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Abstract 

Objective:  The aim of study was to characterize Giardia isolates genetically among patients in Chandigarh region, 
India. For this, nested PCR targeting fragment of the glutamate dehydrogenase (GLUD1 earlier named as GDH) 
gene was used. Phylogenetic analysis was done by constructing neighbor-joining tree made out of the nucleotide 
sequences of G. intestinalis isolates obtained in this study and with the known sequences published in GenBank.

Results:  Out of 40 samples, GLUD1 gene was amplified in 33 samples (82.5%). The product of GLUD1 gene was suc-
cessfully sequenced only in 32 samples. In these samples, assemblage B was found in 27 (84.37%) samples whereas 5 
(15.6%) samples had assemblage A. Among assemblage B most of them were of BIII. Therefore, genotyping of Giardia 
would be helpful in conducting epidemiological studies.
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Introduction
Giardia intestinalis  is well known intestinal parasite of 
humans and mammals. Giardia causes approximately 280 
million cases of giardiasis  worldwide annually [1]. Most 
of these cases are associated with lower socioeconomic 
status. In the year 2004, giardiasis was included in WHO 
‘Neglected Diseases Initiative’ because of its high preva-
lence in communities with low socio-economic status.

Giardiasis is acquired due to ingestion of cysts of 
Giardia in water or food [2]. Giardia intestinalis is com-
posed of eight major genotypes or assemblages (A–H) 
[2]. Genotype A and B are common among humans hav-
ing variable distribution frequency in different geograph-
ical locations and these assemblages mainly considered as 
zoonotic assemblages as they are able to infect both men 
and animals [3]. These assemblages are further divided 
into subassemblages on the basis of either digestion by 
restriction enzyme or sequence analysis. Assemblages A 
are classified as AI, AII,AIII and AIV. Subassemblages AI 

and AII were commonly found in humans while AI, AIII 
and AIV are subassemblages of animals. Zoonotic poten-
tial is linked with only subassemblage AI [4]. Assemblage 
B, catogorised into four sub-assemblages BI, BII, BIII 
and BIV. As per literature subassemblages BIII and BIV 
were reported in humans while other two are specific for 
animals [4, 5]. The BIII sub-assemblage is closer to sub-
assemblages BI and BII and therefore has zoonotic poten-
tial. The GLUD1 (earlier known as GDH) locus has been 
utilized for genetic characterization of G. intestinalis 
isolates in vertebrates [4] hosts and is able to categorize 
them into sub genotypes/subassemblages. The present 
work was aimed to determine assemblages and sub-
assemblages of Giardia isolates involved in its transmis-
sion by using glutamate dehydrogenase (GLUD1) marker.

Main text
Materials and methods
Sample collection
Forty microscopic Giardia positive stool samples were 
collected from the Routine Laboratory of Department of 
Medical Parasitology, PGIMER, Chandigarh from August 
2019 to December 2019.
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DNA extraction
From stool samples, DNA was extracted by using QIAmp 
Fast DNA Stool Mini Kit (QIAGEN, Germany) as per 
manufacturer’s instructions with slight modifications. 
The suspension was initially incubated at 90 °C for 15 min 
and then for another 30 min at 75 °C. DNA was eluted in 

50 µl of AE buffer. DNA concentration was measured by 
NanoQuant (Infinite® 200 PRO NanoQuant) and stored 
at − 20 °C until further use.

Polymerase chain reaction amplification
The two-step PCR was employed for the amplification of  
GLUD1 gene (432  bp) by using previously published 
primers given by Read et al. [6]. The conditions and prim-
ers for both primary and secondary reactions are given as 
Additional file 1: Table S1. The first set of PCR reaction 
comprised of 2.0  μL of DNA template, 12.5  μL 2 × Go 
Taq Green Mix, 1  μL of each primer (10  μM), 1  μL of 
Bovine Serum Albumin (BSA) whereas in case of second-
ary PCR, DNA template was replaced by the product of 
primary reaction. For the negative control, nuclease-free 
water and for the positive control, DNA of Giardia strain, 
Portland 1 was used for each PCR reaction. All the pre-
cautions were taken to prevent contamination.

PCR product purification and sequencing
All PCR-positive samples were sequenced using sec-
ondary primers. PCR products were sequenced in both 
forward and reverse directions. By using BLAST, nucle-
otide similarity of sequenced amplicons was searched 
in GenBank (http://www.ncbi.nlm.nih.gov/blast​). 
CLUSTAL X was used to determine multiple sequence 
alignments. Neighbor-joining distance trees were pre-
pared using MEGAX software (https​://www.megas​oftwa​
re.net/) (Fig.  1). Bootstrap values were based on 1000 
replicas. All the sequences obtained during the study 
were submitted to the GenBank (Accession number: 
MT584168–MT584199).

