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Abstract Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and
inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of
total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance
via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile
carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with
28-day incubations. We incubated late-summer stream water from 23 locations nested in seven northern or
high-altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a
variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM
showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative
priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable
DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median
decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate
was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and
nutrients released from degrading permafrost may decrease background DOM mineralization but alter
stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects
are coupled in northern aquatic ecosystems and that quantifying two-way interactions between DOM
properties and environmental conditions could resolve conflicting observations about the drivers of DOM in
permafrost zone waterways.

1. Introduction

Climate change is degrading permafrost at continental scales (Biskaborn et al., 2019; Jorgenson et al., 2018;
Nitze et al., 2018; Olefeldt et al., 2016). Though the specific consequences of permafrost degradation depend
on local conditions (Frey & McClelland, 2009; Littlefair et al., 2017; Tank et al., 2012, 2020; Toohey
et al.,, 2016; Zolkos & Tank, 2020), the thawing of frozen material and associated changes in water flow
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are causing release of dissolved organic matter (DOM) and inorganic
nutrients such as nitrogen (N) and phosphorous (P) to streams, lakes,
and coastal zones (Kendrick et al., 2018; O'Donnell, Aiken, Swanson,
et al., 2016; Tanski et al., 2017; Treat et al., 2016; Vonk, Tank, Bowden,
et al., 2015; Wickland et al., 2018). Though permafrost-derived DOM is
often hundreds to tens of thousands of years old, it can be highly biolabile
(Abbott et al., 2014; Drake et al., 2015; Ewing et al., 2015; Liu et al., 2019;
Vonk et al., 2013) and photodegradable (Cory et al., 2013; Vonk, Tank,
Bowden, et al., 2015), depending on source and permafrost type
(Stubbins et al., 2016; Wickland et al., 2018). Consequently, some
Nutrients permafrost-derived DOM can be rapidly mineralized in headwater
streams (Drake et al., 2015; Mann et al., 2015; Spencer et al., 2015;

Py a0 Vonk, Tank, Mann, et al., 2015; Wickland et al., 2012). Waterways in
Mg duct©
ry pro the permafrost zone already transport globally relevant amounts of

DOM and nutrients (Holmes et al., 2012; McClelland et al., 2014). For

Figure 1. Schematic diagram of linkages between nutrient and priming example, Arctic and Boreal surface waters receive ~100 Tg of dissolved
effects in low-nutrient ecosystems. Arrows represent processes that produce  organic carbon (DOC) each year from terrestrial ecosystems, a third of
or influence the various pools of dissolved organic matter (DOM) and which (~35 Tg C yr_l) they deliver to the Arctic Ocean and surrounding

nutrients. For example, nutrients stimulate primary production, which
creates fresh DOM. Subsequently, fresh DOM may exert a positive or
negative priming effect on the overall DOM pool. In eutrophic ecosystems

seas (Abbott, Jones, et al., 2016; Kicklighter et al., 2013; McGuire
et al., 2009). Radiocarbon measurements suggest that more than 80% of

such as agricultural and urban environments, nutrient effects can be this DOC is modern—fixed since the 1950s (Qu et al., 2017; Raymond
decoupled from priming by the addition of anthropogenic nutrients and et al., 2007; Wild et al., 2019)—and even under extreme warming scenar-
removal of fresh DOM sources during harvesting. ios, DOM from degrading permafrost will likely remain a small propor-

tion of total DOM flux (Abbott et al., 2015; Abbott, Jones, et al., 2016;
Estop-Aragonés et al., 2020; Laudon et al., 2012). However, when biolabile DOC (BDOC) and nutrients from
permafrost mix with modern DOM, they could influence mineralization rates and alter the net ecosystem
carbon balance of the permafrost zone (Abbott et al., 2014; Larouche et al., 2015; Textor et al., 2019), poten-
tially resulting in greater CO, efflux from permafrost ecosystems to the atmosphere.

Rates of DOM mineralization depend on the intrinsic properties of the DOM such as chemical composition
as well as external conditions such as temperature, microbial community structure, and interactions with
other elements (Abbott, Baranov, et al., 2016; Arnosti, 2004; Frei et al., 2020; Marin-Spiotta et al., 2014;
Nalven et al., 2020; Zarnetske et al., 2011). Even DOM that has low inherent reactivity because of its source
or prior processing may undergo further mineralization and transformation when mixed with BDOC or
inorganic nutrients (Bianchi, 2012; Guenet et al., 2010; Kuzyakov et al., 2000; Mutschlecner et al., 2018;
Rosemond et al., 2015). The addition of BDOC and nutrients may relieve energy and stoichiometric limita-
tions of decomposers, accelerating mineralization of stable organic matter in the short term and altering the
type of organic matter exported in the long term (Chen et al., 2019; Guenet et al., 2010; Lynch et al., 2018;
Mack et al., 2004; Mutschlecner et al., 2017; Rosemond et al., 2015) (Figure 1). These priming and nutrient
effects were initially observed in terrestrial environments during the last century (Bingemann et al., 1953;
Blagodatsky & Richter, 1998; Broadbent, 1947; Jenkinson et al., 1985; Lohnis, 1926), but until the last
decade, they had been largely untested in aquatic environments (Bianchi, 2011; Guenet et al., 2010;
Marin-Spiotta et al., 2014). Recent aquatic priming studies have produced conflicting results, detecting aqua-
tic priming effects in some environments (Bianchi et al., 2015; Guenet et al., 2014) but not others (Bengtsson
et al., 2015; Catalan et al., 2015; Textor et al., 2018, 2019). The prevalence of priming and nutrient effects in
high-latitude aquatic ecosystems remains an important source of uncertainty in estimates of the magnitude
and timing of the permafrost climate feedback (Abbott, Jones, et al., 2016; Holmes et al., 2008; Keuper
et al., 2020; Tank et al., 2020; Textor et al., 2019; Wickland et al., 2012).

While priming and nutrient effects have been considered independently, even in the few studies where both
were measured (Guenet et al., 2014; Hotchkiss et al., 2014; Jenkinson et al., 1985), they are likely function-
ally linked, at least in oligotrophic and mesotrophic ecosystems (Figure 1). In the absence of external nutri-
ent inputs from humans or other sources (Brahney et al., 2014; Frei et al., 2020), DOM mineralization is the
proximate source of nutrients in terrestrial and aquatic ecosystems (Fork et al., 2020; McDowell et al., 2006;
Mutschlecner et al., 2017), meaning that increased DOM biodegradability may increase nutrient availability.
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Figure 2. Map of sampling locations (colored circles), major Arctic watersheds, and permafrost distribution
(Brown et al., 2002). See Table 1 for site details.

In turn, nutrient-rich environments support higher rates of primary productivity, root exudation, and
production of more decomposable organic matter (Carey et al., 2019; Guenet et al., 2010; Hewitt
et al., 2018; Mutschlecner et al., 2017; Salmon et al., 2018), increasing BDOC availability (Figure 1). The
linkage between priming and nutrient effects complicates the interpretation of observational and
experimental studies that only quantify one of the effects, because responses attributed to nutrients could
be due to priming, and vice versa (Chen et al.,, 2019; Danger et al., 2013; Rosemond et al., 2015).
Additionally, strong seasonal variation in nutrient concentrations and DOM properties can complicate
comparison across studies (Holmes et al., 2008; Kortelainen et al., 2020; Wickland et al., 2012).

