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a b s t r a c t 

Understanding chest CT imaging of the coronavirus disease 2019 (COVID-19) will help detect infections 

early and assess the disease progression. Especially, automated severity assessment of COVID-19 in CT 

images plays an essential role in identifying cases that are in great need of intensive clinical care. How- 

ever, it is often challenging to accurately assess the severity of this disease in CT images, due to variable 

infection regions in the lungs, similar imaging biomarkers, and large inter-case variations. To this end, 

we propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT 

images, by jointly performing lung lobe segmentation and multi-instance classification. Considering that 

only a few infection regions in a CT image are related to the severity assessment, we first represent 

each input image by a bag that contains a set of 2D image patches (with each cropped from a specific 

slice). A multi-task multi-instance deep network (called M 

2 UNet) is then developed to assess the severity 

of COVID-19 patients and also segment the lung lobe simultaneously. Our M 

2 UNet consists of a patch- 

level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network 

for severity assessment (with a unique hierarchical multi-instance learning strategy). Here, the context 

information provided by segmentation can be implicitly employed to improve the performance of sever- 

ity assessment. Extensive experiments were performed on a real COVID-19 CT image dataset consisting 

of 666 chest CT images, with results suggesting the effectiveness of our proposed method compared to 

several state-of-the-art methods. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

The coronavirus disease 2019 (COVID-19) is spreading fast 

orldwide since the end of 2019. Until October 5, about 37.10 mil- 

ion patients are confirmed with this infectious disease, among 
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hich 1.07 million were died, reported by. 3 This raises a Public 

ealth Emergency of International Concern (PHEIC) of WHO. In the 

eld of medical image analysis, many imaging-based artificial in- 

elligence methods have been developed to help fight against this 

isease, including automated diagnosis [1–3] , segmentation [4–6] , 

nd follow-up and prognosis [7] . 

Previous imaging-based studies mainly focus on identifying 

OVID-19 patients from non-COVID-19 subjects. As the golden 
3 https://en.wikipedia.org/wiki/Template:COVID-19 _ pandemic _ data . 
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Fig. 1. Typical cases of two non-severe (left) and two severe (right) patients with 

COVID-19, where infections often occur in small regions of the lungs in CT images. 

The similar imaging biomarkers (e.g., ground glass opacities, mosaic sign, air bron- 

chogram and interlobular septal thickening) of both cases (denoted by red boxes) 

make the non-severe and severe images difficult to distinguish. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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4 https://github.com/KeleiHe/M2UNet . 
tandard for COVID-19 is the Reverse Transcription-Polymerase 

hain Reaction (RT-PCR) test, the effectiveness of those imaging- 

ase applications is limited. 

Moreover, approximately 80% of patients with COVID-19 have 

nly mild to moderate symptoms [8] , while the remaining pa- 

ients have severe symptoms. Based on previous studies [4,9] , the 

maging-based characters of COVID-19 patients are distinct to re- 

ated diseases, e.g., viral pneumonia. Therefore, the severity assess- 

ent of the disease is of high clinical value, which helps effectively 

llocate medical resources such as ventilator. Among various radi- 

logical examinations, chest CT imaging plays an essential role in 

ghting this infectious disease by helping early identify lung infec- 

ions and assess the severity of the disease. Previous studies show 

hat computed tomography (CT) has the ability to provide valuable 

nformation in the screening and diagnosis [9] . In this work, CT 

ould help the clinicians to evaluate the condition of the patients 

n advance, by which necessary measures or treatments could bet- 

er proceed, especially for severe patients in time. 

However, an automatic assessment of the severity of COVID-19 

n CT images is a very challenging task. First, infections caused by 

OVID-19 often occur in small regions of the lungs and are diffi- 

ult to identify in CT images, as shown in Fig. 1 . Second, imaging

iomarkers of COVID-19 patients caused by an infection are similar 

n some severe and non-severe cases are similar, including ground- 

lass opacities (GGO), mosaic sign, air bronchogram, and interlobu- 

ar septal thickening ( Fig. 1 ). In addition, there are large inter-case 

ariations in CT images of COVID-19 patients ( Fig. 2 ), because these 

mages are usually acquired by multiple imaging centers with dif- 

erent scanners and different scanning parameters. 

Several recent methods have been proposed for the diagnosis 

f COVID-19 [1–3,10,11] , with only some specifically designed for 

everity assessment of the disease. In several studies [4–6] , seg- 

entation of lung or lung lobe is used as a prerequisite procedure 

or diagnosis purposes. 

However, most of these methods treat the lung lobe segmen- 

ation and disease diagnosis as two separate tasks, ignoring their 

nderlying correlation. Note that the segmentation of lung lobe 

an provide rich information regarding spatial locations and tis- 
2 
ue types in CT images. Therefore, it is intuitively reasonable 

o jointly perform lung lobe segmentation and severity assess- 

ent/prediction. The reason is that the context information pro- 

ided by segmentation results can be used to improve the pre- 

iction performance. The joint learning scheme is obviously faster 

han the two-stage framework, since detecting and cropping the 

ung field are not needed. Besides, the classification task raises 

igh signal responses in lung lobe area, as demonstrated by the 

elated works of class activation maps (CAMs) [12] . Therefore, the 

nfection patterns of lung lobe in disease progression could also 

rovide useful guidance for the segmentation of lung lobes. 

Moreover, most of the previous works are based on 2D image 

lices [1–3] . However, the annotation of 2D CT slices is a heavy 

orkload for radiologists. It is interesting to directly employ 3D CT 

mages for automated severity assessment of COVID-19, which is 

esired for real-world clinical applications. 

