Skip to main content
. 2021 Jan 7;17(1):e1008569. doi: 10.1371/journal.pcbi.1008569

Table 1. Optimal hyperparameters selected by DEWÄKSS self-supervised objective function.

Normalization Dataset iteration mode neighbors pcs MSE
DESeq2 celseq2 1 distances 120 3 0.466
FTT celseq2 1 distances 90 5 0.878
Linnorm celseq2 1 distances 110 4 0.066
logCPM celseq2 1 distances 100 6 4.567
none celseq2 1 connectivities 14 120 4.428
scone celseq2 1 distances 120 4 0.445
scran celseq2 1 distances 130 3 0.484
TMM celseq2 1 distances 50 6 0.378
DESeq2 sortseq 1 distances 100 3 0.513
FTT sortseq 1 distances 80 4 1.127
Linnorm sortseq 1 distances 100 4 0.083
logCPM sortseq 1 distances 80 13 4.684
none sortseq 1 distances 10 17 5.321
scone sortseq 1 distances 100 4 0.484
scran sortseq 1 distances 120 3 0.536
TMM sortseq 1 distances 50 6 0.412