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Acute pancreatitis (AP), an acute inflammatory disorder of the exocrine pancreas, is one of the 

most common gastrointestinal diseases encountered in emergency departments with no specific 

treatments. Laboratory-based research has formed the cornerstone of endeavours to decipher the 

pathophysiology of AP, because of the limitations of such study in human beings. While this has 

provided us with substantial understanding, we cannot answer several pressing questions. These 

are: (a) Why is it that only a minority of individuals with gallstones, or who drink alcohol 

excessively, or are exposed to other causative factors develop AP? (b) Why do only some develop 

more severe manifestations of AP with necrosis and/or organ failure? (c) Why have we been 

unable to find an effective therapeutic for AP? This manuscript provides a state-of-the-art review 

of our current understanding of the pathophysiology of AP providing insights into the unanswered 

clinical questions. We describe multiple protective factors operating in most people, and multiple 

stressors that in a minority induce AP, independently or together, via amplification loops. We 

present testable hypotheses aimed at halting progression of severity for the development of 

effective treatments for this common unpredictable disease.

INTRODUCTION

Acute pancreatitis (AP) is a leading cause for emergency hospital admission globally. While 

often self-limiting, 20% of patients with AP progress to a more severe form with organ 

failure1 and mortality between 15% and 35%.2 In the absence of specific treatment, current 

management centres around early fluid resuscitation, pain control and nutrition.3

There is general consensus that human AP can be defined by at least two of three criteria: 

(1) characteristic abdominal pain; (2) serum amylase and/or lipase levels three or more times 

the upper limit of normal and (3) characteristic abdominal imaging findings.4 Much research 

has been undertaken to decipher the mechanisms underlying the pathogenesis of AP. Most of 

this has used animal models,5 largely because of the limitations of pathophysiological 

studies of AP in human beings. Moreover, our lack of understanding of the natural history of 

AP5 and the relative inaccessibility of pancreatic tissue in patients with AP have resulted in 

an incomplete understanding of AP pathogenesis. We do not know if the many variations5 

between human and experimental animals account for the failure of clinical trials testing 

agents effective in animal models of AP. Unlike in experimental AP, clinical trials have 

initiated treatments up to 72 hours after admission,6 but efficacy is likely to require earlier 

administration.

We aim to provide a state-of-the-art, up-to-date review of current understanding of the 

pathophysiology of AP, proposing ways to address unanswered clinical questions. We 

describe how the balance of protective factors is disrupted by factors that induce AP in a 

minority of individuals, stressors that act independently or together, including via 

amplification loops. Two critical thresholds in the development of AP are proposed: 

threshold 1 is exceeded at the onset of AP and threshold 2 is exceeded at the onset of severe 

AP with persistent organ failure (hereon ‘severe’ AP describes AP with organ failure for ≥48 

hours, whether using the Revised Atlanta7 or Determinant-Based8 Classifications, see figure 

1). We present testable hypotheses and a framework for future research to develop effective 

therapeutics to ameliorate and prevent this unpredictable disorder.
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THE PATHOBIOLOGY OF EXPERIMENTAL AP

We posit that exposure of the pancreas to factors associated with AP does not usually lead to 

AP because of adaptive and protective mechanisms in place or deployed in response to 

stressors. When adaptive and protective mechanisms are overwhelmed, AP ensues, and 

severity is accelerated by feed forward and amplification pathways that interact 

stochastically (see figure 2). Many factors may contribute, including toxic fatty acids locally,
9 and mesenteric lymph components systemically.10

Disruption of acinar cell homeostasis

Premature digestive enzyme activation—The pancreatic acinar cell is the functional 

unit of the exocrine pancreas that undertakes highly regulated synthesis, storage and 

secretion of digestive enzymes.11 These zymogens are packaged as proenzymes in secretory 

granules, separated from lysosomal hydrolases, which would otherwise induce intracellular 

zymogen activation. Numerous further mechanisms within the acinar cell and interstitium, 

including α1-antitrypsin, α1-macroglobulin, α1-intertrypsin, protease-activated receptor 2,12 

and pancreatic secretory trypsin inhibitor13 protect the cell from zymogen activation and AP. 

Experimental evidence has confirmed that the first changes following application of noxious 

stimuli include a block in zymogen secretion from progressive disassembly of microtubules 

and actin filaments,14 and premature activation of trypsinogen to trypsin15 from 

colocalisation of trypsinogen with lysosomal enzymes such as cathepsin B within fragile 

vacuoles,16 damaging the acinar cell.