Here, we report results from an international experiment where we investigated the prevalence of priming
and nutrient effects in 23 permafrost-zone streams from seven high-latitude or high-altitude regions. We
sampled streams in the late summer in Alaska, Canada, Siberia, Finland, and the Tibetan Plateau
(Figure 2 and Table 1). Our primary objectives were to (1) identify large-scale patterns of DOM molecular
composition and metabolic stability in stream ecosystems across the permafrost zone, (2) quantify how addi-
tions of BDOC and nutrients affect modern DOM mineralization in diverse permafrost-zone ecosystems, and
(3) test how stream network position affects DOM dynamics. Based on findings from terrestrial and aquatic
priming studies in other regions (Chen et al., 2019; Dorado-Garcia et al., 2015; Guenet et al., 2014), we
hypothesized that the effects of BDOC and nutrient addition (i.e., the magnitude of priming and nutrient
effects) would depend on background DOM composition and availability of nutrients. Following observa-
tions and hypotheses about DOM dynamics in high-latitude stream networks (Cory et al., 2014; Drake
et al., 2015; Vonk, Tank, Mann, et al., 2015; Zarnetske et al., 2018), we hypothesized that DOC biolability
would decrease longitudinally (i.e., larger rivers would have lower BDOC) because of longer transport times
in soils and in-stream photodegradation and biodegradation (Cataldn et al., 2016; Connolly et al., 2018;
Creed et al., 2015; Shogren et al., 2019). We predicted larger priming and nutrient effects at sites with more
stable DOC and lower nutrient availability, respectively. To test these predictions, we measured DOC
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Table 1
Site Characteristics
Geologic Watershed
Site  Latitude Longitude Permafrost Dominant substrate and contributing MAT (°C)/MAP Major River
Region code® (DD) (DD) zone vegetation type texture area (kmz) (mm) Network
Interior Alaska  TA1l 65.8007 —149.4392 Discontinuous Black Spruce, Loess (fine) 14 —7.5/270 Yukon
1A2 65.6540 —149.0921 moss, lichen, 12 (Ewing et al., 2015;
1A3 65.3440 —146.9110 and low shrub  Loess, colluvium 4 Koch et al., 2014)
(mixed)
Western Alaska WAl  67.4830 —162.2150 Continuous Sedge, dwarf Glacial alluvium 37 —5/300-400 Noatak
WA2  67.4740 —162.2250 shrub, and (coarse) 748 (O'Donnell,
moss tundra Aiken, Butler,
WA3  67.7510 —158.1150 Continuous Sedge, low Glaciolacustrine 1,165 et al., 2016)
WA4  67.8450 —158.3160 shrub, and (stratified-mixed) 2,860
moss wetland
Northern NA1 68.6867 —149.0975 Continuous Tussock-sedge, Glacial till, 76 —10/320 (Abbott Sagavanirktok
Alaska NA2 68.8772 —148.8445 dwarf shrub, loess (fine) 3,604 et al., 2015)
NA3 69.6299 —148.6514 and moss 9,369
tundra
Northwestern NC1 67.2517 —135.2716 Continuous Black Spruce Glacial till (fine) 5 —7.3/146 (Littlefair Peel
Canada NC2 67.3133 —135.1683 40 et al., 2017)
NC3 67.3360 —134.8714 71,658
Northeastern NS1 70.8317 147.5173  Continuous Tussock-sedge, Silt (fine) <1 —10.5/212 Indigirka
Siberian NS2 70.8300 147.5118 dwarf and low 122 (Iwahana
NS3 70.8226 147.5135 shrub, and 14,600 et al., 2014)
moss tundra
Finland FN1 66.1478 26.1618 Non- Boreal forest/ Glacial till and 62 1.7-2.8/560-644 Simojoki
FN2 65.9529 25.9342 permafrost peatland/ peatlands (fine) 1,919 (de Wit et al., 2020;
FN3 65.6618 25.0754 agriculture 3,093 Lepistd et al., 2008;
Mattsson et al., 2005)
Tibetan Plateau  TP1 37.4776 100.2885 Discontinuous Swamp Meadow  Silt-loam (fine) 4 —3.3/460 (Liu Shaliu
TP2 37.4182 100.2392 32 et al., 2018)
TP3 37.3468 100.2259 420

The sites in each region were nested within the same watershed, except Interior Alaska.

disappearance in 28-day incubations with and without acetate and inorganic nutrient additions. We
quantified priming and nutrient effects by measuring acetate and background DOC drawdown and by
characterizing background DOM composition by fluorescence spectroscopy and Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR MS).

2. Methods

We collected stream samples from August to September 2016 from six regions across the permafrost zone
and in September 2017 from one northern, non-permafrost region (Figure 2). Water samples were collected
from three or more locations within each study region. Regions were selected to include Arctic, boreal, and
alpine ecosystem types and to represent a range of current and future climatic conditions in the permafrost
zone (continuous, discontinuous, and non-permafrost; Table 1). Samples were collected during late summer
when background DOC biolability is typically lowest (Holmes et al., 2008; Mu et al., 2017; Wickland
et al., 2012) and when permafrost DOC and nutrients are most likely to influence aquatic ecosystems during
the period of maximum annual thaw (Abbott et al., 2014, 2015; Treat et al., 2016). To test our hypothesis
about longitudinal (upstream-downstream) patterns in DOM composition (Cory et al., 2014; Drake
et al., 2015; Shogren et al., 2019), we selected sites that were nested in river networks, except in interior
Alaska, where the three sites came from independent streams because of accessibility considerations. Our
naming convention was a two-letter acronym of the region name and a number starting from the smallest
catchment (Table 1). In western Alaska, where we had two sets of nested catchments, WA1 was upstream
of WA2 in one network, and WA3 was upstream of WA4 in a second network.

2.1. Characterization of Study Regions

For each region, we characterized a suite of ecological characteristics. We first delineated contributing
watershed areas in ArcGIS (most sites) or Google Earth (Tibetan Plateau sites). For each watershed, we
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determined physical and textural properties of lithologic substrate using maps of surficial geology and
descriptions from the literature (Hamilton, 2003; Kokelj et al., 2017; Yang et al., 2010). We classified each
watershed as continuous permafrost (>90% of land surface underlain by permafrost), discontinuous perma-
frost (50-90%), or permafrost free (Brown et al., 1997). Lastly, we identified dominant vegetation types with
the Circumpolar Arctic Vegetation Map (Walker et al., 2018) or referenced literature (Table 1).

The seven sampled regions include broad variation in climate, geology, topography, and vegetation
(Table 1). Mean annual temperature (MAT) ranges from —5°C to —10.5°C across the permafrost-affected
sites and is 1.7°C to 2.8°C at the non-permafrost sites in Finland. Mean annual precipitation (MAP) ranges
from 140 to 600 mm (Table 1). In all permafrost-affected regions, various types of permafrost degradation
have been observed, including thermokarst and thermo-erosional features such as retrogressive thaw
slumps, thermo-erosional gullies, and thermokarst lakes (Aanderud et al., 2019; Farquharson et al., 2019;
Littlefair & Tank, 2018; Liu et al., 2019; Luo et al., 2019; Mu et al., 2019; Olefeldt et al., 2016). Other forms
of less visible permafrost warming and degradation are also occurring in the study areas, including
active-layer thickening and talik (pockets of permanently thawed material) formation (Biskaborn et al., 2019;
Shiklomanov et al., 2010; Vonk, Tank, Bowden, et al., 2015). Permafrost degradation across all the regions is
projected to accelerate in the coming decades (Guo et al., 2012; Jafarov et al., 2018; Nicolsky et al., 2017;
Romanovsky et al., 2010; Turetsky et al., 2020; Wang et al., 2020).

