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Abstract

Among people living with human immunodeficiency virus type 1 (HIV-1), the long-term persistence of a population of cells
carrying transcriptionally silent integrated viral DNA (provirus) remains the primary barrier to developing an effective cure.
Ongoing cell division via proliferation is generally considered to be the driving force behind the persistence of this latent
HIV-1 reservoir. The contribution of this mechanism (clonal expansion) is supported by the observation that proviral
sequences sampled from the reservoir are often identical. This outcome is quantified as the ‘clonality’ of the sample popula-
tion, e.g. the fraction of provirus sequences observed more than once. However, clonality as a quantitative measure is in-
consistently defined and its statistical properties are not well understood. In this Reflections article, we use mathematical
and phylogenetic frameworks to formally examine the inherent problems of using clonality to characterize the dynamics
and proviral composition of the reservoir. We describe how clonality is not adequate for this task due to the inherent com-
plexity of how infected cells are ‘labeled’ by proviral sequences—the outcome of a sampling process from the evolutionary
history of active viral replication before treatment—as well as variation in cell birth and death rates among lineages and
over time. Lastly, we outline potential directions in statistical and phylogenetic research to address these issues.
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1. Introduction

Integration of viral complementary DNA into the host genome
is an obligate step in the human immunodeficiency virus type 1
(HIV-1) replication cycle (Lewinski and Bushman 2005). Once
integrated, viral genes can be expressed by the host cell ma-
chinery. Cells that actively express the HIV-1 proviral DNA are
relatively short-lived due to cytotoxicity induced by viral

components (Pollack et al. 2017) and targeting of the infected
cells by the adaptive immune response (Migueles and Connors
2015). On the other hand, integration of HIV-1 DNA into resting
CD4þ T cells, or those about to transition to a resting state,
establishes a long-lived population of infected cells known as
the latent viral reservoir that is established early in infection
and continually supplemented throughout viremic disease
(Chavez, Calvanese, and Verdin 2015). Latently-infected cells
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have little to no transcription of integrated HIV-1 DNA, making
the infected cell virtually invisible to the adaptive immune re-
sponse. In addition, current antiretroviral treatment (ART) does
not target the integrated provirus in these cells. Reactivation
of infected cells from the latent reservoir appears to occur at a
predictable rate, such that the virus population is quickly
reseeded to pre-therapy levels following an interruption in
treatment (Chun et al. 2010). Thus, the long-term persistence of
the latent viral reservoir is a major obstacle to the complete
eradication of the virus from an infected individual, i.e. a steril-
izing HIV-1 cure. Understanding the dynamics within the latent
reservoir may also become important for determining the ex-
tent that the reservoir must be depleted in order to achieve a
functional cure, such that immune control of virus replication
can be sustained for years in absence of treatment (Davenport
et al. 2019). While empirical measurements of reservoir decay
rates (Crooks et al. 2015) may be pessimistic due to stochastic
effects once the reservoir gets small (Conway and Coombs 2011),
they indicate that the latent reservoir will almost surely persist
throughout the expected lifespan of individuals despite effective
long-term suppression of viral replication by ART. Consequently,
this population of infected cells is the primary focus for current
research in order to design and assess potential HIV-1 reactiva-
tion and eradication therapies (Katlama et al. 2013).

Since completely suppressive ART inhibits viral replication,
the division of infected resting CD4þ T cells is likely the primary
contributor to the persistence of the latent reservoir (Murray
et al. 2016; Bozzi et al. 2019). Some controversial findings sug-
gest that ongoing virus replication in anatomic compartments
with low drug penetrance might also contribute to the persis-
tence of the latent reservoir (Lorenzo-Redondo et al. 2016; Nolan
et al. 2018). However, subsequent studies have reported evi-
dence that ongoing low-level virus replication is most likely not
occurring (Van Zyl et al. 2017; Bozzi et al. 2019). The processes
shaping viral populations in the latent reservoir are complex
and incompletely understood. In addition, these processes may
be affected by a number of viral and host factors and their inter-
actions; for example, the infected CD4þ T-cell phenotype
(Lee et al. 2017), its antigen-specificity (Simonetti et al. 2016),
the integration site of HIV-1 (Maldarelli et al. 2014; Haworth
et al. 2018), etc. Despite our growing understanding of the na-
ture of the latent reservoir, many questions remain about its
composition and the ability of current methods to measure and
characterize it accurately.

Here, we examine the quantitative methods used to sum-
marize sequence data of the latent viral reservoir produced by
various assays. We consider the adequacy of the current
quantitative measurements of clonality as summary statistics
for hypothesis testing, as opposed to taking the occurrence of
identical sequences as sufficient evidence of clonal expansion.
We further argue that, while determining the existence of
clonal expansion is important and that some questions re-
main regarding this hypothesis, the primary goal is generally
to assess the contribution of clonal expansion to reservoir per-
sistence. For this reason, the effect size of clonality on the
long-term persistence of the latent reservoir should be ex-
plored and directly calculated—this should be done by placing
the problem in the context of phylogenetic and statistical in-
ference. Lastly, we highlight factors that may impact the accu-
racy of these methods, which would ultimately influence the
conclusions that can be supported from latent viral reservoir
sequence data.

2. Sequencing the latent reservoir
2.1 Assays measuring the latent reservoir

There are several different approaches used to sample the
genetic diversity of integrated HIV-1 lineages within a host,
which can be broadly categorized as sequencing the proviral
DNA, the associated integration sites, or viral RNA produced
from re-activated cells in vitro using viral outgrowth-based
methods. Proviruses can be sequenced in large numbers from
DNA extracted from infected cells using primers targeting rela-
tively conserved regions of the virus genome (Salminen et al.
1995). However, many of the sequences archived in the reservoir
represent defective proviruses that are no longer replication-
competent due to the introduction of mutations into the ge-
nome, including large deletions (Bruner et al. 2016) and hyper-
mutation induced by host factors (Sadler et al. 2010). Some of
these proviral sequences can be filtered on the basis of extreme
mutations like frameshift-inducing indels, but it is not feasible
to exclude all defective proviruses based on their genetic com-
position alone, due to sequencing constraints and since the
impacts of some mutations on viral fitness cannot be predicted
accurately. Furthermore, random variation from sequencing er-
ror will tend to inflate the observed number of proviral se-
quence variants. Thus, proviral sequence data will inevitably
overestimate the size of the latent reservoir, which is conven-
tionally defined as the replication competent subset of the
latently-infected cell population (Wang et al. 2018b). In contrast,
methods that target HIV-1 integration sites sequence both the
long terminal repeat of the provirus and the flanking sequence
in the host genome (Schröder et al. 2002). Because coverage of
the provirus genome is limited, it is more difficult to identify de-
fective proviruses from sequences targeting integration site
junctions (Maldarelli et al. 2014). On the other hand, integration
sites uniquely label proviruses that descend from different inte-
gration events; we will expand on this feature in a subsequent
section.