To this end, in this paper, we propose a synergistic learning 

ramework for automated severity assessment of COVID-19 in the 

aw 3D CT images, by jointly performing severity assessment and 

ung lobe segmentation. Considering that only a few slices in CT 

mages are related to severity assessment, each input CT image 

s represented by a bag of 2D image patches which are randomly 

ropped from image slices. Furthermore, each patch is represented 

y a bag of infection regions represented by intermediate embed- 

ing features. Then, with each bag as input, a multi-task multi- 

nstance deep neural network (called M 

2 UNet) is developed, in- 

luding 1) a shared patch-level encoder, 2) a classification sub- 

etwork for severity assessment of COVID-19 patients (i.e., se- 

ere or non-severe) using a hierarchical multi-instance learning 

trategy, and 3) a segmentation sub-network for lung lobe seg- 

entation. Extensive experiments have been performed on a real- 

orld COVID-19 dataset with 6 6 6 chest CT images, with the results 

emonstrating the effectiveness of the proposed method compared 

o several state-of-the-art methods. The implementation of the 

roposed method is available at. 4 

The contributions of this work are three-fold: 

• A multi-task multi-instance learning framework is proposed to 

jointly assess the severity of COVID-19 patients and segment 

lung lobes in chest CT images, where the segmentation task 

provides context information to aid the task of severity assess- 

ment in chest CT image. 
• A unique hierarchical multi-instance learning strategy is devel- 

oped to predict the severity of patients in a weakly supervised 

manner. 
• We evaluate the proposed method on a real clinical dataset 

with 6 6 6 3D CT images of COVID-19 patients, achieved promis- 

ing results in severity assessment compared to several state-of- 

the-art methods. 

The rest of the paper is organized as follows. In Section 2, we 

ntroduce the related works for the segmentation and diagnosis of 

T images of COVID-19 patients, as well as related studies on deep 

ulti-instance learning. Then, we introduce the proposed method 

n Section 3. In Section 4, we present the materials, experimen- 

al setup, and experimental results. Finally, we conclude this paper 

nd present several future research directions in Section 5. 

. Related work 

In this section, we briefly review the most relevant studies from 

he following three aspects: 1) lung segmentation of CT images 

ith COVID-19, 2) automated diagnosis of COVID-19 patients, and 

) deep multi-instance learning. 

https://github.com/KeleiHe/M2UNet
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Fig. 2. Visualization of three typical cases in the COVID-19 CT image dataset from three different views. As shown in this figure, large inter-case variations (e.g., image size 

and spatial resolution) exist in CT images of COVID-19 patients. 
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.1. Lung segmentation of CT images with COVID-19 

Segmentation of lung or lung lobe has been used as a common 

re-requisite procedure for automatic diagnosis of COVID-19 based 

n chest CT images. Several deep learning methods have been pro- 

osed for the segmentation of lung in CT images with COVID-19. 

or instance, U-Net et al. [13] has been widely used for segmen- 

ation of both lung regions and lung lesions in COVID-19 appli- 

ations [6,14–16] . Qi et al. [6] use U-Net to delineate the lesions 

n the lung and extract radiometric features of COVID-19 patients 

ith the initial seeds given by a radiologist for predicting hospi- 

al stay. Also, several variants of U-Net have been applied to the 

iagnosis or severity assessment of COVID-19. Jin et al. [5] design 

 two-stage pipeline to screen COVID-19 in CT images, and they 

tilize U-Net++ [17] to detect the whole lung region and to sepa- 

ate lesions from lung regions. Shan et al. [4] integrates human- 

n-the-loop strategy into the training process of VB-Net (a vari- 

nt of V-Net). The human-aided strategy is an intuitive way to ad- 

ress the issue of lacking manual labels during segmentation in CT 

mages. 

.2. Automated diagnosis of COVID-19 

Both X-rays [18] and CT images [9] can provide effective infor- 

ation for the computer-assisted diagnosis of COVID-19. Compared 

ith X-rays, chest CT imaging contains hundreds of slices, which 

s clearer and more precise but has to take more time for spe- 

ialists to diagnose. Therefore, there is a great demand to use CT 

mages for automated diagnosis of COVID-19. In general, the exist- 

ng methods for COVID-19 diagnosis based on CT images can be 

oughly divided into two categories: 1) classification; 2) severity 

ssessment. In the former category, many studies have been con- 

ucted to determine whether patients are infected with COVID-19 

isease. For example, Chen et al. [1] exploits a UNet++ based seg- 

entation model to segment COVID-19 related lesions in chest CT 

mages of 51 COVID-19 patients and 55 patients with other dis- 

ases, and finally determine the label (COVID-19 or non-COVID-19) 

f each image based on the segmented lesions. Ying et al. [2] pro- 

ose a CT diagnosis system, namely DeepPneumonia, which is 

ased on the ResNet50 model to identify patients with COVID- 

9 from bacteria pneumonia patients and healthy people. In the 

econd category, Tang et al. [3] proposed to first adopt VB-Net to 

eparate the lung into anatomical sub-regions, and then use these 

ub-regions to compute quantitative features for training a random 

orest (RF) model for COVID-19 severity assessment (with labels of 

eing non-severe or severe). 
3 
.3. Deep multi-instance learning 

The scenario of multi-instance learning (MIL) [19–21] or learn- 

ng from weakly annotated data [22] arises when only a gen- 

ral statement of the category is given, but multiple instances 

an be observed. MIL aims to learn a model that can predict 

he label of a bag accurately, and many recent studies have fo- 

used on implementing MIL via deep neural networks. For in- 

tance, Oquab et al. [22] train a deep model with multiple image 

atches of multiple scales as input, and aggregate the prediction 

esults of multiple inputs by using a max-pooling operation. Be- 

ides, many studies [23–25] propose to formulate image classifi- 

ation as a MIL problem so as to address the weakly supervised 

roblem. Moreover, MIL is particularly suitable for problems with 

nly a limited number (e.g., tens or hundreds) of training samples 

n various medical image-based applications, such as computer- 

ssisted disease diagnosis [26–29] . For instance, Yan et al. [28] pro- 

ose a two-stage deep MIL method to find discriminative lo- 

al anatomies, where the first-stage convolutional neural network 

CNN) is learned in a MIL fashion to locate discriminative im- 

ge patches and the second-stage CNN is boosted using those se- 

ected patches. More recently, a landmark-based deep MIL frame- 

ork [29] is developed to learn both local and global representa- 

ions of MRI for automated brain disease diagnosis, leading to a 

ew direction for handling limited training samples in the domain 

f medical image analysis. Since there are only a limited number 

f cases at hand, it is desirable to employ the multi-instance learn- 

ng strategy for severity assessment of COVID-19 patients in chest 

T images. 