Though permafrost degradation is present in all the studied permafrost catchments, three of the seven
regions (Canada, interior Alaska, and the Tibetan Plateau) were specifically chosen for their proximity to
abrupt thaw features. The northwestern Canada Sites NC1 and NC2, which are underlain by glacial tills,
drain watershed areas downstream of a large thaw slump—Site “FM3” in other studies (e.g., Littlefair
etal., 2017). Site NC3 is located on the mainstem of the larger Peel River, which receives inputs from numer-
ous slump-affected tributaries (Kokelj et al., 2017; Littlefair & Tank, 2018; Zolkos et al., 2018). The interior
Alaska Sites IA1 and IA2, which occur in thick, ice-rich Pleistocene silt (Yedoma), are adjacent to a thawing
pingo and thermokarst channel, respectively (Ewing et al., 2015; Koch et al., 2013). Site IA3 is a gravel
bedded stream draining a partially burned watershed with limited loess cover and some isolated thermokarst
features (Koch et al., 2014). The Tibetan Plateau sites are downstream of a thermo-erosional gully in a
silt-dominated alpine swamp meadow (Chen et al., 2018; Liu et al., 2018). Even for these thaw-adjacent sites,
the current contribution of permafrost DOM and nutrients in the sampled streams is likely small because of
dilution (Abbott et al., 2015; Larouche et al., 2015). However, we included sites in areas of actively degrading
permafrost because thermokarst-prone areas contain approximately half of permafrost-zone organic matter
and may contribute more than half of the permafrost climate feedback (Olefeldt et al., 2016; Turetsky
et al., 2020).

The Siberian Site NS1 is a small pond that is connected to the river network via surface flow during high
flows, while Sites NS2 and NS3 are part of the mainstem downstream of NS1 (Dean et al., 2020). The water-
sheds in western Alaska are underlain by continuous permafrost but differ with respect to topography and
permafrost soil properties. Sites WA1 and WA2 drain an alpine watershed underlain by ice-poor permafrost
and parent material composed of glacially derived gravel and cobble substrate (O'Donnell, Aiken, Butler,
et al., 2016). WA3 and WA4 drain an ice-rich watershed with numerous thermokarst lakes and slumps in
the catchment, though not adjacent to the sampling sites (O'Donnell, Aiken, Butler, et al., 2016). The north-
ern Alaska sites occur in Arctic tundra and are underlain by continuous permafrost. NA1 is a stream called
Oksrukuyik Creek that drains moist tundra with numerous thermokarst lakes in the catchment (Shogren
et al.,, 2019). NA2 and NA3 are on the mainstem Sagavanirktok River, which is fed mostly by glacial runoff
from the Brooks Range (Abbott et al., 2014; Cory et al., 2014; Hamilton, 2003). The Finnish sites represent a
non-permafrost region in the subarctic characterized by boreal forest and peatlands (Lepisto et al., 2008;
Mattsson et al., 2005), providing an analog for future conditions in much of the permafrost zone.

2.2. Sample Collection and Incubation Setup

For the incubation, we followed the standardized protocol proposed by Vonk, Tank, Mann, et al. (2015), with
minor modifications to suit the field conditions and laboratory analyses (SI: detailed protocol). Incubations
were performed locally by each regional team, and samples were shipped to centralized locations for analysis
(details in section 2.3). Stream water was filtered on site (0.7 um, Whatman GF/F), and refrigerated until
laboratory incubations were initiated. Incubations were started within 1 or 2 days after sample collection
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except for the western Alaska (WA) and the northeastern Siberian (NS) sites, which were initiated one week
after sample collection due to field constraints.

For incubations, we divided the filtered bulk stream samples into 200-ml aliquots and treated each aliquot
with one of eight acetate (CH3;COO™) and nutrient treatments (Table S1; Abbott & Ewing, 2020). We used
acetate as the priming substrate in these experiments for three reasons: (1) Acetate is a highly biolabile form
of DOC often used in ecosystem manipulations (Robbins et al., 2017; Zarnetske et al., 2011); (2) it is easily
measurable via ion chromatography, allowing us to directly quantify disappearance of added substrate
and background DOC (Baker et al., 1999; Hotchkiss et al., 2014); and (3) acetate naturally accumulates in
permafrost during anaerobic metabolism and is released during permafrost thaw, representing up to a quar-
ter of total permafrost DOC in some areas (Drake et al., 2015; Ewing et al., 2015; Neumann et al., 2016). We
used ammonium (NH, "), nitrate (NO; ™), and phosphate (PO,>7) as the inorganic nutrient substrates. These
inorganic nutrients are commonly used in nutrient enrichment studies (Rosemond et al., 2015; Slavik
et al., 2004), and they are released during permafrost degradation (Abbott et al., 2015; Keuper et al., 2017).
We set treatment levels of acetate and nutrients (Table S1) based on observed concentrations of low-molecu-
lar weight DOC and inorganic nutrients in streams draining thermokarst features (Abbott et al., 2014, 2015;
Drake et al., 2015; Ewing et al., 2015; Tanski et al., 2017). The three acetate-only treatment levels (A1, A2,
and A3) had 1, 5, and 10 mg C L ! of added acetate, respectively. The three nutrient-only treatment levels
(N1, N2, and N3) had a 25:5:1 blend of different concentrations of NH,*, NO5~, and PO,>~ (Table S1), based
on observed ratios of these nutrients in thermokarst outflows (Abbott et al., 2015). The remaining two treat-
ments were a high acetate plus high nutrient treatment (AN) and a control sample (CT) in which only deio-
nized water was added. Though background DOC and nutrient conditions varied among the sites, we kept
the treatments consistent for comparison and to simulate how permafrost degradation may release concen-
trations of acetate and nutrients uncorrelated with modern in-stream conditions (Coch et al., 2020; Ewing
et al., 2015; Tanski et al., 2017). While we recognize that micronutrients can limit microbial activity, we lim-
ited the experiment to carbon, nitrogen, and phosphorus additions for logistical reasons—for example, there
is great diversity of observed micronutrients in permafrost waterways and soils (Carey et al., 2019; Krickov
et al., 2020; Reyes & Lougheed, 2015).

We incubated water from each site in 24 borosilicate 250-ml brown glass bottles (three replicates of the eight
treatments), which were generally kept stationary on a benchtop at each incubation location. Incubations
were done in the dark at room temperature (20°C), constraining DOC loss to biotic rather than photic pro-
cesses. The relatively coarse filtration (0.7-pm effective pore size) prior to incubation allowed ambient aqua-
tic microorganisms to pass through the filter into the incubation bottles and mineralize the DOC (Dean
et al., 2018; Larouche et al., 2015; Vonk, Tank, Mann, et al., 2015). Treatments were added only at the start
of the incubations to simulate mixing of permafrost thaw products with modern DOM in stream networks
(Abbott et al., 2015; Drake et al., 2015; Shogren et al., 2019; Tanski et al., 2017).