Intracellular calcium overload—Excessive intracellular Ca2+ concentrations within the 

cytosolic ([Ca2+]i) and mitochondrial ([Ca2+]m) compartments induced by toxins are critical 

in premature digestive enzyme activation during human and murine acinar cell injury and 

experimental AP.17 The central role of physiological Ca2+ signalling in the synthesis and 

secretion of pancreatic zymogens, reviewed elsewhere,18 leaves the pancreas vulnerable to 

disordered Ca2+ signalling induced by toxins that cause AP. One breakthrough has been 

unravelling disordered acinar cell Ca2+ signalling in AP pathogenesis, offering new avenues 

for therapy.19–21 Ca2+ stored in the endoplasmic reticulum (ER) is released into the cytosol 

and mitochondria via inositol trisphosphate receptor and ryanodine receptor Ca2+ release 

channels, normally elicited by cholecystokinin and/or acetylcholine secretagogue 

stimulation. Ca2+ release is excessive following exposure to pancreatitis toxins, including 

bile acids, fatty acid ethyl esters, fatty acids and hormonal hyperstimulants.21 Unsaturated 

fatty acids (eg, linoleic, linolenic and oleic) result in higher Ca2+ release than saturated fatty 

acids (eg, palmitic and stearic), increase cytoplasmic leakage of lactate dehydrogenase and 

cytochrome C, upregulate inflammatory mediators and inhibit mitochondrial complexes I 

and V, causing a drop in ATP levels to induce necrosis.922 In response to decreased ER Ca2+ 

concentrations, punctate ER-plasma membrane connections form from stromal interaction 

molecule, Ca2+ release-activated Ca2+ channel protein 1 (Orai1) and transient receptor 

potential cation channel complexes, to replenish stores from the cell exterior.23 Continued 

toxic stimulation sustains ER Ca2+ release and cellular Ca2+ entry, overloading mitochondria 

via the Ca2+ uniporter and triggering high conductance opening of the mitochondrial 

permeability transition pore (MPTP).17 Hydrogen ions enter the mitochondrial matrix 
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through the MPTP with loss of the electrochemical gradient required for ATP production.17 

Decreased ATP impairs Ca2+ clearance by plasma membrane Ca2+ ATPase (PMCA) and 

sarco/ER Ca2+-ATPase pumps, exacerbating [Ca2+]i and [Ca2+]m elevations.17

Sustained overload of [Ca2+]i and [Ca2+]m is also induced by high pressure and Piezo1-

mediated Ca2+ entry of sufficient magnitude and/or duration to prompt transient receptor 

potential vanilloid type 4 (TRPV4) channel Ca2+ entry.20 ATP production is again impaired 

and autophagy, secretion and endolysosomal trafficking disrupted; activated zymogens are 

dispersed in the cytosol; calcineurin, nuclear factor of activated T cells (NFAT) and the 

Nucleotide-binding oligomerisation domain, Leucine rich Repeat and Pyrin domain 

containing (NLRP)3 inflammasome are activated; inflammatory cytokines are released; 

reactive oxygen species accumulate, initiating apoptosis; with deficient ATP, necrosis 

supervenes; and multiple damage-associated molecular patterns (DAMPs) enter the 

interstitium, lymphatic, portal and systemic circulations, driving immune responses that 

exacerbate pancreatic and systemic injury.101720

Variable threshold of injury—There is mounting evidence to suggest that repeated 

exposure to stressors results in adaptive, protective responses but that AP occurs when these 

are inhibited or overwhelmed.24 In animal models, cigarette smoking inhibits the protective 

unfolded protein response (UPR) and the transcription factor X-box binding protein 1 

(XBP-1) generated by ethanol exposure, resulting in ER stress and necrosis not observed 

with either alcohol or smoking alone.24 Moreover, pharmacologic or genetic inhibition of 

XBP-1s leads to acinar cell damage, disordered autophagy and AP.24 Thus, when the 

normally protective UPR, upregulated by cellular stresses, is inhibited or overwhelmed, 

pathologic responses ensue.24

The inflammatory cascade

Parenchymal and leucocyte pathways—Nuclear factor kappa B (NF-κB) is activated 

by acinar cell injury25 independently of trypsinogen,26 triggering transcription of key 

pronflammatory mediators that recruit leucocytes into the pancreas and distant organs. NF-

κB is comprised of homodimers and heterodimers of the Rel family that exert multiple, 

often conflicting, effects varying between acinar and myeloid cells. The NF-kB homodimer 

RelA/p50, rapidly induced on pancreatic injury, contributes to resolution of inflammation.27 

Acinar RelA/p65 also protects against chronic inflammation,28 whereas myeloid RelA/p65 

promotes fibrogenesis characteristic of chronic pancreatitis (CP). Several mechanisms are 

common to parenchymal and immune cells: cytosolic Ca2+ elevations activate calcineurin 

and NFAT,29 driving cytokine production and release; the NLRP inflammasome system is 

activated, coordinating immune responses, notably interleukin release.30 Tumour necrosis 

factor alpha (TNFα) is central, produced by injured parenchymal cells, resident 

macrophages and infiltrating leucocytes. Through chemotactic cytokine leucocyte (CCL) 

and chemokine receptor interactions, for example, CCL2/chemotactic cytokine receptor-2, 

monocytes are recruited and differentiate into TNFα-activated macrophages. Neutrophils are 

among the first immune cells recruited into the pancreas and lung, demonstrated by cellular, 

chemokine and adhesion molecule blockade studies.31 Neutrophils activate trypsinogen in 

acinar cells32 as do trypsinogen in endocytosing macrophages, contributing to AP severity.33 

Barreto et al. Page 4

Gut. Author manuscript; available in PMC 2021 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These cells amplify the inflammatory cascade, generating many chemokines and cytokines 

including interleukins 1 and 6 (IL-1 and IL-6), and intercellular adhesion molecule 1 

