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Background. Ovarian cancer (OC) is the eighth most common cause of cancer death and the second cause of gynecologic cancer
death in women around the world. Ferroptosis, an iron-dependent regulated cell death, plays a vital role in the development of
many cancers. Applying expression of ferroptosis-related gene to forecast the cancer progression is helpful for cancer treatment.
However, the relationship between ferroptosis-related genes and OC patient prognosis is still vastly unknown, making it still a
challenge for developing ferroptosis therapy for OC.Methods. ,e Cancer Genome Atlas (TCGA) data of OC were obtained and
the datasets were randomly divided into training and test datasets. A novel ferroptosis-related gene signature associated with
overall survival (OS) was constructed according to the training cohort.,e test dataset and ICGC dataset were used to validate this
signature. Results. We constructed a model containing nine ferroptosis-related genes, namely, LPCAT3, ACSL3, CRYAB, PTGS2,
ALOX12, HSBP1, SLC1A5, SLC7A11, and ZEB1, and predicted the OS of OC in TCGA. At a suitable cutoff, patients were divided
into low risk and high risk groups.,e OS curves of the two groups of patients had significant differences, and the time-dependent
receiver operating characteristics (ROCs) were as high as 0.664, respectively.,en, the test dataset and the ICGC dataset were used
to evaluate our model, and the ROCs of test dataset were 0.667 and 0.777, respectively. In addition, functional analysis and
correlation analysis showed that immune-related pathways were significantly enriched. Meanwhile, we also integrated with other
clinical factors and we found the synthesized clinical factors and ferroptosis-related gene signature improved prognostic accuracy
relative to the ferroptosis-related gene signature alone. Conclusion. ,e ferroptosis-related gene signature could predict the OS of
OC patients and improve therapeutic decision-making.

1. Introduction

Ovarian cancer (OC) is the eighth most common cause of
cancer death and the second cause of gynecology cancer
death in women around the world [1]. Among all types of
OCs, epithelial OC (EOC) accounts for over 95% of all
ovarian malignancies [2, 3]. OC is heterogeneous and the
etiology remains complicated and uncertain [4, 5]. Risk
factors include inherited risk, obesity, age, perineal talc use,
etc. [3, 6]. ,e prognosis of OC relies on the stage and early
prevention. Over the past years, improved screening, sur-
gery, and treatment methods have contributed largely to the

increase of survival. However, survival rates for OC have
changed modestly for decades, even in developed countries
such as America and Canada [3]. Approximately 70% of OCs
are diagnosed at an advanced stage and have a relatively low
5-year survival rate of 30% [7]. Uncertain etiologic factors
and low survival rate of OC make the finding of novel
therapeutic strategies and models urgent.

Ferroptosis, first coined in 2012, is an iron-dependent
and reactive oxygen species (ROS) reliant form of regulated
cell death (RCD) [8, 9]. Emerging evidence shows that
ferroptosis acts like a nexus between metabolism, redox
biology, and human health [10]. In recent years, ferroptosis
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has been exhibiting huge potential of triggering cancer cell
death by regulating the mechanism of iron metabolism,
amino acid and glutathione metabolism, and ROS meta-
bolism, particularly for eradicating aggressive malignancies
that are resistant to conventional therapies [10]. Lately,
ferroptosis has been reported to play a vital role in the
progression of OC and genes like stearoyl-CoA desaturase 1
could protect OC cells from ferroptosis cell death [11, 12].
TAZ-ANGPTL4-NOX2 axis regulates ferroptosis cell death
and chemoresistance in EOC [13]. On the other hand,
ferroptosis-regulator gene glutathione peroxidase 4 (GPX4)
is highly associated with tumorigenesis and progression
[14, 15]. ,erefore, ferroptosis can be a potential and
powerful target for cancer therapy. However, the relation-
ship between ferroptosis-related genes and OC patient
prognosis is still vastly unknown, making it still a challenge
for developing ferroptosis therapy for OC.