. Proposed method 

.1. Framework 

The framework of the proposed method is illustrated in Fig. 3 , 

here the input is the raw 3D CT image and the output is the 

ung segmentation and severity assessment of COVID-19 patients 

i.e., severe or non-severe). Specifically, each 3D CT image is pro- 

essed via several image pre-processing steps. Then, a set of 2D 

mage patches is randomly cropped from the processed image to 

onstruct an instance bag, and each bag represents a specific input 

T image. This bag is regarded as the input of the proposed multi- 

ask multi-instance U-Net (M 

2 UNet). The M 

2 UNet is designed to 

earn two tasks jointly, i.e., severity assessment of a COVID-19 pa- 

ient and segmentation of the lung lobe. 

As shown in Fig. 3 , in M 

2 UNet, an encoding module is first 

sed for patch-level feature extraction of 2D patches in each input 
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Fig. 3. Illustration of the proposed framework for joint lung lobe segmentation and severity assessment of COVID-19 in 3D CT images. Each raw 3D CT image is first pre- 

processed, and multiple 2D image patches (with each patch from a specific slice) are then extracted to construct an instance bag for representing each input CT scan. This 

bag is then fed into the proposed multi-task multi-instance UNet (M 

2 UNet) for joint lung lobe segmentation and severity assessment of COVID-19, consisting of a shared 

patch-level encoder, a segmentation sub-network, and a classification sub-network for severity assessment. Here, the segmentation task can provide location and tissue 

guidance for the task of severity assessment that employs a hierarchical multi-instance learning strategy. 
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ag, followed by two sub-networks for joint severity assessment 

nd lung lobe segmentation. Specifically, in the classification sub- 

etwork, these extracted patch-level features are fed into a fea- 

ure embedding module and an image-level feature learning mod- 

le to capture the local-to-global volume representation of the in- 

ut CT image. With the learned volume features, a classification 

ayer is finally used to assess the severity of each COVID-19 pa- 

ient (i.e., severe or non-severe). In the segmentation sub-network, 

hose patch-level features are fed into a decoding module to per- 

orm lung lobe segmentation for each patch in the input bag. Since 

hese two sub-networks are trained jointly with a shared patch- 

evel encoder, the context information provided by the segmen- 

ation results can be implicitly employed to improve the perfor- 

ance of severity assessment. 

.2. Data preparation 

To eliminate the effect of the background noise in each raw 3D 

T image, we crop each scan to only keep the region containing 

he human body, by using a threshold-based processing method. 

pecifically, we first binarize the image using the threshold of zero, 

hrough which the human tissues and the gas regions will be sepa- 

ated. Then, the human body region is cropped according to the bi- 

ary mask. Each body region image has a size of at least 256 × 256

or the axial plane in this work. 

While image resampling is commonly used in many deep 

earning methods for segmentation and classification [30–32] , we 

o not resample the raw CT images in order to preserve their 

riginal data distributions. Moreover, image registration meth- 

ds [33,34] are not included in our pipeline. Since our method 

s clinical-oriented with inconsistent imaging qualities, CT im- 

ges used in this study are not as clean as those in benchmark 

atasets [35] . For example, the physical spacing of our data has 

arge variation, e.g., from 0.6 mm to 10 mm between slices, be- 

ause of the use of different CT scanners and scanning parameters. 

sing a common interpolation method (e.g., trilinear interpolation) 

o resample a CT image into 1 mm, one will introduce heavy arti- 

acts to the image. Besides, only a few infection regions in each 

T image are related to severity assessment. To this end, we em- 

loy the weakly supervised multi-instance learning (MIL) strategy 

or handing these inconsistent CT images. Specifically, for each pre- 

rocessed CT image, we randomly crop a set of 2D patches sam- 

led from 2D slices (with each patch from a specific slice) in each 

mage to construct an instance bag, and each bag is used to rep- 

esent a specific CT image and treated as the input of the subse- 
4 
uent M 

2 UNet. In this way, the inter-slice/patch relationships can 

e implicitly captured by our M 

2 UNet. In addition, this MIL strat- 

gy represents each 3D image through a set of 2D image patches 

ather than sequential slices. This can partially alleviate the prob- 

em of data inconsistency, so our method has high practical value 

n real-world applications. 

.3. Network architecture 

As shown in Fig. 3 , using each bag (consisting of a set of 2D im-

ge patches) as the input data, the proposed M 

2 UNet first employs 

n encoding module for patch-level feature extraction. Based on 

hese features, the classification and segmentation sub-networks 

re then used to jointly perform two tasks, respectively, i.e., 1) 

everity assessment of the patients, and 2) segmentation of lung 

obes in each patch. Specifically, the classification sub-network 

ses a unique hierarchical MIL strategy to extract the local-to- 

lobal representation of each input image, with an embedding- 

evel MIL module, an image-level MIL module, and a classification 

odule. The segmentation sub-network contains a decoding mod- 

le to segment lung lobes of 2D image patches in each bag. 

The detailed network architecture is listed in Table 1 . The com- 

ination of the encoder and decoder is U-Net like, with four down- 

ampling blocks in the encoder and four up-sampling blocks in the 

ecoder. The outputs of the same level blocks in the encoder and 

ecoder are concatenated and fed into the next block of the de- 

oder. Limited by computational resources, all the convolutional 

ayers in the encoder and decoder have the same number (i.e., 64) 

f kernels, except the last block in the encoder. The last block of 

ncoder outputs 512 dimensional features to help build a more ro- 

ust classification for severity assessment. The decoder outputs the 

orresponding segmentation mask of five types of lung lobes for 

ach image patch. 