(ICAM-1) to promote pancreatic and extrapancreatic multiorgan injury. Recent results, 

together with findings made from other forms of organ injury, suggest significant 

interactions between innate and adaptive immune responses.30 NF-κB activation in myeloid 

cells and expression of IL6 by macrophages mediatethe development of murine AP34 by 

binding to its membrane receptor (IL6R) or complexing with soluble IL6R, both of which 

activate IL6 signal transducer (glycoprotein 130 (GP130)). GP130 activates the Janus kinase 

2 to phosphorylate signal transducer and activator of transcription 3 (STAT3) at Y705. In 

infiltrating myeloid cells, NF-κB regulates production of IL6 at sites of inflammation; the 

ensuing persistent activation of STAT3 results in high levels of CXCL1, which together with 

ICAM1 in lung endothelial cells mediates granulocyte infiltration into the lung, promoting 

lethal acute lung injury.3435

Pattern recognition and pattern recognition receptors (PRRs)—DAMPs, for 

example, histones, high-mobility group box protein 1 (HMGB1), DNA, ATP, hyaluronic 

released from acinar cell injury and death, are recognised by innate immune cells of the 

monocyte macrophage system to induce further local and systemic inflammation.36 

Widespread organ injury in severe AP notably of the gastrointestinal permeability barrier is 

associated with infectious complications and bacterial products, for example, 

lipopolysaccharide (LPS), other endotoxins and flagellin termed pathogen-associated 

molecular patterns (PAMPs), which also activate the innate immune system.37 DAMPs and 

PAMPs ligate a growing array of PRRs, including toll-like receptors (TLRs), nucleotide-

binding oligomerisation domain-like receptors (NLRs and NLRP receptors), C-type lectin 

receptors and sensor stimulator of interferon genes.38 Crosstalk between these receptors 

determines the overall shape of the immune response. It is of direct interest that circulating 

histones, HMGB1 and DNA correlate with clinical AP severity.39

Autophagy

Autophagy is the major lysosome-mediated catabolic process by which cells eliminate 

damaged, defective, or unwanted cytoplasmic organelles, proteins and lipids, and recycle 

constituents for energy and biogenesis needs.40 Deregulation of autophagy is associated with 

AP pathogenesis.41 Both human and experimental pancreatitis display severe defects in 

acinar cell lysosomal functions with reduced enzymatic activities of lysosomal proteases, 

cathepsins and degradation of integral lysosome-associated membrane proteins (LAMPs) 

critical to the structure and function of lysosomes. The inhibition of autophagy manifests by 

the accumulation in acinar cells of autophagic vacuoles, filled with poorly degraded 

material, regarded as an early marker of experimental and human AP.

Recent studies have used genetic models to target autophagy/lysosomal pathways in the 

maintenance of acinar cell homeostasis and initiation of AP. Mice with pancreas-specific 

knockouts of key autophagy mediators autophagy related protein (Atg) 542 or Atg743 or the 

transcription factors TFEB and TFE3 that mediate lysosomal biogenesis and autophagy,44 

and LAMP2 knockout mice,45 all develop spontaneous AP and subsequent features of CP, 

with trypsinogen activation, fibrosis and acinar-to-ductal metaplasia. Collectively, these 
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findings confirm an essential role of autophagy/lysosomal pathways in maintaining 

pancreatic acinar cell homeostasis, and strongly implicate their disorders in initiation and 

development of AP.

Ductal bicarbonate (HCO3
−) secretion protects the pancreas

Pancreatic ductal epithelial cells have a prominent role in maintaining the integrity of the 

pancreas. They secrete HCO3
−-rich fluid into the ductal lumen that prevents premature 

activation of trypsinogen inside the lumen and washes out digestive enzymes from the 

pancreas. Deficient ductal function changes the composition and volume of the fluid, leading 

to acinar cell damage. In recent years, it has been demonstrated that low concentrations of 

ethanol and bile acids stimulate HCO3
− secretion while high concentrations are 

inhibitory4647 (see table 1). Human studies suggest moderate alcohol intake (less than 40 g/

day) might be protective and reduce the risk of AP, more so in women.48 When the 

concentration of ethanol or bile acids reaches a toxic level, HCO3
− secretion is reduced and 

irreversibly elevated intracellular Ca2+ results in mitochondrial damage and cell death.49 

Ductal fluid secretion is also decreased due to inhibition of aquaporin-1 by bile acids.50 

Taken together, the impaired ductal function contributes to the development of AP (see 

figure 2).

The acinar-ductal tango

The altered HCO3
− secretion is primarily due to inhibition or mutations of the cystic fibrosis 

transmembrane conductance regulator (CFTR) Cl− channel, which transports HCO3
− into 

the lumen, in close association with solute carrier family 26 (SLC26) anion exchanger (Cl
−/HCO3

− exchanger). In patients with cystic fibrosis, the type of mutation plays a significant 

role in determining the risk of AP. Two cohort studies demonstrated that with mild mutations 

the incidence of AP is much higher.5152 Ductal obstruction can also lead to AP. Pancreatic 

cancer or bile duct stones can cause obstruction and prevent the outflow of pancreatic fluid 

causing AP.53 On the other hand, impairment of acinar cell function induces ductal damage, 

which aggravates the course of AP (figure 3). Intra-acinar or luminal trypsinogen activation 

markedly reduces ductal HCO3
− secretion through inhibition of the SLC26 anion exchanger 

and CFTR Cl− channels expressed on the duct cell apical membrane, lowering luminal pH. 