In this paper, we downloaded OC patient samples from
publicity datasets TCGA and ICGC. After preprocessing the
data, we constructed a prognostic model composed of nine
ferroptosis-related genes in TCGA training set and validated
it in TCGA test dataset and ICGC dataset. Further, we
conducted functional annotation to discover the possible
mechanisms. Finally, restricted median survival (RMS)
analysis was applied to combine and evaluate the clinical
information and the constructed model. ,e results showed
that the combination had stronger power than the risk
model only.

2. Material and Methods

2.1. Data Collection and Preprocessing. All datasets used in
this study were publicly available and the workflow of this
work is shown in Figure 1. ,e count data of OC were
obtained from ,e Cancer Genome Atlas (TCGA) (https://
tcga-data.nci.nih.gov/tcga/). A total of 377 OC patient
samples with corresponding clinical information were
available in TCGA. ,e detail information of clinical data
about 377 samples is shown in Table 1. For raw count data,
we first transformed the Ensembl IDs to gene symbols and
protein-coding gene was selected for this research. ,en, we
computed the transcripts per kilobase million (TPM) values,
which were more comparable between samples. Meanwhile,
the expression data and clinical information of OC were
downloaded from International Cancer Genome Consor-
tium (ICGC) resource (https://dcc.icgc.org/). Finally,
according to the previous literatures [16–19], 60 ferroptosis-
related genes were collected and listed in Supplementary
Table S1.

2.2. Construction of Risk Model and Ferroptosis-Related
Feature Signature. After data preprocessing, 50% of samples
were randomly divided into training set (containing 189 OC
samples) and another 50% were allocated as validation set
(containing 188 OC samples). First, ferroptosis-related
genes with prognostic values were identified by univariate
cox analysis of overall survival (OS) in the training set se-
lected in TCGA data. ,e coxph function in the survival R

package was used, and p< 0.15 was selected as the threshold.
Finally, 15 ferroptosis-related genes were screened (Sup-
plementary Table S2). Further, feature selection was con-
ducted by the randomForestSRC R package. ,e random
forest algorithm was used for ranking the importance of
prognostic genes. Only genes with variable relative impor-
tance >0.4 were identified as the final signature. ,en, we
performed multivariate cox analysis on the final signature
obtained from the random forest algorithm. Finally, using a
linear combination in the training datasets, a formula for the
risk score was established. ,e hazards model was con-
structed as follows:

RiskScore � 􏽘
N

i�1
(exp ∗ coef), (1)

whereN is the number of gene, exp is the expression value of
gene, and coef is the coefficient of gene in the multivariate
cox analysis.

2.3. )e Robustness Verification of the Gene Signature in In-
ternal and External Datasets. Risk score and overall survival
(OS) analysis were performed using the coxph function in
the survival R package. ,e sensitivity and specificity of the
model were assessed by the receiver operating characteristic
(ROC) curve, drawn by using the timeROC R package, and
were used for analyzing the prognosis prediction of 1 year, 3
years, and 5 years [20]. ,en, to verify the stability of the
model obtained, the performance of themodel was evaluated
in TCGA test dataset and ICGC cohort.

2.4. Estimation of theAbundance of ImmuneCell Populations.
In this study, 24 tumor-infiltrating immune cells (TIICs)
from the literature [21] that included two categories of
adaptive immunity and innate immunity were used to cal-
culate the infiltration level of specific immune cell using
Single-Sample Gene Set Enrichment Analysis (ssGSEA) al-
gorithm. In brief, ssGSEA applied gene signatures expressed
by immune cell populations to individual cancer samples and
we used ssGSEA algorithm to estimate the infiltration levels of
24 kinds of TIICs in OC samples. In our research, the ssGSEA
algorithm was implemented in the gsva R package.

2.5. Functional Annotation Analysis. In the training dataset,
patients with OC were divided into two groups, including
high risk and low risk groups, according to the optimal
cutoff value. To identify the potentially altered pathways
between high risk and low risk groups, the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment
analysis and Gene Ontology (GO) analysis were applied for
gene set annotation, and GSEA algorithm was applied to
identify the key pathways and biological process by using the
R package “clusterProfiler.”