The incubation samples from the Tibetan Plateau sites were destroyed during shipping, but the background
chemistry, optical samples, and molecular samples survived.

2.3. Background Chemistry, DOC, and Acetate Analyses

Incubation and baseline chemistry samples were collected, frozen, and sent for analysis at the
Environmental Analytical Laboratory in the Department of Land Resources and Environmental Sciences
at Montana State University (MSU). Inorganic nutrients (NH,", NO5;~, NO,~, and PO,>7) in unamended
(background) stream waters were determined at ug L™ levels on a QuAAtro39 continuous segmented flow
analyzer (Seal Analytical, Inc.). We calculated dissolved inorganic nitrogen (DIN) as the sum of NH,*,
NO;~, and NO, . Acetate and other dissolved solutes in the treated incubation samples (NOs;~, NO,~,
and C1™) were measured at mg L~ levels on an ICS 2100 Ion Chromatograph (Dionex, Thermo Scientific)
equipped with an anion column (ASX-18 column). DOC and total nitrogen (TN) in all samples were deter-
mined using a V-TOC CSH Total Carbon Auto-Analyzer with a TNM-1 Total Nitrogen Module (Shimadzu
Corporation). Analytical uncertainties were determined for each instrument based on replication of samples
and results for several representative working standards (supporting information). Samples were kept frozen
at MSU until analysis, and values were only accepted if uncertainty was less than 10%. When concentrations
were below the limit of detection, we set their values to half the detection limit.
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2.4. Optical Properties and Molecular Composition of DOM

We collected additional subsamples at t, and t,g from a subset of the treatments (CT, A3, and AN) for optical
analysis via fluorescence spectroscopy. These subsamples were filter sterilized (0.22 yum, PES) into 40-ml
amber glass vials and stored in the dark at 4°C during shipment and until analysis at Utah State
University within four months of arrival (Baker & Lamont-Black, 2001). We measured the absorbance
and fluorescence of these subsamples with a spectrofluorometer (Aqualog, Horiba Scientific, Edison, New
Jersey). We analyzed the absorbance data and the excitation emission matrices (EEMs) to calculate several
common indices of DOM composition (Fellman, Spencer, et al., 2010; Kellerman et al., 2018; McKnight
et al., 2001; Weishaar et al., 2003), including colored DOM (CDOM; absorbance at 254 nm), biological index
(BIX), humification index (HIX), fluorescence index (FI), peak T (tryptophan-like) to peak C (fulvic/humic-
like) index (TC), and specific ultraviolet (UV) absorbance at 254 nm (SUVA,s,) (Gabor, Baker, et al., 2014;
Gabor et al., 2015). Because the behavior of the ambient DOC was our primary focus, we subtracted the mea-
sured acetate concentration from total DOC concentration for the acetate-addition treatments before calcu-
lating SUVA,s,4 and other metrics (e.g., priming as described in section 2.5). All samples were corrected for
inner filter effects, Rayleigh scatter, and blank subtraction in MATLAB™ (version 6.9; MathWorks, Natick,
Massachusetts), and samples that exceeded 0.3 absorbance units at excitation 254 nm were diluted with deio-
nized water to be under 0.3 absorbance units and re-run (reported values have been adjusted proportionally
to the dilution factor).

We selected a subset of samples for analysis of DOM chemical composition via ultrahigh resolution mass
spectrometry with a 21 T FT-ICR MS (Hendrickson et al., 2015; Smith et al., 2018). Because of the high cost
of these analyses, we selected only the CT and A3 treatments at the to and t,g time steps for a subset of sites
(a total of 33 samples). These subsamples were filtered to 0.7 um (GF/F pre-combusted at 450°C for 5 hr) to
remove potential flocculation and stored frozen in pre-leached, high-density polyurethane bottles until ana-
lysis at the National High Magnetic Field Laboratory, Tallahassee, FL (Spencer et al., 2015; Textor et al., 2019).
We used DOC concentration to calculate the appropriate volume for solid phase extraction (100-mg Bond
Elut PPL, Agilent Technologies) following the method described by Dittmar et al. (2008) and aimed for a con-
centration of 40 ug C ml ™" for DOM extracts eluted with 1 ml of methanol. All FT-ICR MS samples were ana-
lyzed in negative ion mode and molecular formulae were examined in the mass range of 170-1,500 m/z and
reassigned in PetroOrg Software (Corilo et al., 2013, 2016; Liu et al., 2016). We examined elemental
combinations of C; 45 Hy.92Ng.401.25S0.» With mass errors less than 300 ppb and excluding noise signals
>60 root-mean-square (RMS) baseline (O'Donnell, Aiken, Butler, et al., 2016). Elemental stoichiometries
and modified aromaticity indices (Al,,q) (Koch & Dittmar, 2016) were used to assign molecular formulae
into seven different compound classes using a script developed by Hemingway (2018): unsaturated phenolic
low O/C = Al 4 < 0.5, H/C < 1.5, O/C < 0.5; unsaturated phenolic high O/C = Al,oq < 0.5, H/C < 1.5,
O/C > 0.5; polyphenolic = Al o4 0.50-0.67; condensed aromatic = Aly,oq > 0.67; aliphatic = H/C > 1.5,
0O/C < 0.9; N = 0; sugar-like = O/C > 0.9; and peptide-like = H/C > 1.5, O/C < 0.9 N > 1 (O'Donnell,
Aiken, Swanson, et al., 2016). Although molecular peaks detected during FT-ICR-MS may represent multiple
isomers, we interpret DOM composition based on the relative abundance of molecular formulae assigned to
each compound class. Therefore, molecular formulae assigned to the same compound class may herein be
collectively described as compounds.

2.5. Biodegradability, Priming, and Nutrient Effects

Hereafter, we refer to “background” DOC as the total DOC concentration minus added and ambient acetate.
To calculate rates of acetate and background DOC consumption, we poured off and froze ~15 ml of sample
into polypropylene vials immediately following the addition of treatments (t,), after 7 days (t;), and after
28 days (t,g). We calculated change in background DOC and acetate for each replicate individually as the
proportional difference between the t, and t; or t, and t,g concentrations (e.g., a ADOC; of —0.2 represents
a 20% decrease in DOC concentration or a BDOC value of 20% after 7 days). We then calculated the mean
and standard deviation of ADOC and AAcetate across the three replicates for each site and time step.
Replicates with evidence of contamination or analytical error were excluded from the means. We calculated
change in optical properties (AOptical) and relative abundance (ARA) of molecular composition in the same
way as ADOC and AAcetate.
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We calculated priming and nutrient effects for each site as the ADOC in each treatment minus the ADOC in
the unamended (control) treatment. This yielded positive values for the nutrient and priming effects when
the treatment resulted in greater background DOC consumption (i.e., positive priming) and negative values
when the treatment DOC consumption was less than the control (i.e., negative priming), following the typi-
cal sign convention (Bianchi et al., 2015; Guenet et al., 2010; Hotchkiss et al., 2014).

