing in the seafloor but ecosys-
tems are multifunctional and other EINs could be con-
structed to address other functions (e.g., carbon
sequestration, productivity, habitat formation) and these
may have different tipping points.
The ability to identify networks of drivers of ecosys-

tem function informs both increasing understanding of
the degradation of estuaries, as well the potential for
restoration and hysteresis to influence management
interventions in degraded estuaries. Essentially manage-
ment interventions in estuaries and coastal ecosystems
can involve two actions: first, reducing stress loading

FIG. 5. Ecosystem interaction network from (A) clear: >420 lmol�L�1�m�2�s�1 PAR and (B) turbid sites:
<350 lmol�L�1�m�2�s�1 PAR. Teal boxes relate to external factors (nutrient addition is experimental manipulation; Ave. daily max
PAR is the effect of turbidity on available photosynthetically active radiation). Purple boxes denote sediment characteristics (Chl
a represents the standing stock of microphytobenthos; mud, mud in sediment; OM, organic matter in sediment). The blue box
relates to oxygen (BOC, benthic oxygen consumption). Yellow boxes relate to nitrogen processing (Denitrification (N2); NH4
flux, flux across the sediment–water interface. Pink boxes relate to the abundance of large shellfish (individuals >20 mm shell
length). Red arrows indicate positive relationships and black negative. Arrow thickness indicates relationship strength.
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through limit controls, spatial or temporal management,
or marine reserve creation; and second actively restoring
important species or habitats. Specifically, our results
highlight that management objectives for turbid systems
should consider a restoration focus to reduce multiple
stressor effects, while in clear water estuaries a resilience
focus could be developed to maintain the adaptive
capacity of the ecosystem to process nitrogen and mini-
mize sediment loading. Faced with nonlinear changes in
ecosystems, making a decision around these actions
requires information on where their specific system sits
relative to a tipping point. Developing and testing
appropriate EINs and collecting ecological and environ-
mental information relative to changes in EIN architec-
ture (e.g., Fig. 5) can provide managers with clues about
whether a system is close to or has crossed a tipping
point in ecosystem function. While this can be achieved
when extensive data are available (Hunsicker et al.
2016), in many ecosystems relevant information is not
available and in these circumstances experimental
approaches can be used to gather useful data to test for
changes in EINs. Moreover, the definition of restoration
goals is critical for active restoration and these goals are
often driven by the desire to restore ecosystem services.
The EIN described in our study is focused on the role of
infaunal shellfish in affecting sediment biogeochemistry,
thus linking to services associated with productivity, bio-
diversity, water clarity and mitigating eutrophication.
Active restoration of soft-sediment habitats is still very
much an emerging management practice but for sea-
grass, saltmarsh, and shellfish positive interactions and
feedback processes are important for success (Grabow-
ski et al. 2005, Suykerbuyk et al. 2012, Silliman et al.
2015), suggesting a role for SEMs in predicting restora-
tion success.
Providing insight into the potential for non-additive

cumulative effects based on observed mechanisms of
interactions and changes in feedback processes has
important implication for ecosystem-based manage-
ment. The need to move beyond models of single stres-
sor effects on ecosystems and a reliance on setting
universal environmental limits has been difficult to
operationalize and translate into management actions.
This is especially important in multi-use estuarine and
coastal ecosystems where stressors are not spatially sep-
arated. New opportunities to develop a mechanistic
understanding of how stressors interact will allow us to
develop and test frameworks for addressing cumulative
effects that go beyond additive models of multiple stres-
sors, which despite wide recognition of the problem still
dominate the literature (Hodgson and Halpern 2019,
O’Brien et al. 2019). Cumulative risk assessment frame-
works are being trialed but at the heart of these models
is the need to understand the mechanism linking stres-
sors to ecosystem consequences (Hodgson and Halpern
2019, Stelzenm€uller et al. 2020). Managers and policy
makers are often charged by regional, national policy
and international obligation to try to navigate towards

more positive futures by reversing the trajectories of
biodiversity loss, diminution of ecosystem services for
coastal and estuarine ecosystems, but operationalizing
actions to tackle multiple stressors remains a frontier.
Knowledge of interaction networks between multiple
environmental drivers and ecosystem components
extends the prospect of positive interventions not only
through managing stressor loads but also by enhancing
or restoring ecosystem responses that mitigate adverse
effects.
Empirical validation of the potential for regime shifts

and tipping points in ecological systems justifies to man-
agers and society at large that these phenomena are real,
common and serious. The effects we observed in EINs
associated with sediment and nutrient pollution high-
light the need for multiple complementary management
actions and a move away from approaches that focus on
stressors and not ecosystem responses. Insular actions
on individual stressors based on assumptions of gradual
change, involving the application of “set and forget”
environmental policies risk unintended consequences
(Thrush et al. 2016). More integrative ecosystem-based
management requires empirical research working along-
side theoretical ecology to create new opportunities for
managers to develop new forms of risk assessment and
actions to manage for surprise.
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