.4. Hierarchical multi-instance learning 

While infection regions of the lung, related to COVID-19 (e.g., 

odule and GGO) are usually located in regions of the CT image, 

he category of each CT image is labeled at the entire image level, 

ather than the region-level. That is, many regions are actually un- 

elated to the classification task for severity assessment. 

Multi-instance learning (MIL) provides a useful tool to solve 

uch a weakly supervised problem. Conventional MIL represents a 

D image as a bag, and each bag consists of multiple regions of the 

nput image (i.e., instances). Their overall prediction is made at the 
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Table 1 

Network architecture of the proposed M 

2 UNet. The network has three main components: 1) a encoding module containing five encoding blocks; 2) a 

classification sub-network containing the embedding-level MIL and image-level MIL, and a classifier; and 3) a segmentation sub-network consisting of 

a decoding module with five decoding blocks. MIL: multi-instance learning; Num.: Number of layers, K: kernel size; PAD: padding size; STR: stride; #: 

Number of learnable parameters; cov: convolution; GCP: global contrast pooling; concat: concatenation. 

Block Name Num. Layers Parameter Setting Input # 

Encoding block 1 2 {conv, batchnorm, ReLU} K: { 3 × 3 × 64 }, PAD:1, STR:1 2D image patches 37 K

Pool 1 1 max-pooling K: { 2 × 2 }, STR:2 Encoding block 1 - 

Encoding block 2 2 {conv, batchnorm, ReLU} K: { 3 × 3 × 64 }, PAD:1, STR:1 Pool 1 72 K

Pool 2 1 max-pooling K: { 2 × 2 }, STR:2 Encoding block 2 - 

Encoding block 3 2 {conv, batchnorm, ReLU} K: { 3 × 3 × 64 }, PAD:1, STR:1 Pool 2 72 K

Pool 3 1 max-pooling K: { 2 × 2 }, STR:2 Encoding block 3 - 

Encoding block 4 2 {conv, batchnorm, ReLU} K: { 3 × 3 × 64 }, PAD:1, STR:1 Pool 3 72 K

Pool 4 1 max-pooling K: { 2 × 2 }, STR:2 Encoding block 4 - 

Encoding block 5 1 {conv, batchnorm, ReLU} K: { 3 × 3 × 64 }, PAD:1, STR:1 Pool 4 2595 K

1 {conv, batchnorm, ReLU} K: { 3 × 3 × 512 }, PAD:1, STR:1 

Embedding-Level 

MIL 

1 GCP Num. Concepts: 256 Encoding block 5 193 K

1 conv K: { 1 × 1 × 256 }, PAD:0, STR:1 

Image-Level MIL 1 GCP Num. Concepts: 128 Embedding-Level MIL 48 K

1 conv K: { 1 × 1 × 128 }, PAD:0, STR:1 

Classifier 1 conv K: { 1 × 1 × 128 }, PAD:0, STR:1 Image-Level MIL 0 . 3 K

Decoding block 5 1 {up-sample, conv, batchnorm, ReLU, concat} K: { 3 × 3 × 512 }, PAD:1, STR:1 Encoding block 5 397 K

Decoding block 4 1 {up-sample, conv, batchnorm, ReLU, concat} K: { 3 × 3 × 64 }, PAD:1, STR:1 Decoding block 5 145 K

2 {conv, batchnorm, ReLU} K: { 3 × 3 × 128 }, PAD:1, STR:1 Encoding block 3 

Decoding block 3 1 {up-sample, conv, batchnorm, ReLU, concat} K: { 3 × 3 × 64 }, PAD:1, STR:1 Decoding block 4 145 K

2 {conv, batchnorm, ReLU} K: { 3 × 3 × 128 }, PAD:1, STR:1 Encoding block 2 

Decoding block 2 1 {up-sample, conv, batchnorm, ReLU, concat} K: { 3 × 3 × 64 }, PAD:1, STR:1 Decoding block 3 145 K

2 {conv, batchnorm, ReLU} K: { 3 × 3 × 128 }, PAD:1, STR:1 Encoding block 1 

Decoding block 1 1 conv K: { 1 × 1 × 64 }, PAD:0, STR:1 Decoding block 2 0 . 5 K
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Fig. 4. A brief illustration of the learning principle for the proposed global contrast 

pooling (GCP) layer. Here, the concepts denote to-be-learned features that are dis- 

criminative for severity assessment. The GCP layer is designed to pull the relevant 

instance features and concepts closer, and push the irrelevant instance features and 

concepts away from each other. 

a

t

ag-level by roughly two kinds of methods, i.e., the embedding- 

evel methods and the instance-level methods. The former learns 

he relationship among instances by projecting them into a new 

mbedding space. The latter directly generates the bag-level pre- 

ictions by performing voting on the instance predictions. How- 

ver, both methods are inapplicable for the classification of 3D im- 

ges, as 3D images contain multiple 2D image slices, and the class 

abels are also related to some local regions of the slices. 

In this work, based on the previous study on pathological im- 

ges [36] , we propose a hierarchical MIL strategy in the classifica- 

ion sub-network of our M 

2 UNet to perform severity assessment 

f COVID-19 in 3D CT images, as shown in Fig. 3 . As mentioned

n Section 3.2 , we represent each input 3D volumetric image as 

 bag consisting of a set of 2D image patches, and these patches 

re regarded as the instances in the MIL problem settings. For- 

ally, we first construct a bag with n 2D patches cropped from 

he regional slices to represent each input CT image. Denote the 

 th and the jth 3D CT image as X i and X j , respectively, where X i =
 φins 

i 1 
, φins 

i 2 
, . . . , φins 

in i 
} and X j = { φins 

j1 
, φins 

j2 
, . . . , φins 

jn j 
} . Here, φins 

kl 
∈ R 

d 

k = 1 , 2 , . . . , n k ) indicates the lth instance of the k th image. Then,

hese 2D patches (size: height × width ) are fed into the encoding 

odule for patch/instance-level feature extraction. These instance- 

evel features are further fed into an embedding-level MIL mod- 

le, which will be introduced later. After obtaining the instance- 

evel features, the bag/image-level feature �i are then generated 

y our proposed global contrast pooling (GCP) layer in the image- 

evel MIL module. 