This low pH enhances trypsinogen autoactivation that, in a vicious cycle, further reduces 

HCO3
− secretion54 (see figure 2).

Islet hormones and neuropeptides

Beneficial effects—As there is complex interplay between the endocrine and exocrine 

pancreas,55 notably arterial flow from islets to acini, investigators have studied effects of 

islet hormones on AP. Somatostatin and its analogues inhibit basal and stimulated exocrine 

pancreatic secretion,56 reduce lipid peroxidation, leucocyte infiltration and necrosis in 

experimental AP, and promote tissue organisation and healing. It is disappointing that meta-

analysis of randomised clinical trials have shown that neither somatostatin nor its analogues 

have efficacy in the treatment of clinical AP.57 Insulin, however, protects pancreatic acinar 

cells by facilitating PMCA pump Ca2+ clearance, limiting Ca2+ overload and consequent 

cellular injury, likely increasing nutrient supply for ATP production.58 While these findings 
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require confirmation in vivo, early phase trials assessing the hyperinsulinaemic euglycemic 

clamp technique can be envisaged, if justified by accumulating preclinical data.

Deleterious effects—Neuropeptides and neuroinflammation have been a focus in AP 

research for many years,5960 also pursued avidly in brain research (there are now several 

thousand neuropeptides identified); earlier AP work investigated the kinin-kallikrein system,
59 later substance P60 and galanin.61 Kinins are derived from kininogens that modulate blood 

pressure, vascular permeability and pain transmission through the bradykinin receptor. 

Seminal work 60 years ago identified a key role for bradykinin in hypotension, pancreatic 

oedema, fluid shifts and haemoconcentration in AP,59 leading to early trials of trasylol. 

Unfortunately, preclinical efficacy was not confirmed to confer clinical benefit.57 Substance 

P, a prototypical tachykinin, contributes to AP through neurogenic inflammation,62 mediated 

via neurokinin-1 (NK1) receptors60 present in acinar cells upregulated in AP.60 Substance P 

increases vascular permeability and interstitial oedema,60 potentiates effects of other 

secretagogues,63 upregulates production of proinflammatory mediators, and increases NF-

κB activation,64 pancreatic myeloperoxidase activity and necrosis in experimental AP.65 

Galanin, another neuropeptide ubiquitously present in the nervous system, contributes to AP,
61 potentiating effects of other secretagogues,66 promoting neuroinflammation,65 reducing 

pancreatic microcirculation, enhancing neutrophil function67 and inhibiting ductal HCO3
− 

secretion.68 Neuropeptides and neuroinflammation contribute to pain in AP, implicating 

bradykinin and TRPV1.62

Genetic mutations increasing the susceptibility to AP

Variations in several genes in many populations have been linked to increased susceptibility 

to CP, which may be heralded by a sentinel attack of AP. Genetic mutations affect different 

processes and pathways, including trypsin activation (PRSS1, serine protease inhibitor Kazal 

type 1 (SPINK1) and chymotrypsin C (CTRC)),69 chloride and HCO3
− transport (CFTR),70 

protein misfolding response (carboxypeptidase A1, CPA1),71 and Ca2+ signalling 

(TRPV6)72 and suggest a shared pathobiology between AP and CP. Variations in the claudin 

2 gene (CLDN2) alter the inflammatory response to acinar cell destruction and fibrosis.73 

The inheritance varies from autosomal dominant for PRSS1, autosomal recessive for CFTR, 

to complex and sporadic inheritance patterns for other genes. Apte et al74 suggested that 

investigation into protective mechanisms associated with CFTR mutations may uncover 

pancreatic susceptibility to alcohol toxicity. Maléth et al47 provided clinical evidence of 

lower levels of CFTR messenger RNA and protein expression in pancreatic tissue in patients 

with AP compared with healthy volunteers and evidence that alcohol and fatty acids inhibit 

CFTR activity and fluid and bicarbonate secretion in pancreatic ductal epithelial cells. In 

patient populations, variations in CFTR and SPINK1 are the most frequently detected. Other 

than an earlier age at presentations, clinical features in patients with genetic mutations are 

similar to those without.75 Koziel et al76 found mutations in SPINK1 (especially p.N34S) 

predispose individuals to AP, especially with alcohol abuse, and promote more severe 

disease. Polonikov et al77 confirmed a robust association of polymorphism rs10273639 at 

PRSS1-PRSS2 with AP modified by alcohol consumption. Since AP, recurrent AP and CP 

represent a disease continuum,78 it is reasonable to conclude that variations in the described 

genes play a role in AP pathogenesis. A recent meta-analysis observed significant risk of AP 
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with SPINK1 variants; the lack of association with PRSS1 was attributed to exclusion of 

paediatric populations, and few data were available for CFTR and CTRC variants.79 

Interestingly, the meta-analysis also identified an increased risk of AP related to variation in 

genes linked to IL-1B and IL-6 cytokine production.79 Genome-wide association studies 

have identified CLDN2 and PRSS1-PRSS2 variants altering the risk of alcohol-related and 

sporadic pancreatitis.73 It is, thus, plausible that AP due to different risk factors might have a 

distinct genetic background making the interpretation of genetic results difficult (as cohorts 

in the subgroups are small and phenotypes not well characterised). These associations need 

replication and must be reported currently with caution, including data on IL6 and other 

immune genes.