2.6. Statistical Analyses

To test for differences in ADOC, AAcetate, AOptical, and ARA among treatments, we used one-way analysis
of variance (ANOVA) with site as a blocking factor to account for non-independence (Malone et al., 2018).
We tested if priming effects were different across time steps for the various treatments with a two-way
ANOVA, also with site as a blocking factor. For all ANOVAs, we used Tukey's honest significant difference
post hoc tests for multiple comparisons with a Bonferroni correction and a decision criterion of o = 0.05. We
evaluated normality, homoscedasticity, and leverage (Cook's distance) for each test visually. To evaluate if
nutrient and priming effects were significant (i.e., statistically different than 0), we used two-sided ¢ tests
for each treatment, interpreted after a Bonferroni correction.

To evaluate similarity of DOM compounds and optical properties across sites, we used principal component
analysis (PCA). We scaled all parameters to have a mean of 0 and a variance of 1, and we transformed the
non-normally distributed parameters to avoid undue influence from extreme observations and to allow
the computation of parametric probability ellipses (Kotz & Nadarajah, 2004). We used the Kaiser criterion,
scree plots, and the percent explained variance to decide how many principal components to report
(Horikoshi et al., 2020; Wickham et al., 2020).

To test our hypotheses about links between priming and nutrient effects, we used Spearman rank correla-
tions (p) to quantify relationships (including non-linear relationships) among BDOC, priming/nutrient
effects, and background nutrient chemistry. We evaluated relationships with background DOC, DIN,
PO,>”, and the molar ratios of those parameters (DOC:DIN, DOC:PO,>”, and DIN:PO,>"), using a decision
criterion of & = 0.05. Finally, we used Spearman rank correlations to test for links between water chemistry,
climate variables (i.e., MAT and MAP), and watershed area.

All statistical analyses were performed in R.3.5.0 (R Core Team, 2018).

3. Results
3.1. Ambient Stream Chemistry and DOM Properties

The ambient concentrations of DOC, DIN, and PO~ at the time of sampling varied widely across the sites
and regions (Figure 3). DOC ranged from 0.7 to 27 mg L ™" and was higher in smaller streams relative to lar-
ger rivers for five of the six regions with longitudinally nested sampling locations (Figure 3a). DOC was nega-
tively correlated with watershed area across sites (o0 = —0.51, n = 22). The highest DOC concentration
occurred at the thermokarst-affected sites in interior Alaska and northwestern Canada (14-27 mg L.
DIN was uncorrelated with DOC (Figure 3b; p = 0.38, n = 22) and showed a variety of downstream patterns.
NO3™ constituted 65% of DIN on average, but the relative abundance of DIN species (i.e., NO;~, NO,, and
NH,*) varied across sites (supporting information: Background), with NO; ™~ ranging from 6.6% at NC1 to
99% of DIN at WA1. NH,* and NO, ™~ constituted 26% and 8.8% of DIN on average. PO,>” was strongly cor-
related with DOC and to a lesser extent DIN (o = 0.83 and 0.48, respectively, n = 19), with several sites at or
near the detection limit (Figure 3). Nutrient concentrations were not correlated with MAT across sites, but
DIN and PO,>~ were negatively correlated with MAP (o = —0.49 and —0.52, n = 22 and 19, respectively).

Optical properties of DOM showed as much variability within regions as among them (Figure 4a). There
were two initial SUVA,s, values that exceeded 5 L mg_1 m™! (Figure 4a), potentially indicating iron, pH,
or NO;™ interference (Weishaar et al., 2003). There were general decreases in CDOM and HIX moving
downstream within regions (Figure 4a), and both parameters were correlated negatively with watershed
area across sites (o = —0.46 and —0.71, respectively, n = 18). BIX and TC increased moving downstream
for most regions and were positively correlated with watershed area across sites (o = 0.47 and 0.72, respec-
tively, n = 18). FI and SUVA,s, showed mixed patterns across sites (Figure 4a). CDOM and BIX were corre-
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Figure 3. Background nutrient concentrations by site and region. (a) The mean (+ standard deviation of three replicates)
of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), and phosphate (PO43_) in streams from the
seven study regions. Regions are separated by the vertical dashed lines and are ordered from highest to lowest mean DOC
(left to right). Within regions, sites are ordered by increasing watershed size (longitudinal stream position indicated

by the numbering system above the panels) within nested networks, except for IA, where the sites were independent, and
WA, where there are two networks. (b) Biplots of mean background nutrient concentrations with Spearman
correlation coefficients (o) shown when significant (p < 0.05). Phosphate was not determined for TP sites because of
sample loss during shipping.

lated with MAP (o = —0.62 and 0.58, respectively, n = 18), and SUVA,s, was negatively correlated with MAT
(o =—0.48, n = 18).

There were numerous positive and negative correlations among DOM optical properties and molecular com-
position (Figure S1), with particularly strong relationships (Ipl > 0.65) between polyphenolics and CDOM
(p = 0.79, n = 30), polyphenolics and BIX (p = —0.75, n = 30), unsaturated phenolics (low O/C) and
CDOM (p = —0.68, n = 30), and aliphatics and HIX (o = —0.66, n = 30). Molecular composition and to a les-
ser extent optical properties were also correlated with background nutrient concentrations (Figure S1). DOC
and PO,>~ had particularly strong relationships with many parameters, though DIN was also correlated
with most molecular composition parameters (Figure S1).

DOM molecular composition was surprisingly similar across regions and sites (Figure 5), in contrast with the
high inter- and intra-regional variability in concentrations and bulk optical properties described previously.
Despite differences in climate, watershed area, and vegetation, there was strong compositional consistency
across sites (Figure 5a). The most abundant compound class was unsaturated phenolics (low O/C), which
ranged from 58% to 75% across sites. Unsaturated phenolics (high O/C) were the second most abundant
compound class for all but one site in western Alaska (WA1), ranging from 8.5% to 32%. Aliphatics made
up less than 9% of the relative abundance for all but one site (also WA1). Polyphenolics and other com-
pounds made up less than 10% of the relative abundance across sites (Figure 5a). DOM molecular com-
pounds were not generally correlated with climate variables, except that polyphenolics were negatively
correlated with MAT and MAP (o = —0.70 and —0.88, n = 11), and unsaturated phenolics were correlated
with MAP (o = 0.67 and —0.67 for low and high O/C, respectively, n = 11).
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Figure 4. Initial optical properties of dissolved organic matter (DOM) and change through time during the incubations. (a) Initial colored DOM (CDOM),
biological index (BIX), humification index (HIX), fluorescence index (FI), peak T to peak C index (TC), and specific UV absorbance at 254 nm (SUVA;s4).

(b) Proportional change during the incubation for the three treatments where optical proxies were measured: control (CT), high acetate (A3), and acetate

plus nutrients (AN). colored dissolved organic matter (CDOM), biological (mean n = 3). for the three treatments where optical measurements were made. In
panels (a) and (b), symbology follows Figure 3. Boxplots show the quartiles, median, minimum, and maximum within 1.5 times the interquartile range (IQR) and
outliers beyond 1.5 times the IQR. The faint lines behind the boxplots link sites to aid interpretation.

For the multivariate analysis of molecular composition and optical properties, the first three principal com-
ponents of the PCA explained 86% of the variation in molecular composition and 87% of the variation in opti-
cal properties across regions, treatments, and time steps (Figures 6 and S2). The probability ellipses
overlapped for all regions, supporting the univariate results of compositional and optical similarity among
regions (i.e., greater intra-region than inter-region variability; Figures 6c and 6d).