As illustrated in Fig. 4 , the proposed GCP layer aims to make 

he instance features closer to the relevant concepts, and also push 

hose irrelevant instance features and concepts away from each 

ther. In this work, the term “concept” denotes the to-be-learned 

eature of GCP layer that is discriminative for severity assessment. 

heoretically, the concept is a normalized weight to map features 

n instance feature space to an ordered embedding space. Specifi- 

ally, in the GCP layer, we assume the bag-level feature �i is rep- 

esented by the relationship between instance features and p con- 

epts. Here, these concepts are learned to reveal the data struc- 

ure in a global perspective. The bag-level feature is then denoted 
t

5 
s a p dimensional feature vector, with each dimension denoting 

he maximum similarity between one concept and all instance fea- 

ures. We use the cosine function to measure such relationships. 
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d

hus, the bag feature and the similarity can be written as 

i = [ s i 1 , s i 2 , . . . , s im 

, . . . , s ip ] , (1)

 im 

= 

n i 
max 
k =1 

w 

� 
m 

φik + R (w m 

) , (2) 

here s im 

( m = 1 , . . . , p) is the maximum similarity between the

nstance features of the i th bag and the m th image-level concept 

 m 

. R (·) denotes the commonly used regularization term used in 

eep networks. With Eqs. (1) - (2) , one can observe that the pro-

osed GCP layer can automatically learn the concepts that are re- 

ated to those discriminative instances, thus reducing the influence 

f those irrelevant instances. Note such a GCP layer can be also 

sed in other weakly supervised problems, where only a small por- 

ion of regions in an image are related to the task at hand (such as

RI-based brain disorder diagnosis [29] ). 

We further use an embedding-level MIL module (with a GCP 

ayer) to learn embedding-level representations, by regarding each 

mage patch as a bag and the intermediate patch-level features 

roduced by the encoder as instances. In this way, the relation- 

hips among small regions in each patch can be modeled by our 

ethod. Based on the embedding-level features, an image-level 

IL module (with a GCP layer) is further used to generate the 

olume features. Based on the volume features, we use a fully- 

onnected layer followed by a cross-entropy loss to predict the 

everity score (i.e., severe or non-severe) of each input CT image. 

he final loss function in the proposed hierarchical MIL network 

or severity assessment can be formulated as 

 MIL = −log( f c(�i ) , y ) , (3) 

here f c(·) denotes the mapping function of the fully-connected 

ayer, and y denotes the severity type confirmed by clinicians. 

.5. Multi-task learning for joint lung segmentation and severity 

ssessment 

The segmentation task is supervised by the aggregation of 

ross-entropy loss and Dice loss as follows 

 seg = − 1 
N 

N ∑ 

n =1 

∑ C 
c=1 l og( ̂  p c n , l 

c 
n ) − 2 ×

∑ 

( ̂ p c n ∩ l c n ) ∑ 

ˆ p c n + 
∑ 

l c n 
+ 1 , (4) 

here ˆ p c n and l c n denote the predicted and ground-truth segmen- 

ation masks for the n th patch in the cth category. In this work, 

e segment c = 7 categories, including five parts of lung lobes and 

he background. It is worth noting that most of the cases in our 

ataset do not have ground-truth segmentation masks. For these 

ases, we simply avoid calculating the segmentation loss for them. 

Finally, the losses in Eqs. (3) and (4) are trained simultaneously 

n a multi-task learning manner, and the overall loss of the pro- 

osed method is written as 

 = λL MIL + L Seg , (5) 

here λ is the trade-off parameter used to balance the contribu- 

ions of these two tasks. In this work, λ is empirically set to 0.01. 

.6. Implementation 

The proposed method is implemented based on the open- 

ource deep learning library Pytorch . The training of the network 

s accelerated by four NVidia Tesla V100 GPUs (each with 32 

B memory). For feasible learning of the lung region images, we 

lamp the intensities of the image into [ −1200 , 0] , which indi-

ates that we use the width of 1200 and the level of −600 for 

he pulmonary window. Then, the data is normalized to the value 

f [0,255], as used by other deep learning methods. The dataset is 

ighly imbalanced as the number of severe patients is much fewer 
6 
han the non-severe patient. The ratio of the severe patient is less 

han 20% in our dataset. Therefore, we augmented the data by di- 

ectly duplicated the severe cases in the training set. This can be 

one because the proposed method uses a random cropping strat- 

gy to construct the inputs. This makes the duplicated cases not 

he same to each other for the training of the network. We also 

se the random cropping strategy in the testing stage, by assum- 

ng that the data distribution is already well learned in training. 

ther cropping strategies, e.g., center cropping, may not be suit- 

ble here, as the center of pulmonary is dominated by the trachea 

nd other tissues. 

In both training and testing stage, we randomly crop 200 image 

atches from each input 3D CT image to construct the image-level 

ag (i.e., with the bag size of n = 200 ). The concept number p for

ultiple instance learning is set to 256 for embedding-level MIL 

odule, and 128 for image-level MIL module. And we use the out- 

ut of the encoder to construct the embedding-level bag that con- 

ains 8 × 8 feature maps. We train M 

2 UNet using the learning rate 

f 0.01 with a decay strategy of “Poly” (with the power of 0.75). 

he network is optimized by a standard Stochastic Gradient De- 

cent (SGD) algorithm with 100 epochs. And the weights are de- 

ayed by a rate of 1 × 10 −4 with the momentum of 0.9. 

. Experiments 

In this section, we first introduce the materials, competing 

ethods, and experimental setup. We then present the experi- 

ental results achieved by our method and several state-of-the- 

rt methods. We finally investigate the influence of the parameters 

nd two major strategies used in our method. 