Pancreatic stellate cells in necroinflammatory amplification

Stellate cells are resident pancreatic cells next to acinar cells. The teams of Apte and 

Bachem8081 first identified stellate cells and their role in pancreatic pathophysiology. 

Evidence has emerged to support the existence of a ‘necrotic amplification loop’ in AP 

between acinar and stellate cells.82 It has been demonstrated in experimental AP that 

initiation of an inflammatory signal potentiates acinar cell injury, further activating 

inflammatory signals and acinar cytokine/adipokine secretion that amplify the inflammatory 

response. The resultant necrosis in a proportion of acinar cells leads to the release of 

activated proteases and bradykinin that act on neighbouring stellate cells by evoking Ca2+ 

signals. Trypsin-induced and bradykinin-induced Ca2+ signals within stellate cells, in turn, 

activate nitric oxide (NO) synthase to produce NO. NO diffuses into neighbouring acinar 

and endothelial cells exacerbating parenchymal cellular damage, decreasing the pancreatic 

microcirculation and increasing adherent leucocytes in the pancreas.83 This results in a 

vicious circle termed a ‘necrotic amplification loop’82 that intensifies local and systemic 

inflammation in AP. Stellate cells may be activated directly by ethanol and its metabolites to 

secrete proinflammatory84 and fibroinflammatory19 signals. Stellate cells express many 

membrane receptors including TLRs85 that can be stimulated by growth factors, cytokines 

and DAMPs released by damaged acinar or immune cells. LPS binds to TLRs on stellate 

cells, activating fibroinflammatory signals mediated by extracellular Ca2+ entry.19 There are 

high levels of circulating LPS in alcohol-fed animals, in alcoholics and patients with AP,86 

likely due to alcohol-induced increases in gut permeability; furthermore, LPS injection 

induces AP in alcohol-fed animals.74

Pancreatic stellate cells contribute to reorganisation of the pancreatic environment by 

producing or degrading extracellular matrix (ECM) molecules. ECM components (eg, 

fibronectin, collagen I, etc) are critical to multiple physiological and pathological signalling 

pathways including inflammation, tissue damage regulation and might provide a scaffold for 

tissue repair through interaction with acinar cell integrin receptors.8788 In this context, they 

may influence the balance between protectors and stressors in determining the severity of 

AP, and the risk of recurrent episodes.

What critical threshold of injury triggers AP?

Some or all above events may unfold when the pancreas is exposed to aetiological triggers. 

Mechanisms deciphered from preclinical experiments have clinical parallels, notably 
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disordered Ca2+ signalling within human pancreatic acinar cells and their consequent injury, 

innate immune responses, mediation by DAMPs, PAMPs and PRRs, and necroinflammatory 

amplification.20 Substantial gaps remain, as translation is necessarily incomplete. Unlike 

clinical AP, experimental AP is predictable and consistently replicated, although with 

significant differences between species, aetiologies and assessment methods.5 Preclinical 

models differ from human disease, but preclinical investigations remain essential to advance 

our understanding of and therapies for AP, through a translational pipeline. While preclinical 

AP displays a continuum of injury, clinical AP is defined by two of the three criteria 

outlined earlier, after an emergency presentation to hospital or complicating an inpatient stay 

for other reasons. This indicates a critical threshold has been exceeded in patients 

developing clinical AP. While this threshold will typically have been reached prior to 

diagnosis, the time of diagnosis is preferred to represent when this has occurred, to enable 

and facilitate areas of research. One important area would be more nearly complete and 

rapid diagnosis of all AP globally, for example, from the onset of symptoms, essential to 

improved outcomes.

While Gryshchenko et al suggested AP is characterised pathobiologically by injury of ‘a 

portion of acinar cells’,82 we proposed previously that AP occurs on injury of a ‘critical 

mass’ of acinar cells,89 accurate measurement of which, for example, using activation 

peptides requires further development. Mounting evidence supports a balance between 

protective systems and multiple stressors (see table 1); when stressors overwhelm protectors, 

parenchymal injury occurs. If inflammatory signals from injured acinar cells are amplified 

by stellate cells, resident macrophages and infiltrating leucocytes, with release of 

neuropeptides and other inflammatory mediators, classical clinical features develop, namely, 

pain, swelling and loss of function. In AP, feed forward necroinflammatory amplification 

can be so profound that extensive necrosis and organ failure may supervene. Therefore, we 

propose that an attack of clinically evident AP is caused by a critical level of acinar cell 

injury. This first critical threshold is reached when local protective responses are exceeded, a 

nidus of inflammation propagates, and multiple inflammatory mediators are released. Feed 

forward necroinflammatory amplification loops increase local pancreatic damage and spill 

into a systemic inflammatory response, which above a second critical threshold induces 

distant organ injury that can be profound (figure 4).