Viral outgrowth assays (VOAs) use a limiting dilution
method (Taswell 1981) to estimate the size of the latent reser-
voir. The presence or absence of infected resting CD4þ T cells at
a given dilution is determined by co-culturing the sample with
other cells that are susceptible to HIV-1 infection, which ampli-
fies the viral outgrowth from any infected cells in the culture
well to detectable levels. With some exceptions (e.g. all negative
or all positive outcomes), culturing replicates at a series of dilu-
tion factors provides sufficient information to estimate the
number of infected cells per blood volume (Laird et al. 2016), of-
ten denoted as the infectious units per million cells. In addition,
sequencing the HIV-1 RNA from VOAs can provide information
on the genetic composition of the replication-competent reser-
voir. VOAs are generally labor-intensive experiments because
several replicates at different dilution levels must be cultured
for weeks in the lab. On the other hand, VOAs have been charac-
terized as the ‘gold standard’ for quantifying the latent reservoir
because the assay only detects cells containing replication-
competent provirus. VOA-based studies have been used to dem-
onstrate that the latent reservoir can persist for years without
producing virus while retaining the ability to do so after stimu-
lation (Siliciano et al. 2003). However, not all cells that contain
intact provirus are stimulated to produce virus in vitro, even
with multiple rounds of stimulation (Hosmane et al. 2017). For
this reason, VOAs are expected to underestimate the size of the
latent reservoir.
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2.2 Clonality of the latent reservoir

The composition and dynamics of the latent reservoir is in-
ferred from the observed frequencies of genetic sequence var-
iants. The division of cells carrying integrated HIV-1 DNA will
increase the probability of sampling provirus with identical ge-
netic sequences, because the mutation rate of the human
genome is orders of magnitude lower than the mutation rate of
the actively replicating virus (Cuevas et al. 2015). The occur-
rence of identical sequences is referred to as the ‘clonality’ of a
sample. Thus, higher levels of clonality provide evidence that
the proliferation of infected resting CD4þ T cells plays an im-
portant role in the long-term persistence of the latent reservoir
(Joos et al. 2008; Hosmane et al. 2017).

As stated above, a key advantage of integration site analysis
is that the provenance of each provirus is unambiguous.
Sequencing the flanking host genome enables investigators to
map the provirus integration site. Given the number of potential
sites in the human genome (roughly 3 billion nucleotides),
the probability that two proviruses that resulted from separate
integration events share the same integration site by chance is
exceedingly small (Maldarelli et al. 2014). Therefore, observing
two or more sequences from the latent reservoir with the same
integration site implies that they are related through clonal
expansion, i.e. they are descendants of the same integration
event. In this method, the composition of the HIV-1 DNA
covered by each sequence does not affect its assignment to dif-
ferent clonal variants, although as stated earlier the replication
capacity of the provirus is not known.

In contrast, proviral and VOA-based sequencing methods
typically cover a limited interval of the HIV-1 genome (about
2,000 bp) to characterize the genetic composition of the reser-
voir. The probability that two distinct proviruses are misclassi-
fied as instances of the same clonal variant—because their
genetic differences fall outside of the sequenced region—is not
negligible. This limitation was recognized by Laskey et al. (2016)
who developed an empirical weighting scheme, denoted the
‘clonal prediction score’, to identify optimal sequencing targets
in the HIV-1 genome. The clonal prediction score was derived
from alignments of near full-length HIV-1 genome sequences
(e.g. not including the nef accessory gene) that were sampled
from the same host. Assuming these alignments are represen-
tative of variation in the respective reservoirs, they quantified
the empirical probability that two identical sequences spanning
a given interval of the HIV-1 genome would have genetic
differences outside the sequenced region. For short reads
(100–500 bp), less than 60 per cent of sequences on average were
incorrectly classified as identical copies of the same variant.
Using longer reads (6 kbp) reduced the chance that differences
were located outside of the sequenced region, such that fewer
than 20 per cent of sequences on average were misclassified as
being clonal (Laskey et al. 2016).

A related but distinct problem of interpreting sequences
from the latent reservoir is that genetically identical proviruses
may be the result of separate integration events. This ‘collision’
of proviral sequence labels is more likely to occur if the actively
replicating virus population was predominantly genetically ho-
mogeneous when these viruses were deposited into the latent
reservoir. For example, the majority of infections originate from
a single transmitted founder virus followed by a period of expo-
nential growth (Keele et al. 2008; Joseph et al. 2015). Suboptimal
ART can also provide opportunities for the virus population to
evolve drug resistance, which may induce a ‘hard’ selective
sweep in which the right combination of mutations arises in a

single genetic variant (Feder et al. 2016). Studies of the genetic
composition of the latent reservoir tend to focus on subjects
who initiated treatment at a chronic stage of infection. If most
cells in the latent reservoir carry provirus that became inte-
grated around the time of treatment initiation (Brodin et al.
2016; Abrahams et al. 2019), then the probability of label colli-
sion should be low. However, it is generally believed that not all
integration events map to treatment initiation, and that provi-
rus may be deposited into the reservoir throughout the course
of untreated infection (Jones et al. 2018; Pankau et al. 2020).
Thus, the ability to estimate the chance of collisions in proviral
sequence labels is contingent on furthering our understanding
of the dynamics of reservoir formation.

In conclusion, resolving a clear picture of the reservoir from
the analysis of sequence variation remains an open question.
Thus, developing and improving both experimental assays and
the analyses applied to these sequence data is key to better
understanding the reservoir.