3.2. DOC Biodegradability and Effects of Priming and Nutrients

The 7- and 28-day incubations revealed relatively low DOC biodegradability but substantial variation among
sites (Figures 7, S3, and S4). In the unamended control treatment, proportional change in DOC ranged from
—0.01 to —0.22 after 7 days (median and mean ADOC, = —0.06 and —0.08) and —0.03 to —0.52 after 28 days
(median and mean ADOC,g = —0.9 and —0.16; Figure 7a). ADOC, and ADOC,g were positively correlated
(o =0.54, n = 19). The downstream pattern in ADOC for sites in nested stream networks differed by region
(Figure 7a), and neither ADOC, nor ADOC,g was significantly correlated with watershed area (o = —0.27
and 0.10, respectively, n = 19), MAT (p = 0.05 and 0.01, n = 19), or MAP (o = —0.30 and —0.03, n = 19).
In the control treatment, ADOC, was correlated with numerous DOM optical properties and molecular com-
pounds, particularly aliphatics, unsaturated phenolics (high O/C), and HIX (Figure S1). However, ADOC,g
was only correlated with FI (Figure S1). Similarly, control ADOC, was correlated with background DOC,
DIN, and PO,>~ (o = 0.61, 0.69, and 0.65, respectively), but ADOC,g was not (Figure S1).
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Figure 5. Molecular composition of DOM and change in relative abundance of different components. (a) The relative
abundance of composition classes Initial and Final (tg and t,g). (b) The change in relative abundance expressed as
a proportion.

The effects of added acetate and nutrients (i.e., priming and nutrient effects) were not statistically different at
7 and 28 days (F; 239 = 0.15, p = 0.69), so we pooled estimates from both time steps before testing for signif-
icance (Figure 7c). We observed negative priming and nutrient effects (i.e., less decrease in DOC) in five of
the seven treatments compared to the unamended control (Figure 7c; Bonferroni-corrected p values for each
treatment's ¢ test: A1 = 0.0005, A2 = 0.03, A3 =0.15, N1 = 0.03, N2 = 0.004, N3 = 0.19, and AN = 0.001 0.03,
0.004, and 0.001). Priming and nutrient effects differed by treatment (F; 539 = 3.97, p = 0.0009), with the
treatments including acetate showing consistently stronger suppression, reducing median mineralization
of background DOM to at or near zero (Figures 7b and 7c). Priming and nutrient effects also differed by site
(F1230=4.63,p=1.0% 10™®), with variation in both magnitude and sign of these effects for individual sites
(Figures S4 and S5).

The effect of nutrient addition was consistently correlated with ADOC across time steps (Figure 8), with neu-
tral or positive nutrient effects at sites with low DOC biodegradability (i.e., ADOC = 0) but negative nutrient
effects at sites with high DOC biodegradability. The effect of acetate addition was only correlated with ADOC
for two of the six treatment by time step combinations (Figure 8). The combined effect of nutrient and acet-
ate addition (i.e., the AN treatment) was not correlated with ADOC, but was correlated with ADOC,g, with
consistently negative effects at sites with biodegradable DOC but neutral to positive effects at sites with lower
DOC biodegradability (Figure 8).

3.3. Changes in Acetate, DOM Optical Properties, and DOM Composition

Though we expected complete consumption of added acetate in all treatments, actual AAcetate varied in
sign and magnitude (Figures 9 and S6). Both the incubation and background data suggested that acetate
uptake was nutrient limited. First, acetate uptake was complete in the AN treatment (AAcetate range of
—0.98 to —1.0), where nutrients were added with acetate (Figure 9). Second, acetate uptake was lower for
higher acetate treatments (e.g., the IAAcetatel for A3 < A1), suggesting increasing stoichiometric constraints
(Figure 9a). Third, there were strong and consistent correlations between background nutrients and
AAcetate for A1, A2, and A3, with more acetate uptake in sites with higher background nutrient concentra-
tions (Figure 10). AAcetate was more strongly correlated with background DOC and PO,*~ than with DIN
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Figure 6. Principal component analysis of the molecular composition and optical properties of DOM. The percentage of
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axis titles. Parametric probability ellipses are drawn for the indicated groups (i.e., time of sampling in panels a and b and
regional provenance of the sample in panels ¢ and d). Loadings for each parameter are shown in panels (e) and (f).
PC3 explained 11% of the variation (Figure S2).

(Figure 10). There were no significant correlations between AAcetate and nutrient ratios (DOC:DIN,
DOC:P-PO,>”, and DIN:P-PO,>") in the acetate amended treatments (Figure S7). For the treatments
without acetate addition (i.e., CT, N1, N2, and N3), AAcetate was generally negative but highly variable
(Figure S6), largely because initial unamended acetate concentration was extremely low across sites
(mean + SD = 0.07 + 0.1 mg C L.

DOM optical properties (which were measured at ty and t,g for treatments CT, A3, and AN) showed both
general and site-specific trends over the course of the experiment (Figures 4 and S8). Across sites, CDOM
and TC decreased through time for all three treatments, with significantly larger decreases in the AN treat-
ment (Figure 4b). ATC did not show consistent relationships with background chemistry, but ACDOM was
associated with DIN, with more CDOM loss at sites with lower DIN, lower DIN:P-PO,*>~, and higher DOC:
DIN (Figure S9). SUVA,s, decreased and HIX increased during the experiment, but only for the AN treat-
ment (Figure 4b). AHIX was consistently negatively correlated with background DOC and PO,*~, with
greater increases in HIX at lower concentrations (Figure S9). Like for CDOM, ASUVA,s, in the AN treat-
ment was consistently correlated with DIN, with greater decreases in SUVA,;s, at sites with lower t, DIN,
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Symbology follows Figure 4.

higher DOC:DIN, and lower DIN:P-PO,>~ (Figure S9). Across optical properties, the lower DOC sites
(i.e., western and northern Alaska) tended to show greater responses to the AN addition (Figure 4b). The

northeastern Siberia sites showed distinct CDOM and SUVA,s, dynamics,

properties regardless of treatment (Figure 4b).
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Figure 8. Relationships between ADOC in the unamended control treatment and priming or nutrient effects. Positive priming or nutrient effects indicate more
DOC loss in the treatment than in the control (i.e., positive priming). Spearman correlation coefficients (p) shown when significant (p < 0.05). The linear fit
lines are shown for convenience, though the Spearman analysis does not assume linearity.
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Figure 4.

DOM molecular composition (which was measured at t, and t,g for a subset of the CT and A3 treatments)
was remarkably stable across the incubations (Figure 5b). The median change in relative abundance was less
than 0.05 across all compounds, though there were larger increases or decreases in some of the
low-abundance classes, particularly peptide-like compounds and sugars (Figure 5b). However, these
changes were largely associated with low initial concentrations and were not consistently associated with
treatment (Figure 5b).

The multivariate analysis showed little systematic change in molecular composition and optical properties
across treatments (Figures 6a/6b and S2a/S2b). However, individual sites did show substantial shifts, and

Treatment
4 A\ A1
A A2
A r3
QAN

AAcetate
(proportional change of added acetate)

A
0.71
3 0.7 A
5 10 15 20 25 0.1 0.2 0.3 0.0025 0.005 0.0075
DOC (mg L") DIN (mg L") PO (mgL™)

Figure 10. Relationships between change in added acetate and background nutrients. Spearman correlation coefficients
(p) for each treatment shown when significant (p < 0.05). Symbology follows Figure 8.
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optical properties showed a slight homogenization (a tighter or smaller probability ellipse) over the course of
the experiment (Figures 6b and S2b), in line with the univariate results.