.1. Materials 

The real COVID-19 dataset contains a total of 6 6 6 3D chest 

T scans acquired from 242 patients who are confirmed with 

OVID-19 (i.e., RT-PCR Test Positive). These CT images are col- 

ected from seven hospitals with a variety of CT scanners, including 

hilips (Ingenuity CT iDOSE4), GE (Bright speed S), Siemens (So- 

atom perspective), Hitachi (ECLOS), and Anke (ANATOM 16HD). 

he images are of large variation in terms of the image size 

f 512 × (512 ∼ 6 6 6) × (23 ∼ 732) , and the spatial resolution of 

 . 586 ∼ 0 . 984 mm, 0 . 586 ∼ 0 . 984 mm and 0 . 399 ∼ 10 mm. Obvi-

usly, diagnosis based on these images is a very challenging task. 

he severity of the patient is confirmed by clinicians, following the 

uideline of 2019-nCoV (trail version 7) issued by the China Na- 

ional Health Commission. The severity of the patient is catego- 

ized into four types, i.e., mild, moderate, severe, and critical. In 

linical practice, patients are often divided into two groups with 

ifferent treatment regimens, i.e., severe and non-severe. The seg- 

entation of 152 out of 6 6 6 images were delineated by an AI- 

ased software and confirmed by experienced radiologists. In this 

ork, we employ this partitioning strategy. That is, mild and mod- 

rate are treated as non-severe, while severe and critical are re- 

arded as severe. Therefore, the task of severe assessment is for- 

ulated into a binary classification problem. Therefore, the dataset 

s partitioned into 51 severe and 191 non-severe patients. 

.2. Competing methods 

We first compare the proposed M 

2 UNet with five state-of-the- 

rt methods in [3,37–39] for severity assessment of COVID-19 pa- 

ients. The first two methods [3,37] are both based on hand-crafted 

eatures of CT images, while the last two [38,39] are deep learning- 

ased methods that can learn imaging features automatically from 

ata. Specifically, Tang et al. [3] first segment the lung, lung lobe 
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Fig. 5. The receiver operating characteristic (ROC) curves achieved by four different 

methods in the task of severity assessment. 
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nd lesions in CT images. Then, the quantitative features of COVID- 

9 patients, e.g., the infection volume and the ratio of the whole 

ung, are calculated based on the segmentation results. The pre- 

iction is done by a random forest method. Yang et al. [37] pro- 

osed to aggregate infection scores calculated on 20 lung regions 

or severity assessment. ResNet50-3d is a non-MIL method us- 

ng ResNet50 [38] with 3D convolutional layers to directly clas- 

ify 3D CT images. In this case, all CT images are resampled to a 

xed size of 128 × 128 × 64 . The ResNet50+Max method is com- 

ared for patch-wise classification. ResNet50+Max is an instance- 

evel MIL method, which has a 2d version of ResNet-50 backbone 

o extract patch features, and performs image-level classification 

hrough max-voting of the patch features. In addition, we apply the 

ated Att. MIL method proposed in [39] on our dataset, which is a 

mbedding-level MIL method with an gated attention mechanism. 

or fair comparison, this method shares the same multi-instance 

ool as our M 

2 UNet. 

We further compare our method with two state-of-the-art 

ethods for lung lobe segmentation, including 1) UNet [13] , and 

) UNet++ [17] . The parameter settings for these five competing 

ethods are the same as those in their respective papers. 

To evaluate the influence of the proposed multi-task learning 

nd hierarchical MIL strategies used in M 

2 UNet, we further com- 

are M 

2 UNet with its two variants: 1) M 

2 UNet with only the clas-

ification sub-network (denoted as Cls. Only), 2) M 

2 UNet with only 

he segmentation sub-network (denoted as Seg. Only). 

.3. Experimental setup 

A five-fold cross-validation (CV) strategy is used in the exper- 

ments for performance evaluation. Specifically, the whole dataset 

s first randomly partitioned into five subsets (with approximately 

qual sample size of subjects). We treat one subset as the testing 

et ( 20% ), while the remaining four subsets are combined to con- 

truct the training set ( 70% ) and validation set ( 10% ). The validation

et here is used for selecting the hyper-parameters. This process is 

terated until each subsets serve as a testing set once. The final re- 

ults are reported on the test set. 

Two tasks are included in the proposed method, i.e., 1) clas- 

ification of severity assessment, and 2) segmentation of the lung 

obe. For performance evaluation, two sets of metrics are used in 

hese two tasks, with the details given below. 

.3.1. Metrics for classification 

We use five commonly used metrics to evaluate the classifi- 

ation performance achieved by different methods in the severity 

ssessment task, i.e., Accuracy, Precision, Recall, F1 Score, and the 

rea under the receiver operating characteristic curve (AUC). 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

, (6) 

 recision = 

T P 

T P + F P 
, Recall = 

T P 

T P + F N 

, (7) 

 1 Score = 

2 × P recision × Recall 

P rec ision + Recall 
. (8) 

here TP, TN, FP and FN denote true positive, true negative, false 

ositive and false negative, respectively. In this work, the threshold 

f 0.5 is used to calculate these metrics. 

.3.2. Metrics for segmentation 

We use three metrics, i.e., Dice Similarity Coefficient (DSC), Pos- 

tive Predict Value (PPV) and Sensitivity (SEN), to evaluate the seg- 

entation performance of different methods, with the definitions 

iven below. 

SC = 

2 ‖ V gt ∩ V seg ‖ 

‖ V gt ‖ + ‖ V seg ‖ 

; (9) 
7 
 P V = 

‖ V gt ∩ V seg ‖ 

‖ V seg ‖ 

; SEN = 

‖ V gt ∩ V seg ‖ 

‖ V gt ‖ 

. (10) 

here V gt and V seg represent the ground-truth and predicted seg- 

entation maps for each scan, respectively. 