3. Analyzing reservoir sequences

The current standard approach for quantifying the contribution
of clonal expansion in the reservoir is to report either (i) the pro-
portion of sequences that are identical to one or more other
sequences in the sample (Wagner et al. 2014; Von Stockenstrom
et al. 2015; Lorenzi et al. 2016; Hosmane et al. 2017; Lee et al.
2017; Satou et al. 2017; Salantes et al. 2018; Salantes et al. 2018),
i.e. multiple instances of the same sequence ‘variant’; or (ii) the
proportion of sequence variants that are observed more than
once in the sample (Maldarelli et al. 2014; Wagner et al. 2014;
Haworth et al. 2018). To illustrate, suppose that we have se-
quenced provirus form seven latently infected cells. Three of
the variants share one identical sequence; similarly two others
are also identical, and the remaining two variants have unique
sequences. In sum, four unique sequence variants are observed
3, 2, 1, and 1 times, respectively. Depending on whether we use
the number of sequences or the number of variants as the de-
nominator, one would report the clonality as either 5/7 (71%) or
2/4 (50%).

These quantities do not provide any means of evaluating
whether there is statistically significant clonality in the sample.
Therefore, we need to introduce more formal mathematical no-
tation. Let N(t) and V(t) be the total number of reservoir cells and
the total number of distinct sequence variants in the reservoir
at time t, respectively. For now, we will set aside the issue of
whether sequences are correctly assigned to variants. Suppose
that we sample n sequences, S ¼ fs1; . . . ; sng, at time t where
n < NðtÞ. Let P be the partition of S into a finite number of non-
empty subsets vi 2 P that correspond to different variants in the
sample indexed by i. We allow for some variants to fail to ap-
pear in the sample such that jjPjj � VðtÞ. Each subset vi has ni

elements that represent the abundance of each sequence vari-
ant in the sample, such that n ¼ jjSjj ¼

P
i ni ¼

P
i jjvijj. The two

conventional summary statistics for measuring clonality are
therefore:

p1 ¼
P

vi2P ni Iðni > 1Þ
jjSjj and p2 ¼

P
vi2P Iðni > 1Þ
jjPjj

where I(x) is an indicator function that takes the value 1 if x is
true and 0 otherwise, and jjxjj is the number of elements in x.
As per the example above, we observed the partition
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fv1 ¼ fs1; s2; s3g; v2 ¼ fs4; s5g; v3 ¼ fs6g; v4 ¼ fs7gg, then p1 ¼ 5=7
and p2 ¼ 2=4.

These summary statistics (p1 and p2) have been used to dem-
onstrate that large proportions of sequences sampled from the
reservoir tend to be members of one or more clonal populations
(Bui et al. 2017; Hosmane et al. 2017; Salantes et al. 2018).
However, we do not understand the sampling properties of
either statistic. For instance, because we can only work with in-
complete samples of the latent reservoir, there is a reasonable
chance that a variant present in substantial numbers in the res-
ervoir is present in a single copy (i.e. a ‘singleton’) in the sample.
By dichotomizing variants into clones and singletons, p1 and p2

discard a considerable amount of information about the under-
lying sample abundance distribution (ni). Thus these statistics
are often reported with genealogical trees that not only visual-
ize the common ancestry relating sampled variants, but
also their relative abundance as polytomies of varying size (e.g.
Hosmane et al. 2017; Lee et al. 2017; Salantes et al. 2018).

Improving on p1 or p2 requires that we employ some
parametric model to estimate the underlying number of distinct

sequence variants in the reservoir, V(t), which is not a trivial
task even when we disregard labeling errors, i.e. variant mis-
classification. For example, Reeves et al. (2018) fit a power law
model ðx�aÞ to the rank abundance distribution of sequence
variants sampled from the latent reservoir (Figure 1). Briefly,
the rank abundance is an ordered histogram of the sequence
variants, vi, such that the vertical axis (counts) represents the
sampled abundance ðniÞ of each sequence variant, and the
sequence variant in the first position, v1, has the highest abun-
dance (v1 ¼ n1 > nj 8j > 1, Figure 1A). If the reservoir population,
N(t), is distributed among the sequence variants, V(t) according
to a power law model, NðrÞ / r�a, then the reservoir would com-
prise mostly of the clones of a small number of sequence var-
iants (�80%, i.e. the Pareto principle; Figure 1B). However, there
would also be many singletons and sequence variants with
comparatively low abundance. To estimate the total number of
variants V(t) and the power-law exponent a, Reeves et al. (2018)
fit this model to sequence data from two different sources: first
to data from a VOA study, and subsequently to data from two
integration site assay studies. N(t) was fixed to values obtained
from the literature for each data source. The resulting estimates
of V(t), a and the reservoir distribution across sequence variants
conveyed several implications regarding the composition of the
reservoir.

Firstly, the proportional statistics p1 and p2 systematically
underestimate the true extent of clonal expansion, due to in-
complete sampling of the reservoir (Reeves et al. 2018). The
effect of incomplete sampling manifests as a consequence of
the presumed underlying distribution of abundance across the
sequence variants in the reservoir population, i.e. a small sub-
population of sequence variants represent a large fraction of
the total reservoir. This distribution implies that at the start of
sampling, additional samples uncover new sequence variants.
However, as sampling progresses we experience diminishing
returns and encountering new variants becomes increasingly
rare, since additional samples will be dominated by the se-
quence variants representing the highly abundant sub-
population. Furthermore, due to the skewed abundance
distribution, the true diversity of the reservoir V(t) will be very
difficult to measure using sequence data alone, even if a consid-
erable increase in sampling effort (100-fold increase) was
undertaken (Reeves et al. 2018). Lastly, they postulated that dif-
ferences between estimates obtained from VOA versus integra-
tion site data suggested that a smaller number of extremely
abundant variants may make up a greater proportion of the
replication-competent reservoir when compared to all inte-
grated HIV-1, i.e. the distribution in Figure 1B representing the
replication-competent sequence variants is skewed to the left
to a greater extent than the equivalent distribution for all inte-
grated sequence variants. Whether or not this discrepancy in
the estimates is a consequence of differences in the sequencing
assays or an accurate representation of the reservoir requires
further investigation. For example, Lorenzi et al. (2016) demon-
strated that there is poor agreement between outgrowth-, provi-
ral-, and bulk culture assay-based estimates of fnig for a given
individual. While this discordance may predominantly be due
to the replication incompetence of large proportions of inte-
grated HIV-1 DNA as hypothesized by Lorenzi et al. (2016), other
factors may affect our ability to reactivate intact proviruses
in vitro such as the integration site or the host cell dynamics.