2.6. Statistical Analysis. Statistical analysis was performed
using the R software (3.6.2 version, https://cran.r-project.
org/). Student’s t-test was used to evaluate the difference
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between different groups. Chi-squared test was used to
compare the differences in different proportions. ,e
ssGSEA scores between two groups were compared by
Mann–Whitney test with p values (adjusted by the BH
method).,e Kaplan–Meier method was applied to perform
OS analysis. ,e differences of OS between two groups were
assessed by two-sided log rank tests. p value <0.05 was
regarded statistically significant.

3. Results

3.1. Identification of Nine Ferroptosis-Related Genes. In this
paper, 60 ferroptosis-related genes were processed by

randomForestSRC R package for gene feature selection. Fer-
roptosis-related genes with relative importance >0.4 were
considered as the final signature. ,e relationship between the
error rate and the number of classification trees is shown in
Figure 2(a). After ranking these genes according to the im-
portance of out of bag, 9 top ferroptosis-related genes are shown
in Figure 2(b). ,ese genes are LPCAT3, ACSL3, CRYAB,
PTGS2, ALOX12, HSBP1, SLC1A5, SLC7A11, and ZEB1.

3.2. Construction GenesWeighted by)eir Coefficients from a
Ferroptosis-Related Prognosis Model in TCGA Cohort. By
linearly combining the nine ferroptosis-related genes
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Figure 1: Flowchart of data collection and analysis.
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weighted by their coefficients frommultivariate cox analysis,
a hazard model was constructed as a formula:

Riskscore � (0.1339∗EZEB1) + (0.3175∗ESLC7A11) +
(0.1769∗ESLC1A5) + (0.0923∗EHSBP1) + (0.2194∗EALOX12)
+ (0.0024∗EPTGS2) + (0.1861∗ECRYAB) + (0.4275∗EACSL3)
+ (0.2694∗ELPCAT3).EZEB1 is the expression value of gene
ZEB1. ,e rest are similar to gene ZEB1.

,e risk score of each sample was calculated using the
above method. ,e patients in TCGA training cohort were
divided into high risk group (n� 58) and low risk group
(n� 131) according to the optimal cutoff value determined
by survminer package in R. As the Kaplan–Meier curves
show in Figure 3(a), people in high risk group have a higher
probability of death than those in the low risk group
(p< 0.0001). ,e ROC analysis is shown in Figure 3(b) and
the ROC curves reach 0.654 at 1 year, 0.664 at 3 years, and
0.69 at 5 years. And the detailed risk score, survival infor-
mation, and ferroptosis-related genes’ expression are dis-
played (Figures 3(c)–3(e)).

3.3. Validation of the Nine Ferroptosis Genes’ Signature Using
the Test Dataset. ,e robustness of the model was examined
in the test dataset from TCGA cohort (n� 188), including 88
samples in high risk group and 100 samples in low risk group
according to the same risk formula. Patients in higher risk

group had poorer survival time than those in low risk group,
consistent with the former results (Figure 4(a)). ,e AUC of
time-dependent ROC in 1 year, 3 years, and 5 years is 0.7,
0.667, and 0.612, respectively (Figure 4(b)). ,e detailed risk
score, survival information, and ferroptosis-related genes’
expression also are displayed (Figures 4(c)–4(e)).

3.4. Validation of the Nine Ferroptosis-Related Genes’ Sig-
nature in ICGCCohort. To further test the robustness of the
constructed model, patients (n� 93) from the ICGC cohort
were categorized into high risk group (40 samples) and low
risk group (53 samples) according to the same risk formula
above. ,e survival curves show the patients in high risk
group had lower survival probability than patients in low
risk group (p< 0.0001) (Figure 5(a)). ,e AUC of the model
was 0.693 at 1 year, 0.777 at 3 years, and 0.718 at 5 years
(Figure 5(b)). ,e detailed risk scores, survival information,
and nine ferroptosis-related genes’ expression in ICGC
cohort are shown (Figures 5(c)–5(e)).