IMPLICATIONS FOR CLINICAL AP

Epidemiology and health services research

Much population-based research can address how individuals exceed the critical thresholds 

proposed, which may require analysis of large data sets. Basic to this are figures for the 

incidence of AP, estimated at ~35 individuals per 100 000 people/year, with marked 

variation between countries, and mortality of 2%–5%.90 Detailed data on the epidemiology 

of AP outside Europe and North America are required to assess global burden, including 

age, gender, lifestyle, aetiology, disease course and outcome. Hospital admission underpins 

the diagnosis of AP, that is, when the first critical threshold can be identified to have been 

exceeded, but the determinants and timing of hospital admission are largely undefined, 

including individual biological and psychosocial factors, and the nature, availability and 

Barreto et al. Page 9

Gut. Author manuscript; available in PMC 2021 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accessibility of health service provision.90 Factors affecting access to and quality of hospital 

care are important in addressing health inequalities, health service policy and financing 

globally. AP is the most common disease of the pancreas, yet there have been relatively few 

large-scale genomic studies including many patients with typical etiologies,7779 unlike for 

CP. DNA collection and storage from patients with well-characterised AP should be a 

priority to feed into well designed and funded consortia studies. The most common cause of 

AP is gallstones followed closely by heavy alcohol consumption, although reversed in some 

countries with notable differences to explore, for example, hypertriglyceridaemia in China,91 

related to life style and increasing in incidence.92 Addressing the aetiology of AP prevents 

future attacks, but much investigation may be left for varying periods after onset, when it 

may be too late to detect for example, high triglyceride levels or other aetiologies. 

Comparative trials of alternative diagnostic and preventative algorithms would strengthen 

focus on appropriate workup and preventative strategies.

Alcohol consumption is the most common cause of recurrent AP, the risk of which can be 

reduced substantially by abstinence. Fewer than 5% of heavy drinkers, however, develop 

pancreatitis,93 which remains largely unexplained. Short-term heavy drinking increases the 

risk of AP. A 52% (RR 1.52, 95% CI: 1.12 to 2.06) increased risk of AP has been estimated 

for every five standard spirit drink increment consumed on a single occasion.94 More 

recently, the effects of smoking have been noted; smoking ≥1 pack/day is associated with 

recurrent AP (and CP), independent of alcohol.95 Other health-related behaviours such as 

high-fat diets may push individuals over the first critical threshold. Animal studies 

demonstrate that while alcohol increases the vulnerability to AP, additional triggers, such as 

cholecystokinin (CCK) administration, are needed to induce AP.96 CCK is an endogenous 

hormone stimulated by diets high in fat and protein.97 Indeed, high intakes of saturated fat 

and cholesterol are positively associated with the incidence of gallstone AP.98 Studies are 

needed to investigate the short-term and long-term impact of diet on the risk of AP, 

including intake shortly before the onset of AP, when two or more factors may cause an 

individual to exceed the first or second critical threshold outlined.

Precision patient management

Despite our seemingly detailed understanding of the pathogenesis of AP derived from 

animal models, we have many unanswered questions in human AP, which is significantly 

more heterogeneous and may require substantial omics data to unravel. Figure 5 presents a 

multicausal model of AP with interventions to target gaps in understanding risk factors and 

their threshold for disease causation. Why does AP develop in some, but not other people 

exposed to known risk factors for AP? How precisely might the risk of AP from gallstone 

passage through the ampulla of Vater be determined, for example, number, size, shape, bile 

constituents, morphology and function of the biliary tree, Oddi’s sphincter and exocrine 

pancreas? If accurate determination of risk were possible, might prophylactic 

cholecystectomy be appropriate? We know cholecystectomy for gallstones99 and abstinence 

from smoking and/or alcohol reduce the risk of AP. Nevertheless, patients may develop 

recurrent AP following cholecystectomy for presumed gallstone AP.100 What impact has an 

episode of AP on the likelihood of a subsequent episode? How does this vary between 

individuals? Multiple factors including diet, quantity and type of alcohol, and pre-existing 
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genetic variants may contribute to an episode of AP, each of which alone would not 

necessarily have triggered an episode. This is not uncommon in children, especially in those 

with recurrent AP.101 Obesity contributes to an amplified SIRS in AP and is associated with 

local and systemic complications, including mortality.102 How do we determine the primary 

cause to prevent future episodes? Postendoscopic retrograde cholangiopancreatography AP 

has presented a unique opportunity to institute and further develop preventative strategies. 

Fastidious patient selection and informed decision-making, prophylactic rectal non-steroidal 

anti-inflammatory drugs, careful guidewire-assisted cannulation, pancreatic stent placement 

and prompt intravenous fluid hydration have reduced but not removed the risk of AP,103 

necessitating further trials.

Why do some but not other people with AP develop organ dysfunction and exceed the 

second threshold? Animal studies suggests the magnitude of noxious stimuli is key, but 

clinical quantification is elusive, as is accurate identification of severity on admission. 