.4. Comparison with state-of-the-art methods 

.4.1. Results of severity assessment 

We first report the performance of seven different methods in 

he task of severity assessment for COVID-19 patients, with the re- 

ults shown in Table 2 . Note that the results from the competing 

ethods are directly referred from the respective papers. As can 

e seen, ResNet50-3d performs worse than the other competing 

ethods. This is mainly because the data spacing and sizes are 

nconsistent across the dataset, making the patterns vary greatly 

hen resampling all the images into the same size. The other four 

eep learning-based methods usually outperform two hand-crafted 

eature-based methods in most cases. For some specific metrics, 

he method in [3] achieves the Recall of 0.933, which is signif- 

cantly better than ResNet50+Max. The conventional embedding- 

evel MIL-based method in [39] gets a performance improvement 

n terms of accuracy by 8% . Three MIL methods (i.e., [39] , Cls.

nly, and M 

2 UNet) yield satisfying performance, and the proposed 

 

2 UNet achieves the best results (e.g.., the accuracy of 98 . 5% and 

1 Score of 99 . 1% ). However, the proposed method with multiple 

nstances in MIL achieves the accuracy of 98 . 5% and F1 Score of 

9 . 1% . The receiver operating characteristic (ROC) curves of four 

ompeting methods are illustrated in Fig. 5 . Note that this ROC 

urve is plotted based on the results on one fold testing data, 

hich is slightly different from the average performance on five- 

olds in Table 2 . Table 2 and Fig. 5 clearly suggest that our M 

2 UNet

enerates the overall best performance in the task of severity as- 

essment of COVID-19 patients based on chest CT images. The 

recision-Recall curve of four competing methods are illustrated 

n Fig. 6 . The Precision-Recall curve suggests that the proposed 

ethod is also the overall best method among these four meth- 

ds. Also, the performance of the Gated Att. MIL method and Cls. 

nly method drop with threshold higher than 0.8. 

.4.2. Results of lung lobe segmentation 

We then report the results of lung lobe segmentation achieved 

y four different methods in Table 3 . Comparing Seg. Only and the 
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Table 2 

Quantitative comparison for severity assessment tasks with the state-of-the-art methods. 

Method Accuracy Precision Recall F1 Score AUC 

ResNet50-3d 0.913 ±0.059 0.902 ±0.118 0.756 ±0.106 0.786 ±0.112 0.759 ±0.102 

ResNet50 + Max 0.924 ±0.497 0.856 ± 0.154 0.793 ±0.106 0.816 ± 0.120 0.803 ±0.090 

Gated Att. MIL [39] 0.955 ±0.015 0.879 ±0.054 0.946 ±0.019 0.906 ± 0.037 0.973 ±0.024 

Tang et al. [3] ∗ 0.875 - 0.933 - 0.910 

Yang et al. [37] - - 0.750 - 0.892 

Cls. Only (Ours) 0.969 ±0.023 0.928 ±0.073 0.958 ±0.031 0.938 ±0.045 0.980 ±0.013 

M 

2 UNet (Ours) 0.985 ±0.005 0.975 ±0.022 0.952 ±0.011 0.963 ±0.011 0.991 ±0.010 

Table 3 

Quantitative comparison for the performance of lung lobe segmentation with the state- 

of-the-art methods. 

Method # (MB) DSC SEN PPV 

U-Net 131.71 0.776 ± 0.050 0.759 ± 0.037 0.834 ± 0.033 

U-Net + 34.97 0.784 ± 0.035 0.773 ± 0.038 0.821 ± 0.018 

Seg. Only (Ours) 14.37 0.759 ± 0.055 0.756 ± 0.064 0.785 ± 0.045 

M 

2 UNet (Ours) 15.32 0.785 ± 0.058 0.783 ± 0.059 0.799 ± 0.051 

Fig. 6. The Precision-Recall (PR) curve achieved by four different methods in the 

task of severity assessment. 
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onventional U-Net, the former dramatically reduces the parame- 

er from 131 . 71 MB to 14 . 37 MB . As a consequence, the performance

n terms of DSC and PPV is also decreased by 1 . 7% and 4 . 9% , re-

pectively. By using multi-task learning, M 

2 Net improves the per- 

ormance, from 0.759 to 0.785 in terms of DSC, which also out- 

erform the performance of conventional U-Net, with a decreas- 

ng of parameters, from 131.71 to 15.32. The proposed M 

2 UNet 

lso achieves a slightly higher performance compared with 

-Net++. 

The visualization of segmentation results achieved by three dif- 

erent methods on two subjects is shown in Fig. 7 . From this figure,

e can see that M 

2 UNet generates the overall best segmentation 

asks, while U-Net and U-Net++ usually yield under-segmentation 

esults on these cases. These results further show the advantage of 

ur M 

2 UNet. 

.5. Ablation study 

We further evaluate the influence of two major strategies used 

n our M 

2 UNet, i.e., 1) the hierarchical MIL strategy for classifica- 

ion, and 2) the multi-task learning strategy for joint severity as- 

essment and lung lobe segmentation. 
8 
.5.1. Influence of hierarchical MIL strategy 

To evaluate the effectiveness of the hierarchical MIL strat- 

gy, we compare the variant of the proposed M 

2 UNet (i.e., Cls. 

nly without the segmentation sub-network) with a non-MIL 

ethod (i.e., ResNet50-3d) and two one-stage MIL methods (i.e., 

esNet50+Max, Gated Att. MIL [39] ). The classification results of 

hese four methods in the task of severity assessment are re- 

orted in Table 2 . As shown in Table 2 , three MIL methods (i.e.,

esNet50+Max, Gated Att. MIL and Cls. Only) can generate more 

ccurate decisions under the weakly supervised setting, compared 

ith the non-MIL method ResNet50+Max. Besides, our hierarchical 

IL strategy can further boost the classification performance com- 

ared to the conventional one-stage MIL strategy. For instance, our 

ls. Only method achieves an F1 Score of 0.938, which is higher 

han that (i.e., 0.906) yielded by Gated Att. MIL with a one-stage 

IL strategy. These results suggest the effectiveness of the pro- 

osed hierarchical MIL strategy. 