The methodology employed by Reeves et al. (2018) to gain
the above mentioned results had specific limitations which in-
cluded: the assumption that rank-abundance data are

Figure 1. Sampling properties under a power-law model. (A) An example of an

ordered histogram of n¼20 sequences sampled from a hypothetical reservoir

population represented in (B). The true rank in the sequence population is dis-

played in brackets. (B) The power-law distribution of rank abundance for a ¼ 1:4

(replication-competent estimates in Reeves et al. (2018)) in a reservoir of 107

cells comprising 104 variants (only the first 100 ranks are displayed).
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continuous; the fitting of a power-law model to these data; and
the statistical robustness of subsequent extrapolation of this
model to gain estimates of N(t) and V(t). In the following sec-
tions we will focus on the general limitations faced by their ap-
proach as well as by studies employing p1 and p2. Specifically,
these approaches do not explicitly evaluate the contribution of
cell proliferation (i.e. clonal expansion) to persistence, the role
of variation in proliferation among sub-populations in the reser-
voir, nor the potential heterogeneity of proliferation rates over
time.

3.1 Proliferation hypothesis

Clonal expansion studies are underpinned by the hypothesis
that proliferation of latently infected cells contributes substan-
tially to the persistence of the reservoir. However, neither a
quantification of the extent of the proposed contribution (abso-
lute or relative), nor an exact definition of persistence is pro-
vided. Here, we will endeavor to specify exactly this hypothesis
in mathematical notation.

As before, let N(t) and V(t) be the total numbers of infected
cells and sequence variants in the reservoir at time t, respec-
tively. We define NiðtÞ to be the number of cells labeled with the
i-th variant at time t, where i 2 f1; . . . ;VðtÞg, such that:

NðtÞ ¼
XVðtÞ
i¼1

NiðtÞ:

This implies that VðtÞ � NðtÞ 8 t, where V(t) and N(t) are equal
only if every infected cell is labeled with a unique sequence.
Given these working definitions, we can restate the null
hypothesis of clonal expansion studies utilizing either p1 and p2

as H0 : p1 ¼ 0 or p2 ¼ 0, or alternatively as:

H0 : NiðtÞ ¼ 1 8i; t:

However, rejecting H0 does not necessarily relate prolifera-
tion to persistence, since this would require making speculative
assumptions about the size and dynamics of N(t) as explored
next.

3.2 Formalizing persistence

Given that persistence is a primary focus in studies of the latent
reservoir, we need to formulate a model of reservoir persistence
under some simplifying assumptions. First we define a ‘lineage’
as a subset tree (i.e. a contiguous fragment of the original tree)
comprising an infected cell that enters a latent state and some
of its descendants (Figure 2A). Note that this usage of the term
is more similar to lineages as a tier of a viral nomenclature, akin
to ‘clades’, rather than a non-branching chain from an ancestor
to a single descendant. This definition excludes any descend-
ants that subsequently re-activate and undergo additional
rounds of virus replication. As a result, a lineage is permanently
‘labeled’ by the genetic composition of the infecting virus
genome and its integration site into the genome of the host
cell. In practice, labels are not completely observed; for exam-
ple, sequencing often covers only a specific part of the provirus
genomes (see above). We assume that potential ongoing virus
replication in drug sanctuaries, low-level viremia and re-
activation of latently infected cells have negligible effects on
the composition of the latent reservoir under fully suppressive
ART. As per the preceding section, labels deposited into the res-
ervoir at an early stage of infection are expected to be largely

homogeneous with respect to proviral sequences (Figure 2B)
because of limited diversification in the actively replicating vi-
rus population. Under these assumptions, we can conceptually
partition the natural history of the infection into a pre- and
post-treatment stage. The pre-treatment stage is characterized
by rapid expansion and diversification of an actively replicating
virus population from which lineage labels are generated.
During the post-treatment stage, on the other hand, the identity
of labels among the lineages are fixed, since further diversifica-
tion is halted in the absence of ongoing replication during
treatment. Consequently, the overall frequencies of labels in
the reservoir are modulated only by the growth and decay dy-
namics of the respective lineages.

To further simplify the pre-treatment stage of our model, we
assume that the clonal expansion of lineages is negligible rela-
tive to the rate that new lineages are incorporated into the reser-
voir prior to treatment initiation. Ignoring growth dynamics in
the reservoir pre-therapy enables us to assume that all lineages
start at a single copy at treatment initiation—time zero. This ap-
proach is supported by recent empirical evidence that the major-
ity of lineages in the reservoir were deposited near the start of
treatment (Brodin et al. 2016; Abrahams et al. 2019). Although
this assumption restricts the model to lineages that are extant at
treatment initiation, it may be possible to reconstruct the actual
origin times (integration dates) using a molecular clock (Brodin
et al. 2016; Jones et al. 2018). Furthermore, censoring the true
abundance of extant lineages at time zero may cause the model
to systematically overestimate the lineage proliferation rates

Figure 2. Definition of lineages and labels. (A) Each lineage comprises the initial

infected cell (a–e, bold outline) that enters a latent state, and its descendants

that are also in the latent state. We assume the number of descendants varies

over time according to a birth-death process, where a � symbol indicates cell

death. Lineages are initiated at different points in time. (B) Lineages initiated at

an early stage of infection (a and b) will tend to carry near-identical labels with

respect to the provirus sequence resulting in the ‘collision’ of labels, whereas

those initiated at a later stage (c–e) will have labels that have accumulated muta-

tions (denoted by colors) during active virus replication before treatment.
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following treatment initiation. Given these assumptions we
have: Nið0Þ ¼ 1 8i ¼ 1; . . . ;Vð0Þ and Vð0Þ ¼ Nð0Þ ¼

PVð0Þ
i¼1

Nið0Þ. We as-
sume that VðtÞ � Vð0Þ, which corresponds to the decay of line-
ages over time.

Therefore, each lineage can be described by an independent
discrete branching process with a characteristic rate of birth
(through cell division). Following standard branching process
theory (Karlin and Taylor 1975), all members of a lineage are in-
dependent, live for a single unit of time (non-overlapping gener-
ations), produce Y offspring and then die. The probability that
an individual in lineage i produces y offspring follows some
probability distribution, that is PðYi ¼ yÞ ¼ piðyÞ with probability
generating function GYi ðsÞ. This assumption implies that birth
rates are established upon infection of the initial cell, which
may be influenced by its CD4þ T-cell phenotype or the integra-
tion site of the viral cDNA (Maldarelli et al. 2014). Moreover,
some lineages may have higher or lower intrinsic birth rates
than others. Thus, the number of individuals at time t for lineage
i can be represented as a randomly stopped sum with a probabil-
ity generating function GNiðtÞðsÞ that can be expressed in terms of
the recursive probability generating function of the lineage-
specific offspring distribution Gi

tðsÞ ¼ GYi
ðGYi

ð. . . ðGYi
ðsÞÞ . . .ÞÞ.