Similar questions posed concerning the first critical threshold, including multiple 

cocontributory factors, apply to the second critical threshold. Despite our knowledge of the 

clinical course and underlying mechanisms of AP, we are unable to prevent its progression 

once the disease continuum has set in, treatment for which is primarily supportive and 

directed at complications. Early judicious intravenous fluid resuscitation corrects 

hypovolaemia from third-space fluid losses to maintain or restore pancreatic, splanchnic and 

systemic perfusion.99 The optimum fluid type and methods of monitoring to avoid 

overadministration are undetermined, however, and why only some patients develop 

pancreatic necrosis and distant organ dysfunction despite being adequately fluid resuscitated 

requires determination. Since a high haematocrit is associated with poorer outcome, earlier 

presentation and earlier fluid resuscitation is desirable; this being so, patients should be 

encouraged to present as soon as possible after symptom onset from AP. Lung injury, the 

most common distant organ dysfunction, has multiple potential contributors including 

circulating phospholipase A2, elastase, LPS and IL6-IL6R complexes. These pathways have 

been targeted effectively in animal models but clinical trials have failed to match 

expectations thus far, suggesting the need to test new treatments more rapidly after diagnosis 

for example, IL6 antagonists or target alternative pathways, for example, the kynurenine 

mono-oxygenase pathway.104 Hyperactive immune responses are probable instruments of 

injury, so unravelling any contribution of immune response gene variants is a priority, and 

immune targeting may be appropriate. A correlated persistent inflammation, 

immunosuppression and catabolism syndrome may contribute to late patient death.105 It is 

hoped that the results of the rapid treatment of acute pancreatitis with infliximab (RAPID-I) 

Trial (NCT03684278) testing early administration of the TNF-α inhibitor infliximab will be 

informative in this regard. Treatments are required to reduce the early and long-term impact 

of AP, including organ failure, necrotising pancreatitis, superadded infection, exocrine and 

endocrine failure,106107 recurrent AP and CP. The risks of long-term effects are significantly 

higher in alcohol-related AP compared with gallstone-related disease.107 An encouraging 

strategy to prevent AP includes focusing on upregulating preventative pathways, such as 

reducing ER stress by targeting XBP-1 in the acinar cell thereby facilitating a robust UPR to 

stressors, namely alcohol.108
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FUTURE DIRECTIONS

We have placed current understanding of the pathogenesis of AP into a framework that has 

two thresholds critical to the development and impact of AP on individuals. Our approach is 

designed to assist forward and reverse translation integrating animal and human studies to 

stimulate further clinical studies and trials in the prevention and treatment of AP. To date, 

animal studies have been used more to elucidate underlying mechanisms and monitor 

pathophysiologic events, less to evaluate clinical interventions and their effects. Greater 

focus is required on appropriate preclinical models to develop interventions after disease 

initiation, as in the clinical setting.

We propose the two critical thresholds and associated framework to refocus endeavour on 

improvement of the management and outcome of AP: to estimate and reduce risk, assess and 

modify contributing cofactors, capture more cases earlier, optimise and personalise 

resuscitation, analgesia, nutrition, aetiological and severity assessment, and develop effective 

prophylaxis and therapy. A pipeline of trials using ORAI inhibitors to reduce Ca2+ injury,109 

simvastatin to reverse deregulated autophagy110 and agents to prevent MPTP opening or 

pathologic ER stress could confirm an agent that halts progression of early pancreatic injury 

and prevent systemic progression. Inhibition of inflammatory mediators including TNF-α or 

IL-6, particularly given early, could ameliorate AP even after exceeding the second 

threshold. Omics technologies and novel measurement systems offer fertile areas for the 

development of precision-based therapy. These approaches also apply to prevention of 

iatrogenic and recurrent AP. To complement this, population-based studies are needed to 

more accurately determine who develops AP, when and why, and to inform health service 

policy and delivery for those with AP.
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Figure 1. 
Critical thresholds in the balance between protective factors and stressors that determine the 

onset of clinically apparent AP and progression to severe AP, increasing the risk of death. 

Amplification loops, for example, diminished ATP supply leading to necrosis and necrosis 

leading to inflammation, increase the likelihood of an individual exceeding critical threshold 

1 (AP) and critical threshold 2 (severe AP). Effective interventions (treatment) will reduce 

the impact of stressors on the onset and progression of AP and reduce the likelihood to 

exceeding either threshold. AP, acute pancreatitis.
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Figure 2. 
Amplification loops that contribute to an individual exceeding critical threshold 1 (Acute 

pancreatitis (AP)) and critical threshold 2 (severe AP) in the pathogenesis and progression of 

AP. While distinct, the loops interact and drive each other. (A) Toxins that increase the open 

probability of inositol trisphosphate receptor (IP3R) and ryanodine receptor (RyR) Ca2+ 

channels induce release of Ca2+ from the endoplasmic reticulum (ER), raising the 

concentration of Ca2+ in the cytosol ([Ca2+]i) and mitochondria ([Ca2+]m) while lowering 

that in the ER ([Ca2+]ER), which drives formation of stromal interaction molecule-calcium 

release-activated calcium channel-transient receptor potential canonical cation channel 