.5.2. Influence of multi-task learning strategy 

Our M 

2 UNet can jointly learn the segmentation task and the 

lassification task in a multi-task learning manner. Here, we also 

nvestigate the influence of such a multi-task learning paradigm, 

y comparing M 

2 UNet with its two single-task variants, i.e., “Cls. 

nly” for classification and “Seg. Only” for segmentation. The per- 

ormance comparison in two tasks for severity assessment and 

ung lobe segmentation are reported in Tables 2 and 3 , respec- 

ively. Table 2 suggests that, compared with Cls. Only, the multi- 

ask learning paradigm used in M 

2 UNet helps to improve the clas- 

ification accuracy by 1 . 6% , while increasing the precision score by 

ver 5% and the F1 Score by 2 . 5% . Notably, the F1 and precision of

he Cls. Only method are already higher than 90% , which are hard 

o be improved. This is more valuable in this classification scheme, 

s the F1 score is more representative in evaluating such an imbal- 

nced classification task. 

As can be observed from Table 3 , although M 

2 UNet is not 

pecifically designed for lung lobe segmentation, it still improves 

he overall segmentation performance in terms of three metrics, 

ompared with its single-task variant (i.e., Seg. Only). This implies 

hat the proposed multi-task learning strategy is useful in boosting 

he learning performance of both tasks of severity assessment and 

ung lobe segmentation. 

.6. Influence of bag size 

We further investigate the performance of our method 

sing different bag sizes, and the results are shown 
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Fig. 7. The visualization of lung lobe segmentation results by three different methods on two typical cases. GT denotes the ground-truth masks. The under-segmentation 

regions are denoted by red boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Performance comparison for severity prediction with respect to different bag 

sizes. 
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Fig. 9. Boxplot for the margin of prediction and label with respect to different 

weight λ for multiple instance loss. The margin larger than 0.5 indicates the wrong 

prediction. 

Table 4 

Performance comparison for segmentation 

with respect to different learning rate. 

Learning rate DSC SEN PPV 

0.1 0.783 0.772 0.789 

0.01 0.785 0.783 0.799 

0.001 0.734 0.705 0.754 

Table 5 

Performance comparison for severity prediction with respect to 

different learning rate. 

Learning rate Accurate Precision Recall F1 Score 

0.1 0.946 0.833 0.970 0.885 

0.01 0.985 0.975 0.952 0.963 

0.001 0.960 0.881 0.922 0.900 

b

0

u

p

0

w

r

c

n Fig. 8 . Specifically, we set the bag size within 

 50 , 80 , 100 , 150 , 200 , 250 , 300 , 350 , 400 } . As shown in the ta-

le, the classification performance of M 

2 UNet gradually improves 

long with the bag size. The proposed method achieves the best 

erformance with the bag size of 250. Another observation is 

hat the table suggests the performance of the proposed AI-based 

everity assessment model is insensitive to the bag size when 

arger than 100, indicating that at least 100 patches are required 

or the proposed method to achieve an acceptable result. 

.7. Influence of weigh parameter 

We evaluate the influence of the hyper-parameter λ. The box- 

lot for the margin of prediction and ground-truth labels is shown 

n Fig. 9 , where the margin is calculated by | p − l| , p denotes the

rediction score and l denotes the label. The margin below 0.5 in- 

icates that the prediction is correct. As shown in this figure, the 

ask weight λ affects the classification performance of the model, 

nd the proposed M 

2 UNet performs best with λ = 0 . 01 . 

.8. Influence of learning rate 

We further investigate the influence of the learning rate on the 

erformance of M 

2 UNet, with the results given in Tables 4 - 5 . As

uggested by the table, the performance of M 

2 UNet for both clas- 

ification and segmentation tasks are affected by different learn- 

ng rates. The proposed method achieves the best performance for 
9 
oth classification and segmentation tasks with the learning rate of 

.01. Another observation is that the performance of the network is 

nstable with a large learning rate (i.e., 0.1), and the gap between 

recision and recall is large, with 0.833 in terms of precision and 

.970 in terms of recall. The performance of the network is stable 

ith a small learning rate (i.e., 0.001), with precision of 0.881 and 

ecall of 0.922. However, it cannot achieve the best performance, 

ompared with the network trained by the learning rate of 0.01. 
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. Conclusion and future work 

In this paper, we propose a synergistic learning framework for 

utomated severity assessment and lung segmentation of COVID- 

9 in 3D chest CT images. In this framework, we first represent 

ach input image by a bag to deal with the challenging problem 

hat the severity is related to local infected regions in the CT im- 

ge. We further develop a multi-task multi-instance deep network 

called M 

2 UNet) to assess the severity of COVID-19 patients and 

egment the lung lobe simultaneously, where the context infor- 

ation provided by segmentation can be employed to boost the 

erformance of severity assessment. A hierarchical multi-instance 

earning strategy is also proposed in M 

2 UNet for severity assess- 

ent. Experimental results on a real COVID-19 CT image dataset 

emonstrate that our method achieves promising results in sever- 

ty assessment of COVID-19 patients, compared with several state- 

f-the-art methods. 

In the current work, our dataset is a multi-center dataset that 

s collecting in a short period. Therefore, constructing a new inde- 

endent testing data can further evaluate the generalization ability 

f the proposed method. Also, the severity assessment of COVID-19 

nly relies on one time-point data, without considering longitudi- 

al imaging biomarkers. It is interesting to perform a longitudinal 

tudy to investigate the progression of the disease, which is one 

f our future work. Since annotations for lung lobe in 3D CT im- 

ges are usually tedious and error-prone, only a small number of 

ubjects in our dataset have ground-truth segmentation. Therefore, 

t is highly desired to develop automated or even semi-automated 

mage annotation methods, which will also be studied in the fu- 

ure. The methodology of this work is general. We believe it can 

e flexibly applied to the prediction and segmentation of other dis- 

ases, e.g., brain diseases. This will also be our future work. 
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