In order to define persistence for the whole reservoir popula-
tion, we first define the probability generating function of the
population:

GNðtÞðsÞ ¼ E½sNðtÞ�

¼ E½s

XVð0Þ
i¼1

NiðtÞ
�

¼ E½sN1ðtÞ . . . sNVð0ÞðtÞ�

¼
YVð0Þ
i¼1

GNiðtÞðsÞ

¼
YVð0Þ
i¼1

Gi
tðsÞ

The distribution of the exact time of reservoir extinction T
can now be considered. That is, T¼ t if generation t ¼ 1; 2; . . . is
the first generation with no individuals (Karlin and Taylor 1975):

T ¼ t() NðtÞ ¼ 0 and Nðt� 1Þ > 0

Thus,

PðT ¼ tÞ ¼ PðNðtÞ ¼ 0 \ Nðt� 1Þ > 0Þ

¼ PðNðtÞ ¼ 0Þ � PðNðtÞ ¼ 0 \ Nðt� 1Þ ¼ 0Þ

¼
YVð0Þ
i¼1

Gi
tð0Þ �

YVð0Þ
i¼1

Gi
t�1ð0Þ

If we further assume the offspring distributions of each line-
age follows a geometric distribution, that is Yi � GeometricðpiÞ:

PðT ¼ tÞ ¼

YVð0Þ
i¼1

Kt
i � 1

Ktþ1
i � 1

 !
�
YVð0Þ
i¼1

Kt�1
i � 1
Kt

i � 1

 !
if Ki 6¼ 1 8i;

YVð0Þ
i¼1

t
tþ 1

� �
�
YVð0Þ
i¼1

t� 1
t

� �
if Ki ¼ 1 8i

8>>>>><
>>>>>:

where Ki ¼ E½Yi� ¼ 1�pi
pi

. Lastly, if we assume that the offspring

distributions of each lineage are identically distributed, i.e. ho-
mogeneous proliferation among lineages, with Ki ¼ K 6¼ 1 8i:

PðT ¼ tÞ ¼ Kt � 1

Ktþ1 � 1

 !Vð0Þ

� Kt�1 � 1
Kt � 1

 !Vð0Þ

:

The preceding equation demonstrates that time to extinc-
tion depends on both the initial size of the reservoir, since
Vð0Þ ¼ Nð0Þ, and proliferation. Moreover, given this formula we
can calculate the extinction probability under various condi-
tions (e.g. Figure 3) and determine the impact of proliferation.
For example, Conway and Coombs (2011) and Azoz and Coombs
(2019) used stochastic continuous-time branching processes to
investigate variations in the reservoir extinction probabilities
under different model parameter assumptions. The primary
goal of the Conway and Coombs (2011) model was to investigate
viral blips during ART and, as such, lineage- and time-
homogeneous birth and death rates within the reservoir were
employed. The Azoz and Coombs (2019) model, on the other
hand, used lineage- and time-homogeneous birth rates, but
lineage-homogenous time-heterogeneous death rates to inves-
tigate the potential impact of latency-reversing drugs on reser-
voir extinction probabilities. Both of these studies demonstrate
the utility of understanding variation in the reservoir extinction
times and how these variations are not captured by determinis-
tic models or metric, e.g. half-life estimates or p1 and p2.

Some of the assumptions made in the above formulation of
the branching process can be relaxed. For example, the prolifer-
ation of reservoir cells can occur prior to the initiation of treat-
ment and can be accommodated in the branching process by
allowing immigration such that NðtÞ ¼

PVðtÞþIðtÞ

i¼1
Yiðtþ 1Þ where I(t)

is the number of new lineages introduced at time t, through ac-
tive virus replication and/or re-integration (see Mitov and Omey

Figure 3. Extinction probabilities of the reservoir over its lifetime. Examples of

reservoir extinction distributions with distinct initial reservoir sizes (5 M, solid

line; 15 M, dashed line) and Geometric (1=ð1þ KÞ) offspring distributions, where

K ¼ 0.43 (black), 0.53 (blue), 0.67 (orange), or 0.82 (pink). K represents the

expected number of offspring per generation (year�1). The half-lives of these ex-

ample populations are t1
2
� 0.82 (black), 1.12 (blue), 1.71 (orange), and 3.46 (pink)

years.
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2014). Alternatively, the starting abundance of a lineage can be
linked to its ‘age’ such that Nið0Þ > 1 for some i. Another as-
sumption that could be relaxed is that each individual produces
descendants with an identical offspring distribution as specified
by the lineage. Thus, relaxing this assumption allows the birth
rate within a lineage to fluctuate along specific branches of that
lineage over time, which would be useful if, for example, an
infected CD4þ T-cell differentiates into another CD4þ T-cell
phenotype with a distinct birth rate. The derived model is
known as a multi-type branching process (Conway and Coombs
2011; Nordon et al. 2011). Individuals are classified into m types
such that the number of offspring is a vector y ¼ ½y1 . . . ym�where
each yj is a natural number (including zero) that represents the
number of offspring of each type. The probability that an indi-
vidual of type j has the offspring vector y is given by pjðyÞ.
Finally, a third assumption that would be useful to relax is that
of time-homogeneous offspring distributions, also known as a
branching process under varying environments (see Mitov and
Omey 2014), such that the offspring distributions of individuals
change with time.

3.3 Homogeneous impact of proliferation

Once the impact of proliferation on persistence has been estab-
lished, this relationship must be assessed by multiple experi-
ments and its consistency verified. This can currently also be
done by considering the values of p1 or p2 across the myriad of
studies that have already used these summary statistics.
However, despite the widespread application of p1 or p2 to
investigate clonal expansion, studies lack consistency when
aggregating these proportions across multiple time points and
individuals. For example, some have reported these statistics
for each participant’s time-points separately (Maldarelli et al.
2014; Wagner et al. 2014; Von Stockenstrom et al. 2015; Lorenzi
et al. 2016; Salantes et al. 2018), while others have aggregated
the sequence data from multiple participants, with a single
time-point each, and reported these statistics for the entire data
set (Maldarelli et al. 2014; Hosmane et al. 2017; Lee et al. 2017).
These inconsistencies in reporting hinder objective comparison
of the results.