(STIM-ORAI-TRPC) puncta for Ca2+ entry. Continued elevation of [Ca2+]m induces the 

mitochondrial permeability transition pore (MPTP) with loss of mitochondrial membrane 

potential and ATP production, which impairs Ca2+ clearance by the sarcoendoplasmic 

reticulum and plasma membrane Ca2+ ATPases (SERCA and PMCA) pumps, further 

increasing [Ca2+]i and [Ca2+]m. (B) Diminished ATP production induces defective 

autophagy, disordered endolysosomal trafficking, building up activated digestive enzymes 

and further driving intracellular and extracellular injury. (C) Sustained elevations of [Ca2+]i 

and [Ca2+]m induce nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-

κB) and the Nucleotide-binding oligomerisation domain, Leucine rich Repeat and Pyrin 

domain containing (NLRP) inflammasome system resulting in cytokine release, stimulating 

resident and infiltrating leucocytes, causing further parenchymal injury. (D) Acinar-ductal 

tango: ductal secretion may be diminished by inherited or acquired defects of cystic fibrosis 

transmembrane conductance regulator (CFTR) function or ductal obstruction that in turn 

injures acinar cells that release activated zymogens which further diminish ductal function. 

(E) Necrosis releases damage-associated molecular patterns (DAMPs, for example, histones, 

DNA) that attract and activate leucocytes which release cytokines, inflammatory mediators 

and neuropeptides. Parenchymal and circulating inflammatory mediators exacerbate local 

pancreatic and distant systemic organ injury resulting in further necrosis. (F) Inflammatory 

injury of the gut, lung and other organs damage mucosal and epithelial protective barriers, 
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which bacteria breach to infect local and distant sites. Systemic sepsis impacts on organ 

function, prompting further inflammation and tissue injury.
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Figure 3. 
The acinar-ductal tango depicting the ductal changes that precipitate acinar injury and the 

effect of resultant acinar injury on ductal cell dysfunction. CFTR, cystic fibrosis 

transmembrane conductance regulator.
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Figure 4. 
The multifactorial ‘critical threshold’ hypothesis in the causation of AP. AP, acute 

pancreatitis; Ca2+, free cytosolic calcium; MPTP, mitochondrial permeability transition pore; 

UPR, unfolded protein response.
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Figure 5. 
This hypothesised multicausal model of acute pancreatitis differentiates two main types of 

causes: behavioural and clinical. Behavioural component causes, such as excessive drinking, 

that are more common in young adults to middle aged people increase the potential for 

pancreatitis (solid black line). People with greater genetic vulnerability (eg, mutations in 

known genetic susceptibility factors, such as cystic fibrosis transmembrane conductance 

regulator and serine protease inhibitor Kazal) may experience pancreatitis at a lower 

threshold of drinking (dotted black line). Clinical component causes, such as gallstones, 

increase with age (solid red line). The risk is elevated in women, and in the presence of 

metabolic factors, such as obesity. Among other causes, metabolic factors, such as 

hypertriglyceridaemia-induced pancreatitis, are seen in individuals with an underlying lipid 

abnormality who have one of more secondary factors, such as diabetes.
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Table 1

Protective factors that prevent acute pancreatitis throughout life except when one or more stressors build up, 

increasing the likelihood of acute pancreatitis, which will occur if the critical threshold is exceeded

Protective factors Stressors

Systemic toxin protection and clearance mechanisms Genetic variants imposing limits on cell function

Facilitatory metabolic effects of islet hormones High ductal pressure or parenchymal trauma

Separated, discrete acini and parenchymal lobules Toxin exposure to which acinar cells are vulnerable

High output secretory units with robust acinar cells Reduced O2 supply for oxidative phosphorylation

Ca2+ supply ducted within the endoplasmic reticulum Untimely and/or excessive stimulation of secretion

Prompt unfolded protein response on cellular stresses Impaired ductal function and zymogen clearance

Transcription/release of danger signals suppressed Prolonged opening of inositol trisphosphate receptor and ryanodine receptor Ca2+ 

channels

Highly active acinar cells with abundant functional 
mitochondria

Sustained Ca2+ entry via calcium release-activated calcium channel, transient 
receptor potential canonical cation channel, transient receptor potential vanilloid

Sufficient ATP for energy-dependent functions High conductance opening of mitochondrial permeability transition pore with 
loss of ΔΨM

Stimulus-secretion and stimulus-metabolism coupling Diminished oxidative phosphorylation and ATP supply

Proper zymogen synthesis that prevents intracellular 
activation

Zymogen and lysosomal-protease colocalisation

Zymogens packaged in exclusive subcellular 
compartments condensed with enzyme inhibitors

Defective autophagy and endolysosomal cycling

Flow away with ductal secretion at high pH Build-up of activated digestive enzymes within acinar cells

Enhanced ductal flow with low doses of toxins Activation of nuclear factor of activated T cells, nuclear factor kappa B, 
Nucleotide-binding oligomerisation domain, Leucine rich Repeat and Pyrin 
domain containing signalling

Zymogens activated distantly in duodenum with 
enterokinase

Stellate and resident macrophage danger responses

Infiltration of activated innate immune cells

Necroinflammatory amplification loops
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