4. Discussion

In this study, we investigated how BDOC and nutrients from thawing permafrost could influence the stabi-
lity of background DOM in waterways of the permafrost zone. Using optical and molecular characterization
techniques in combination with a DOM biodegradability experiment, we found that DOM from across the
permafrost zone had surprisingly similar molecular composition, dominated by unsaturated phenolics,
but different optical properties and biodegradability. Contrary to our hypotheses, the addition of BDOC
and nutrients suppressed the mineralization of background DOM, and there were no systematic differences
in DOM biodegradability based on stream network position. These experiments comprise one of the most
geographically diverse investigations of aquatic priming to date and our results have several implications
for carbon and nutrient balance in the permafrost zone. We discuss the implications and limitations of these
findings below.

4.1. DOM Is More Than the Sum of Its Compounds

The similarity in molecular composition of DOM from across permafrost regions supports a growing body of
evidence that the building blocks of DOM are similar across freshwater and marine environments (Danczak
etal., 2020; Kellerman et al., 2018; Zark & Dittmar, 2018). Because the sources of aquatic DOM vary strongly
across ecosystems and through time (e.g., soil, vegetation, and microorganisms), this similarity has mainly
been attributed to “filter effects” that select for certain compounds at the dissolution phase and during trans-
port (Gabor, Eilers, et al., 2014; Marin-Spiotta et al., 2014; Roth et al., 2019; Zark & Dittmar, 2018; Zarnetske
et al., 2018). A non-exclusive hypothesis for this convergence is that autochthonous production of DOM by
aquatic autotrophic and heterotrophic organisms contributes new DOM with a common “aquatic” signature
(Harjung et al., 2018; Kellerman et al., 2018; Lee-Cullin et al., 2018). These filtering and aquatic contribution
hypotheses have been supported by DOM optical analysis, which shows initial diversity associated with bio-
geochemical origin followed by convergence toward a more or less universal aquatic DOM signature (Coble
et al., 2019; Gabor, Eilers, et al., 2014; Mutschlecner et al., 2018; Wiinsch et al., 2019).

This compositional and optical homogeneity of aquatic DOM contrasts with its structural and functional
diversity. A wide range of functional experiments and observations have revealed that DOM differs in its
interaction with inorganic nutrients, light sensitivity, compound-specific reactivity, and availability to
microorganisms in different physico-chemical conditions (Abbott, Jones, et al., 2016; Cory et al., 2014;
Dean et al., 2020; Drake et al., 2015; Mu et al., 2017; Nalven et al., 2020; Vonk, Tank, Mann, et al., 2015;
Wymore et al., 2015). Even in our relatively limited experiment with filtered, late-summer DOM from cold
regions, we observed biodegradability that ranged nearly twentyfold (i.e., 3% to 52%) and priming and nutri-
ent responses that varied in size and sign.

The functional diversity of DOM despite apparent compositional homogeneity implies either that our mea-
sures of DOM composition are inadequate (Gabor, Baker, et al., 2014; Hawkes et al., 2020; Simon et al., 2018)
or that additional factors regulate DOM persistence and broader ecological function (Figure 11). In either
case, this disconnect is problematic because DOM composition is routinely used as a proxy for reactivity,
toxicity, and bioavailability (Abbott, Baranov, et al., 2016; Kaiser et al., 2017; Zhang et al., 2019).
Additionally, this disconnect suggests that the hope of finding easily measured yet generally applicable
proxies of DOM stability—long a goal of aquatic ecosystem science (Balcarczyk et al., 2009; Fellman,
Hood, & Spencer, 2010; McDowell et al., 2006)—may continue to be elusive. Both optical and molecular
approaches are routinely criticized for ambiguous interpretations, high cost or time investment, and com-
parability issues among equipment (Benk et al., 2018; Gabor, Baker, et al., 2014; Hawkes et al., 2020;
Kellerman et al., 2018; Ruhala & Zarnetske, 2017; Simon et al., 2018). Similarly, empirical measures of
DOM function, such as the experiment presented here, have their own suite of limitations. Filtration and
isolation of samples from their biotic and abiotic context can demonstrate what is biogeochemically possible
rather than what is ecologically relevant (Hanson et al., 2011; James & Boone, 2005; Kothawala et al., 2012).
Ultimately DOM characterization, whether optical or molecular, will be most enlightening when coupled
with independent measures of DOM function, such as incubations (Cory et al., 2013; Helton et al., 2015;
Vonk, Tank, Mann, et al., 2015), in situ processing studies (Ewing et al., 2015; Fork et al., 2020; Hall
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choke point or regulator. (a) While biomass and particulate organic matter contain most of the Earth's organic

carbon, the pool of reactive DOM as determined by environmental and inherent factors regulates biogeochemical
processes such as respiration, nutrient mineralization, methanogenesis, and denitrification. (b) The amount of reactive
DOM at a given moment in space and time depends on two-way interactions among environmental conditions

and DOM properties. Together, these dynamics regulate the persistence and processing (biotic and abiotic) of DOM. The
curved arrows provide examples of links between DOM properties and environmental conditions. The inherent

factors that influence DOM degradability are both cause and consequence of the environmental factors that interact to
determine realized reactivity (actual rates of DOM alteration, assimilation, or mineralization).

et al., 2016; Harjung et al., 2018; Judd et al., 2006; Mineau et al., 2016), isotope probing experiments
(Kellerman et al.,, 2018; Mulholland, 2004), and characterization of microbial dynamics (Danczak
et al., 2020; Guenet et al., 2010; Nalven et al., 2020).

4.2. Intrinsic and Extrinsic Factors Regulate DOM Reactivity Across the
Terrestrial-Aquatic Continuum

The perennial debate about intrinsic and extrinsic controls on organic matter stability has extended over dec-
ades and across environments from soil to sea (Arnosti, 2004; Ewing et al., 2006; Kellerman et al., 2015;
Marin-Spiotta et al., 2014; Schmidt et al., 2011). Until recently, the dominant paradigm was that inherent
properties of organic matter determined decay rate, with secondary effects from environmental factors such
as temperature, redox, and microbial community (Allison, 2006; Kalbitz et al., 2003; Kleber et al., 2011;
Weintraub & Schimel, 2003). Recent observations have challenged this “DOM quality” paradigm, with bio-
degradable organic matter persisting for centuries in some environments while recalcitrant organic matter is
broken down on sub-yearly timescales in others (Arnosti, 2004; Ewing et al., 2006; Kalbitz et al., 2005;
Marin-Spiotta et al., 2014; Schmidt et al., 2011). Furthermore, decomposer communities appear to be bio-
chemically omnipotent, breaking down any organic compounds given the right conditions and enough time
(Arnosti, 2011; Jaffé et al., 2013; Manzoni et al., 2012; Sinsabaugh et al., 2015). Based on these observations, a
new paradigm has been proposed that considers organic matter persistence as an ecosystem property,
emphasizing environmental controls such as pH, redox, temperature, light, and physical protection by the
soil or water matrix as the determinants of organic matter persistence (Kaiser & Kalbitz, 2012; Lehmann
& Kleber, 2015; Marin-Spiotta et al., 2014; Schmidt et al., 2011). According to this ecosystem property
hypothesis, the reactivity of organic matter is a function of external factors and has little to do with the initial
nutrient content or inherent molecular structure of the organic matter itself.