3.4 Null model

The disproportionate abundance of one or more sequence
variants has caused many researchers to speculate on whether
there is a mechanistic basis that causes certain reservoir
sub-populations to be more prone to clonal expansion. Since
the null model provides the expected outcome if chance alone
is responsible, it can be used to detect whether the process in
question displays non-trivial features in the data. Therefore,
the null model, where proliferation rates are homogeneous
among reservoir lineages, would oppose the proposed mecha-
nistic basis for rate variation among reservoir lineages. This
null model is plausible if cell division is indiscriminately gov-
erned by homeostatic proliferation or nonspecific immune acti-
vators. Moreover, the skewed distribution of abundance across
sequence variant labels (Figure 1B) can be explained by this null
model, which we can express as:

k ¼ ki ¼ kk 8i; k 2 VðtÞ

where k is the lineage-independent birth rate such that the
expected number of offspring K ¼

Ð t
0 kðtÞdt. To explain, consider

the branching process where proliferation rates are equivalent

(lineage-independent) among reservoir lineages. For simplicity
assume, as before, that each individual lives for a single unit of
time and that offspring are generated at the same time such
that there are discrete generations over time. The number of
offspring y produced per individual could follow a geometric
distribution, for example, that is dependant on the probability
that no offspring are produced p ¼ 1

1þK:

PðYjpÞ ¼ ð1� pÞyp:

Given this offspring distribution, the abundance of a lineage
at generation time t depends on both the abundance of the line-
age in the previous generation ðNiðt� 1ÞÞ, and the offspring dis-
tribution:

NiðtÞ ¼
XNiðt�1Þ

j¼1

Yj:

Stochasticity in the number of offspring per individual
implies that despite the inherent similarity between lineages
the particular lineage with the highest abundance is a random
outcome. In the above example, the requirement that each indi-
vidual live only for a single time unit can be relaxed such that
the death rate is effectively reduced and l < k 8i, where l and k

are the lineage-independent death and birth rates. Under this
relaxed assumption the only difference will be the number of
generations required until a dominant lineage emerges which
will be governed by the magnitude of the net-rate ðk� lÞ.
Nevertheless, the lineage with the highest abundance will be
a random outcome of the process. Under this null model,
the mere existence of clones is not an adequate criterion for
reaching a conclusion regarding the contribution of cell-
heterogeneous proliferation, instead numeric estimates of the
birth rates are required.

3.5 Mechanistic basis for rate variation

In practice, there is no explicit distinction made between the
potential stochastic and deterministic components of within-
host reservoir populations, and generally highly abundant
sequence variants are considered to be due to some predeter-
mined feature of the infected cell or HIV-1 infection. This can be
mathematically stated as:

9i s:t: ki > kk; i 6¼ k

where ki is the lineage-dependent birth rate. For example, the
CD4þ T-cell phenotype (Lee et al., 2017), its antigen-specificity
(Simonetti et al., 2016), and the integration site of HIV-1 (both
the particular gene (Maldarelli et al. 2014; Haworth et al. 2018)
and its biological pathway (Haworth et al. 2018)) are all possible
features that could drive distinct birth rates between lineages
and are considered in turn below.

Cell sorting studies illuminate the various CD4þ T-cell phe-
notypes that contain HIV-1 DNA, and while it is widely accepted
that CD4þ T cells of a memory phenotype harbor a substantial
proportion of the HIV-1 reservoir, sub-categories among these
infected cells have been identified (Murray et al. 2016; Hiener
et al. 2017; Lee et al. 2017), including transition memory (TM),
central memory (CM) and effector memory (EM) T cells.
Additionally, a less differentiated stem-cell (SM) type may also
persist during long-term treatment (Buzon et al. 2014; Von
Stockenstrom et al. 2015). The outcomes of cell sorting studies
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can theoretically be represented by the vectors k ¼ ½k1 . . . kn� and
l ¼ ½l1 . . . ln�, where ki and li are the lineage-dependent birth
and death rates. The number of lineages n depends on the line-
age specification used by each study. Subsequently, a study in-
vestigating distinct proliferation and/or decay rates between
the TM, CM, EM and SM phenotypes would hypothesize that:

VarðkÞ > 0 or VarðlÞ > 0; where i 2 fTM;CM;EM and SMg:

Interestingly, variations in these rates may shift the relative
contribution of each phenotype to the reservoir over time. For
example, EM cells that have comparatively high proliferation
rates may constitute the largest proportion of the reservoir dur-
ing early treatment (Buzon et al. 2014). However, since EM cells
decay quickly, CM cells that have comparatively lower prolifera-
tion and decay rates may eventually surpass the EM cell popula-
tion to comprise the largest proportion of the reservoir (Buzon
et al. 2014). The specification of distinct lineages i over which ki

and li are valid can be a challenge, since cell phenotypes may
change over time leading to the migration of sequence variants
between the distinct cell phenotypes (Von Stockenstrom et al.
2015; Hiener et al. 2017), confounding the results if not
accounted for. Nevertheless, further cell sorting studies will not
only illuminate the various cell phenotypes that contain HIV-1
DNA but also their dynamics in infected individuals during
treatment.

Another predetermined cell feature that could drive prolifer-
ation is antigenic stimulation by specific, common antigens. An
example of this was demonstrated by Simonetti et al. (2016)
who observed extensive clonal expansion in the presence of
cancer metastases, suggesting that an infected cells harboring a
replication-competent sequence variant proliferated in re-
sponse to a cancer antigen. Similarly, others have hypothesized
that a chronic state of immune activation, caused by the contin-
uous activation of infected cells leading to the release HIV-1
antigens, drives the clonal expansion of HIV-1 targeting reser-
voir cells (Mann et al. 2020). Advances in the characterization of
T-cell receptors will be critical for understanding the role of
antigen-driven clonal expansion on reservoir persistence.