3.5. Independent Prognostic Factor of the Gene Signature.
We carried out univariate and multivariate cox analysis to
determine whether the gene signature was an independent
prognostic predictor. Applying univariate cox regression
analysis, we found the risk score was significantly associated
with OS in the training dataset, test dataset, and the ICGC
cohort (HR� 2.657, 95% CI� 1.823–3.872, p< 0.001;
HR� 1.887, 95% CI� 1.287–2.768, p< 0.001; HR� 3.115,
95% CI� 1.914–5.069, p< 0.001, respectively) (Table 2).
After correction for other confounding factors by the
multivariate cox regression analysis, the risk score still
proved to be an independent predictor for OS (HR� 1.767,
95% CI� 1.155–2.704, p � 0.009; HR� 1.944, 95%
CI� 1.271–2.973, p � 0.002; HR� 3.06, 95%
CI� 1.865–5.021, p< 0.001, respectively). In addition, the
ferroptosis-related gene model also was assessed on the
clinical factors, including age, stage, and grade tumor status
of the tumor, and the Kaplan–Meier analyses revealed that
patients in the high risk of death group had significantly
shorter OS compared with patients in the low risk of death
group in the training dataset, test dataset, and ICGC dataset
(p< 0.05) (Figure S1).

3.6.)e Relationship between Risk Scores and Immune Status.
Considering ferroptosis was strongly associated with im-
mune status, we further explored the correlations between
risk scores and immune status using the ssGSEA method.
,e different subpopulations of immune cells were divided
into adaptive immunity cells and innate immunity cells.
First, the correlation analysis between the nine ferroptosis-
related genes and risk scores and the abundance of immune
cells are shown in Figure 6(a). ,e results showed that the
risk scores and the nine ferroptosis-related genes meet
strong correlations with most of the immune cells, such as
eosinophils, iDC, macrophages, neutrophils, NK cells, Tem,
Tgd, and ,1 cells, suggesting strong connections between
the nine ferroptosis-related genes and immune status. ,en,

Table 1: Clinical characteristics of OC patients in TCGA.

Characteristic TCGA
Age
Median 58
Range 38–83
Race
White 326
Black or African American 25
Asian 12
American Indian or Alaska Native 2
Native Hawaiian or other Pacific Islander 1
NA 11
Clinical stage
Stage I 1
Stage II 21
Stage III 292
Stage IV 57
NA 6
Tumor grade
G1 1
G2 44
G3 320
G4 3
GX 6
NA 3
Tumor status
Tumor-free 71
With tumor 263
NA 43
Vital status
Alive 145
Dead 232
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heatmap and the boxplot of ssGSEA scores of adaptive
immunity cells and innate immunity cells between high risk
patients and low risk patients in TCGA training cohort are
shown in Figures 6(b) and 6(c). In addition, the nine
ferroptosis-related genes in high risk group and low risk
group were compared and the results are shown in
Figure 6(d). ,e expression level of nine ferroptosis-related
genes was significantly different in high risk group and low
risk group. Among them, the expression levels of ACSL3,
ALOX12, CRYAB, LPCAT3, PTGS2, SLC1A5, and ZEB1
were higher in the high risk group, while the levels of
HSBP1 and SLC7A11 were lower in the high risk group. We
further verified the above results in TCGA test set and
ICGC cohort. ,e results showed that the risk scores of
patients also had close positive correlations with eosino-
phils, iDC, macrophages, neutrophils, NK CD56dim cells,
NK cells, Tem, and Tgd, while risk scores had negative
correlations with NK CD56 bright cells, pDC, and TFH
(Figures S2(a)–S2(d)). ICGC results also showed that the
risk scores and the nine ferroptosis-related genes had
strong correlations with most of the immune cells, such as
eosinophils, ,2 cells, Tgd cells, cytotoxic cells, pDC, and
,1 cells (Figure S3(a)–S3(d)). Above all, we can sum-
marize that the risk score and the nine ferroptosis-related
genes were associated with multiple immune cells.