The direct links which are publicly available are as 
follows:

https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​168
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​169
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​170
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​171
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​172
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​173
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​174
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​175
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​176
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​177
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​178
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​179
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​180
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​181
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​182
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​183
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​184
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​185

Table 1  PCR results of samples with their assemblages

Sample No PCR Assemblages

1 +ve B

2 +ve B

3 +ve B

4 +ve B

5 +ve B

6 +ve B

7 +ve B

8 +ve B

9 +ve B

10 +ve B

11 +ve B

12 +ve B

13 +ve Unable to sequence

14 +ve B

15 +ve B

16 +ve B

17 +ve B

18 +ve B

19 +ve B

20 +ve B

21 +ve A

22 +ve B

23 −ve –

24 −ve –

25 −ve –

26 −ve –

27 −ve –

28 +ve B

29 +ve B

30 +ve A

31 +ve B

32 −ve –

33 +ve A

34 +ve B

35 −ve –

36 +ve B

37 +ve B

38 +ve A

39 +ve A

40 +ve B

http://www.ncbi.nlm.nih.gov/blast
https://www.megasoftware.net/
https://www.megasoftware.net/
https://www.ncbi.nlm.nih.gov/nuccore/MT584168
https://www.ncbi.nlm.nih.gov/nuccore/MT584169
https://www.ncbi.nlm.nih.gov/nuccore/MT584170
https://www.ncbi.nlm.nih.gov/nuccore/MT584171
https://www.ncbi.nlm.nih.gov/nuccore/MT584172
https://www.ncbi.nlm.nih.gov/nuccore/MT584173
https://www.ncbi.nlm.nih.gov/nuccore/MT584174
https://www.ncbi.nlm.nih.gov/nuccore/MT584175
https://www.ncbi.nlm.nih.gov/nuccore/MT584176
https://www.ncbi.nlm.nih.gov/nuccore/MT584177
https://www.ncbi.nlm.nih.gov/nuccore/MT584178
https://www.ncbi.nlm.nih.gov/nuccore/MT584179
https://www.ncbi.nlm.nih.gov/nuccore/MT584180
https://www.ncbi.nlm.nih.gov/nuccore/MT584181
https://www.ncbi.nlm.nih.gov/nuccore/MT584182
https://www.ncbi.nlm.nih.gov/nuccore/MT584183
https://www.ncbi.nlm.nih.gov/nuccore/MT584184
https://www.ncbi.nlm.nih.gov/nuccore/MT584185
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https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​186
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​187
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​188
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​189
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​190
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​191
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​192
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​193
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​194
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​195
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​196
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​197
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​198
https​://www.ncbi.nlm.nih.gov/nucco​re/MT584​199

Results
Out of 40 samples, the GLUD1 gene was amplified in 33 
samples (82.5%) (Table1, Fig. 2). The possible reason for 
this occurrence indicated the less parasitic load in these 
isolated samples. The product of GLUD1 gene was suc-
cessfully sequenced only in 32 samples. In these samples, 
assemblage B was found in 27 (84.37%) among which 18 
(66.66%) were sub-genotype BIII and 9 (33.33%) were 
sub-genotype BIV samples whereas 5 (15.6%) samples 
had assemblage A. Four of them were AI subgenotype 
and only1 belonged to sub-genotype AII.

Discussion
Giardia  intestinalis  is the most common and frequent 
intestinal parasitic agent of gastroenteritis mainly in the 

developing countries [7]. The present study provides data 
on genetic diversity of Giardia  isolates from patients in 
the Chandigarh region. As per results, assemblage A and 
B are common among this population, which is in con-
cordance to other studies [8, 9]. In our study, assemblage 
B was the predominant genotype observed followed by 
assemblage A. However, similar observations were pre-
viously reported and observed worldwide which showed 
that assemblage B was predominant in comparison to 
assemblage A [9–12]. There are studies which showed the 
presence of assemblage B in Rhesus macaques (Macaca 
mulatta) and potable water resources of Northern India 
[13, 14]. But other studies have reported the assemblage 
A as the predominant genotype in other regions [15]. Due 
to geographical variations, differences were observed in 
the prevalence of various genotypes and the detection of 
these variations would be helpful in designing  effective 
therapeutic approaches.

Conclusion
The results showed that PCR sequencing and phyloge-
netic analysis is an excellent molecular technique for 
genotyping of Giardia intestinalis. Detection of Giardia 
intestinalis assemblages and sub-assemblageswould be 
helpful in conducting epidemiological studies.

Limitation of study
Present study involves only single locus for genotyp-
ing and also the sample size is less so it is difficult to 
interpret zoonotic potential of these isolates. There-
fore, multi-locus typing data is required to differentiate 
between Giardia isolates.

https://www.ncbi.nlm.nih.gov/nuccore/MT584186
https://www.ncbi.nlm.nih.gov/nuccore/MT584187
https://www.ncbi.nlm.nih.gov/nuccore/MT584188
https://www.ncbi.nlm.nih.gov/nuccore/MT584189
https://www.ncbi.nlm.nih.gov/nuccore/MT584190
https://www.ncbi.nlm.nih.gov/nuccore/MT584191
https://www.ncbi.nlm.nih.gov/nuccore/MT584192
https://www.ncbi.nlm.nih.gov/nuccore/MT584193
https://www.ncbi.nlm.nih.gov/nuccore/MT584194
https://www.ncbi.nlm.nih.gov/nuccore/MT584195
https://www.ncbi.nlm.nih.gov/nuccore/MT584196
https://www.ncbi.nlm.nih.gov/nuccore/MT584197
https://www.ncbi.nlm.nih.gov/nuccore/MT584198
https://www.ncbi.nlm.nih.gov/nuccore/MT584199
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Fig. 1  Phylogenetic tree constructed with the neighbor-joining method using nucleotide sequences of GLUD1 gene. The sequence of Spironucleus 
vortens was used as an out-group
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Additional file 1: Table S1. Sequence of primers and sgRNA were listed.
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Fig. 2  Nested-PCR amplification of Giardia intestinalis GLUD1 gene (432bp) 1.5% agarose gel stained with Ethidium bromide. L, ladder (100bp); 
lane1–13, Giardia positive samples; lane14, positive control
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