While the features discussed above were governed by the in-
teraction of the infected cell with its environment, some have
speculated that HIV-1 infection could directly play a part in per-
sistence by way of the integration site. Maldarelli et al. (2014)
showed that proviruses integrated in the BACH2 and MKL2
genes, which are thought to be involved in the growth and de-
velopment of cells, had distinct characteristics compared to
control experiments of acute infection in vitro, implying an ad-
vantage for proviruses with these integration sites (Maldarelli
et al. 2014). Specifically, these proviruses were in the same
orientation as the host genes and highly restricted to a specific
region of the BACH2 and MKL2 genes for a participant on long-
term ART treatment, whereas no such pattern in the distribu-
tion of HIV-1 integration sites were observed in the controls
(Maldarelli et al. 2014). While this pattern is unusual, the exact
mechanism by which it benefits persistence was not consid-
ered; however a mechanism that increased the birth rate of
these lineages was implied. It has yet to be established if the
relationships between the sequence variant abundance and
CD4þ T-cell phenotype, antigen-specificity or integration site
are present in a substantial number of cases. In fact, the sam-
pling bias toward sequence variants with large abundances
driven by alternative mechanisms in distinct infected individu-
als may hinder such studies. For example, if there are two dis-
tinct drivers of clonal expansion operating in a single individual

the driver responsible for the sequence variant with the highest
abundance may mask the effect of the other driver, since
samples will be biased toward the highest abundance driver at
the time of sampling.

In summation, we contend that summary statistics of clon-
ality such as the proportions p1 and p2 are not up to the task of
assessing the underlying hypotheses of most reservoir studies,
which requires estimation of lineage-specific birth and/or death
rates in the reservoir. While these statistics have contributed to
our understanding of the HIV-1 reservoir, we have identified
several limitations in these quantities. Ultimately, the choice of
the most appropriate measurement depends on the experimen-
tal question that is being asked, but birth and death rate
estimates of reservoir lineages will likely provide a useful repre-
sentation of the underlying hypothesis. Further, articulating the
hypothesis in terms of variation in birth/death rates links the
problem to a rich theoretical literature on branching processes.
While the proportional measurements p1 and p2 do not take
lineage-heterogeneity or time-heterogeneity into account, the
birth and death rate estimates can be easily extended to include
both.

3.6 Impact of time heterogeneity

Thus far, we have discussed rates of expansion and decay in the
latent reservoir as though they are constant over time. There is
growing empirical evidence that the abundance of clones in the
reservoir varies substantially over time. For example, Wang
et al. (2018a) observed that some HIV-1 sequence variants in the
latent reservoir were abundant in some samples and absent
from others, while other variants persisted at consistent levels
over a time scale of years. Such results allude to more complex
dynamics underlying the abundance of a sequence variant NiðtÞ
over time than can be explained by constant rates of growth/de-
cay, or limited stochastic variation around these rates over
time. However, these observations do not provide conclusive
proof of time-heterogeneity in growth and/or decay rates in the
reservoir because they do not account for incomplete sampling
or ambiguous labeling, as discussed in the preceding sections.
This motivates a detailed investigation of time-heterogeneity in
instantaneous lineage-specific birth and death rates that can-
not be directly observed, i.e. kiðtÞ and liðtÞ, based on the varia-
tion of estimable quantities over time such as NiðtÞ.

Quantifying the time-heterogeneity of growth and decay
rates in the reservoir is complicated by the possibility of rate
variation among virus lineages in association with, for example,
CD4þ T-cell phenotype, integration site, or antigen-specific
responses. This situation is similar to the ‘selection inference
uncertainty principle’ encountered by branch-site models of
episodic selection (Murrell et al. 2012), where it is not feasible to
parameterize a full model of non-synonymous substitution rate
variation among sites and over time at the highest granularity—
viz., an independent rate parameter for every combination of
codon site in the alignment and branch in the tree. To distin-
guish between different hypotheses of rate heterogeneity, it is
necessary to introduce some additional mathematical notation.
We denote the expected birth rate of the i-th lineage at time t as
a deviation from the grand mean (a):

kiðtÞ ¼ aþ bi þ fiðtÞ

where bi is the time invariant lineage-specific effect, and fiðtÞ is
some function that represents the lineage-specific heteroge-
neity over time. Note that all lineages may share the same
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time-heterogeneous trend in rates such that fiðtÞ ¼ f ðtÞ 8 i.
Although it is conceivable that fiðtÞ could assume the form of
any smooth continuous function, it would be exceedingly diffi-
cult to parameterize this smooth function from experimental
data. Instead, it could be more feasible to fit a linear function
to incorporate the transient effects of measurable quantities,
such as co-infection (see below). We can apply a similar ap-
proach to model variation in death rates among lineages and
over time, i.e. liðtÞ.

Let us assume that the partially observable quantities NiðtÞ
and ViðtÞ are stochastic processes that are shaped by indepen-
dent realizations of kiðtÞ and liðtÞ over time. For example, the
hypothesis that variants are identical with respect to expected
birth rates that may vary over time corresponds to constraining
bi ¼ 0 and fiðtÞ ¼ f ðtÞ for all i. Under these conditions, stochastic
variation in the lineage birth process will cause some lineages
to become more abundant than others over time. The identity
of the most abundant lineages would be a random outcome. On
the other hand, we expect a specific set of lineages S to be repro-
ducibly more abundant if bi > 0 for i 2 S and/or bj < 0 for j=2S
and fiðtÞ ¼ 0 8 t. Identifying these deterministic effects is difficult
because it requires the experimental replication of the growth
process from identical starting conditions, which is difficult to
attain in vitro and not feasible in vivo. It would be more feasible
to identify characteristics that are deterministically associated
with variation in bi, such as the occurrence of integration sites
in a predefined subset of genes (Maldarelli et al. 2014). This
parameter-rich approach to modeling within-host dynamics is
what would be required to formally test the hypotheses that
have been described verbally in the literature.