Both the inherent and ecosystem hypotheses of DOM stability overlook an important internal feedback:
DOM concentration and properties are major determinants of many of the environmental conditions that
modulate DOM stability in actual ecosystems (Figures 1 and 11). For example, DOM abundance and reactiv-
ity influence pH, redox, microbial community, light penetration, nutrient supply, and priming effects (Battin
et al., 2008; Fork et al., 2020; Kellerman et al., 2015; Manzoni et al., 2012; Pinay et al., 2015; Zarnetske
et al., 2012). These feedbacks (Figure 11) create spatially and temporally dynamic relationships between
DOM composition and expressed reactivity (Catalan et al., 2016; Helton et al., 2015; Wymore et al., 2015).
Consequently, it is the interaction between inherent DOM composition and ecosystem conditions that
determines the relative importance of reaction rates and exposure times for a particular compound
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(Abbott, Baranov, et al., 2016; Frei et al., 2020; Kolbe et al., 2019; Oldham et al., 2013). For example, in our
dark incubations, the effect of added nutrients or BDOC depended on the decomposability of the back-
ground DOM (Figure 8), potentially due to kinetic and nutrient constraints (Guenet et al., 2010; Wymore
et al., 2015). However, these responses could vary under different light and nutrient conditions in actual
ecosystems, where DOM can act as a nutrient source and light attenuator (Fanta et al., 2010; Fork et al., 2020;
Nalven et al., 2020; Rodriguez-Cardona et al., 2016).

These concepts of interactive stability and context-dependent reactivity (Abbott, Baranov, et al., 2016; Kolbe
et al., 2019) mean that causal relationships between DOM structure and stability cannot be quantified by
correlating DOM characteristics with ecosystem properties such as residence time or climate, though such
conclusions are routinely inferred in molecular, optical, and ecosystem studies (Catalan et al., 2016; Cory
et al., 2014; Kellerman et al., 2015). This approach does not answer the questions: Did the DOM persist
because of its composition and structure, or does it have that structure and composition because it persisted?
Similarly, experiments that quantify inherent reactivity isolated from environmental interactions with nutri-
ents and new DOM have limited power to establish causality. We again emphasize that experiments quan-
tifying DOM structure, reactivity, and sensitivity to priming and nutrient effects are needed to establish the
relative importance of inherent and ecosystem controls on DOM reactivity in different environments
(Danczak et al., 2020; Fork et al., 2020; Guenet et al., 2014; Hotchkiss et al., 2014; Mutschlecner et al., 2017;
Nalven et al., 2020; Textor et al., 2019).

4.3. Consequences for Permafrost-Zone Carbon and Nutrient Budgets

The overall negative priming and nutrient effects we observed suggest that permafrost-derived DOC and
nutrients are not likely to destabilize modern DOM in high-latitude rivers, lakes, and estuaries. Most
high-latitude DOM flux occurs during the snowmelt period, while most permafrost-derived nutrient and
DOM release happens in the late thaw season (Abbott et al., 2014; Holmes et al., 2008; Raymond et al.,
2007; Spencer et al., 2009; Treat et al., 2016). This means that priming and nutrient effects are unlikely to
alter annual net ecosystem carbon balance in permafrost waterways. However, priming and nutrient sub-
strate from degrading permafrost could have important seasonal impacts, depending on background DOM
biolability (Figure 8). The few permafrost-zone studies that have quantified seasonal DOM biolability have
generally found higher biolability during snowmelt, though some locations experience little seasonal varia-
tion, and others have higher biolability in the winter (Abbott et al., 2014; Holmes et al., 2008; Larouche
et al., 2015; Mann et al., 2012; Mu et al.,, 2017; Mutschlecner et al., 2018; Wickland et al., 2012).
Permafrost-derived nutrients and BDOC could substantially alter aquatic food webs in the fall and winter
by suppressing biolabile DOM processing and stimulating consumption of less biolabile DOM (Figure 8).

While the effects of permafrost-derived material may have seasonally constrained impacts on bulk back-
ground DOM, CDOM and other optically defined DOM pools responded strongly to nutrient and BDOC
addition (Figure 4). CDOM is a fundamental control on light availability for primary production and pene-
tration of damaging light in high-latitude aquatic and marine ecosystems (Evincent et al., 1998; Fork
et al., 2020; Matsuoka et al., 2015; Spencer et al., 2009; Stedmon et al., 2011). If the observed acceleration
of CDOM breakdown by nutrients (Figure 4b) is general, the effects could be substantial on aquatic and mar-
ine productivity, riverine DOM flux, and microbial communities (Bonilla et al., 2009; Mann et al., 2016;
Squires et al., 2002). While long-term nutrient data are sparse for the permafrost zone, there are several indi-
cators that nutrient availability may be increasing in aquatic ecosystems (Abbott et al., 2015; Frey &
McClelland, 2009; Kendrick et al., 2018; Shogren et al., 2019). Dynamics including expansion of wildfire,
shifts in vegetation, extension of the thaw season, thermokarst formation, and hydrological changes are
all increasing the supply and potentially the delivery of nutrients to rivers and lakes in the permafrost zone
(Abbott, Jones, et al., 2016; Carey et al., 2019; Hewitt et al., 2018; Rodriguez-Cardona et al., 2020; Salmon
etal., 2018; Tank et al., 2020; Treat et al., 2016). We note the need for further research on these CDOM effects
because we did not measure change in optical properties in the nutrient only treatments (section 2). This
means we cannot isolate whether nutrients alone or the combination of nutrients and BDOC accelerated
CDOM breakdown, though the BDOC-only treatment showed no change (Figure 4b).

Finally, the diversity of longitudinal patterns of DOM properties that we observed challenges the simplified
view of reactive DOM in the headwaters and stable DOM in larger rivers (Cory et al., 2014; Drake et al., 2015;
Mann et al., 2015; Prokushkin et al., 2011; Vonk, Tank, Mann, et al., 2015). While such a longitudinal
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decrease in DOM reactivity certainly exists in some watersheds during some parts of the year, broader spatial
sampling suggests that headwaters have more diversity in DOM sources and properties compared to larger
rivers rather than systematically more reactive DOM (Abbott et al., 2018; Shogren et al., 2019; Zarnetske
et al., 2018). More generally, residence time in many permafrost river networks is on the order of days to
weeks (Tank et al., 2020), limiting the time biotic and abiotic reactions can modify DOM, even compared
with laboratory rates of DOM processing at elevated temperatures (Cory et al., 2013; Vonk, Tank, Mann,
et al., 2015). Rather than invoking in-stream processes, changes in DOM sources associated with vegetation,
soil and sediment types, and catchment residence times (i.e., water travel time before reaching the channel)
can create a variety of longitudinal patterns depending on local ecological context (Abbott et al., 2015; Kling
et al., 2000; Tank et al., 2020), including increases, decreases, and convergence toward the watershed mean
(Connolly et al., 2018; Neilson et al., 2018; Shogren et al., 2019).

Data Availability Statement

Data and supplementary tables and figures are attached as supplemental information and are available as
part of the Hydroshare archive for this work (Abbott & Ewing, 2020), which includes analytical code used
to derive figures.
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