For example, Wang et al. (2018a) concluded that the
observed patterns of waxing and waning frequencies was not
consistent with the sustained expansion of specific lineages, i.e.
kiðtÞ > liðtÞ8t for some subset of lineages indexed by i. Since vari-
ation in proliferation rates driven by the location of integration
sites would likely result in a more consistent pattern of clonal
expansion, these data suggests that other drivers such as anti-
gen stimulation may have played a greater role. However, it is
debatable whether or not integration site-driven expansion is
sustained over time. If this effect is an outcome of HIV-host
spliced genes (Maldarelli et al. 2014; Pinzone et al. 2019), for
example, then some external stimulation would potentially be
required, for example via antigen stimulation or shock-and-kill
treatment (Pinzone et al. 2019). The difference between integra-
tion site-promoted expansion and other drivers or cells not sub-
ject to such effects may be detected in the instantaneous rates
kðtÞand lðtÞ or their respective dynamics. For example, once ex-
ternally stimulated, a cell with an integration site that promotes
its expansion will achieve a higher maximum abundance than
a similar cell without the integration site that promotes expan-
sion i.e. maxðNintegration siteÞ > maxðNiÞ, where i represents line-
ages with an alternative integration site or cell lineages that are
uninfected. Since this maximum abundance is governed by
the instantaneous lineage birth and death rates prior to the
emergence of the maximum, estimating these rates across mul-
tiple samples may expose differences between drives or distinct
lineages. To summarize, neither the qualitative measures
describing the pattern in the abundance of sequence variants
nor the proportions p1 and p2—which do not include a time
component—are sufficient for the rigorous assessment of these
alternative hypotheses. Moreover, these additional caveats
should be noted when considering both our and their conclu-
sions: some samples did not exhibit a waxing and waning

pattern (Wang et al. 2018a); different sampling frequencies
could have different patterns; the impact of under-sampling
was not accounted for; and defining lineages by attributes (dis-
cussed below) other than, or in addition to, the sequence variant
may be required.

The current literature exclusively uses the integrated HIV-1
sequence variant or integration site to define lineages, i.e. each i
represents a sequence variant over which ki and li is defined.
While potential alternative definitions have been alluded to, for
example the CD4þ T-cell phenotype or the general features of
the HIV-1 provirus in the host gene (provirus orientation,
sub-gene regions, etc.), the question regarding the usefulness
of such alternative definitions still remains untested.
Furthermore, if alternative definitions of lineages are used,
should these define additional lineages of each sequence vari-
ant if the definition is dynamic (e.g. cell phenotypes that can
change over time (Von Stockenstrom et al. 2015; Hiener et al.
2017)) or replace the current strategy of using the sequence vari-
ant to define a lineage? The primary reason for considering an
alternative definition of a lineage is to test the hypothesis that
substantial rate variation exists. However, alternative defini-
tions may also be useful in obtaining more precise parameter
estimates, e.g., bi and fiðtÞ, and combining data from different
sources. If lineages are defined by the cell phenotype, for exam-
ple, sequence variants that share this phenotype can be com-
bined to estimate their hyper-parameters; or if variation among
replication-competent and non-competent proviruses is more
pronounced in their death rates, proviruses could be grouped
accordingly. However, given the uncertainty surrounding alter-
native lineage definitions we propose that HIV-1 reservoir data
measurements be reported as proliferation and decay rates for
the observed sequence variants for longitudinal samples, i.e.
kiðtÞ and liðtÞ, estimated from sequence variation or phylogenies
and variation in these, i.e. VarðkiðtÞÞ or VarðliðtÞÞ, when lineage
specific rates are under consideration. It is our hope that these
measurements, along with longitudinal and characterization
studies, will shed light on both the emerging pattern, created
by varying proliferation and decay rates, and the cause of
variation.

Finally, we have not discussed the problem of determining
when the lineages in the reservoir were seeded. Similar to the
potential time-heterogeneity in the lineage birth and death
rates, this research question may be complicated by similar het-
erogeneity in the rates that cells transition (migrate) between
active (A) and latently-infected (L) states. Specifically, at some
time-point ti the rate at which lineages moved to the latent state
may have been higher than at another time-point tj—i.e.
mA!LðtiÞ > mA!LðtjÞ; i 6¼ j. For example, a high viral load may in-
crease the probability that resting T cells become infected; alter-
natively, the probability that infected cells enter a latent state
may increase following treatment initiation and immune resto-
ration. Regrettably, it is difficult to directly investigate reservoir
seeding rates (mA!LðtiÞ) during active infection since most sam-
pled cell populations represent active infections. Therefore, we
rely on retrospective phylogenetic studies that estimate when
lineages were first integrated into the reservoir by comparing
their proviral sequences to the circulating genetic variation
before treatment, e.g. (Brodin et al. 2016; Jones et al. 2018;
Abrahams et al. 2019). Regardless of the dating methodology
employed, these studies also rely on sampling extant variants
from the reservoir, such that lineages with higher rates of prolif-
eration are over-represented. Thus, whether or not these esti-
mates can yield an accurate picture of the migration rates mA!L
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will depend on the drivers that govern clonal expansion. For ex-
ample, a driver that instantaneously induces proliferation for a
random subset of lineages in the reservoir at the same exact
moment will be more likely to result in a representative sample,
and consequently better estimates of migration rates, than a de-
terministic driver or a more complicated time-heterogeneous
driver. Estimates of integration dates could also provide context
for the observed lineage proliferation/decay rates for the first
longitudinal sample, or if only one sample is available. With
this context, the proliferation/decay rates can be more readily
compared between lineages and across multiple sampled time-
points.

4. Conclusion

The latent viral reservoir is a key barrier to a curing HIV-1; how-
ever, measuring the reservoir and its composition robustly is
still a challenge for the field. While quantifying the clonality of
the reservoir has increased our understanding of the reservoir,
the most frequently used proportional statistics have several
limitations that need to be addressed. These limitations arise,
in part, due to the fact that the observed frequencies of labels in
samples is an emergent property of the underlying within-host
population—the state of which is largely unknown and poten-
tially time-heterogeneous. Given these factors we propose that
the birth and death rates be estimated for distinct reservoir line-
ages, by using statistical and phylogenetic models. In addition,
we propose that, depending on the context, the birth and death
rates be either directly related to persistence or the variation be-
tween lineages calculated. Combining birth and death rate esti-
mates with longitudinal samples and new sequencing
strategies will facilitate better characterization and monitoring
of proviral dynamics. With improving access to effective ART,
viral suppression is being achieved by a growing proportion of
people living with HIV-1. As a result, the longitudinal samples
of untreated chronic infections that have historically driven
phylogenetic studies of HIV-1 evolution within hosts are in-
creasingly scarce. Modeling the dynamics of the latent viral res-
ervoir is the next frontier in the study of HIV-1 within-host
evolution and phylodynamics, where we must adapt existing
models and/or develop new models to support the development
of cure/eradication strategies.
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