3.7. Functional Analysis. Gene Set Enrichment Analysis
(GSEA) was conducted to find the key pathways and bio-
logical functions that differentiate the different groups. First,
the volcano map and heatmap between two groups are
drawn in Figures 7(a) and 7(b). ,en, KEGG analysis and
GO analysis were conducted and the results showed that the
DEGs were mainly enriched in cell adhesion molecules,

complement and coagulation cascades, ECM-receptor in-
teraction, JAK-STAT signaling pathway, MAPK signaling
pathway, PI3K-Akt signaling pathway, and so on, which
were not only iron-related but also immune-related. In-
terestingly, DEGs between high risk group and low risk
group also were enriched in several immune-related GO
terms such as adaptive immune response, immune response-
activating cell surface receptor signaling pathway, immune
response-activating signal transduction, lymphocyte medi-
ated immunity, regulation of cell growth, regulation of
immune effector process, and so on, suggesting that the
signature may be involved in these pathways and thus in-
fluence the survival of OC.

3.8. Combining Riskscore with Clinical Characteristics. In
addition to Riskscore, we also affirmed that clinical char-
acteristics (i.e., tumor status) served as independent prog-
nostic factors, which could have complementary values
(Table 2). To further improve the prognostic accuracy, we
combined Riskscore with the major clinical variables using
the coefficients generated from multivariate cox regression
analysis in the TCGA training cohort and generated a new
integrative model IRiskscore as follows:
IRiskscore� 5.578×Riskscore + 2.240× tumor status. How-
ever, due to the lack of tumor status information in ICGC
cohort, the integrated model of IRiskscore was further ap-
plied to the TCGA training cohort and test cohort where full
clinical information was available. Significant improvement
in estimation of restricted mean survival (RMS) was
achieved with the continuous form of IRiskscore relative to
Riskscore (C-index: 0.67 vs 0.62 in the TCGA training
cohort, p< 0.05; C-index: 0.69 vs 0.6 in TCGA test cohort,
p< 0.001; Figures 8(a) and 8(b)).
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4. Discussion

OC is still a challenging disease to human beings, especially
women, with high incidence and morbidity. In recent years,
large efforts have been made to unveil the etiology and
mechanism in order to expand the landscape of OC ther-
apeutic [22, 23]. Selective induction of cancer cell death is

the most effective therapy method of malignant tumor [24].
Increasing evidence showed that ferroptosis plays a vital role
in tumorigenesis and cancer therapeutics [10, 17]. However,
the number of ferroptosis-related researches in OC is still
very small and the systematic analysis of OC has yet to be
elucidated. In the present study, we first constructed a
prognostic model integrating nine ferroptosis-related genes
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in TCGA training set, including LPCAT3, ACSL3, CRYAB,
PTGS2, ALOX12, HSBP1, SLC1A5, SLC7A11, and ZEB1.
,en, the constructed model was validated in TCGA test set
and ICGC cohort. Further, using the ssGSEA method, we
estimated the abundance of immune cell populations and
found that the risk scores and the nine ferroptosis genes had

strong correlations with most of immune cells, such as
eosinophils, iDC, macrophages, neutrophils, NK cells, Tem,
Tgd, and ,1 cells, suggesting strong connections between
the nine ferroptosis-related genes and immune status. Fi-
nally, we also integrated with other clinical factors and we
found the synthesized clinical factors and ferroptosis-related
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gene signature improved prognostic accuracy relative to the
ferroptosis-related gene signature alone.

In this study, the constructed prognostic model was
composed of nine ferroptosis-related genes and they were
reported to be involved in the development of several dis-
eases. LPCAT3, an enzyme that converts

lysophosphatidylcholine to phosphatidylcholine in the liver,
could maintain the systemic homeostasis and participate in
the phospholipid remodeling and intestinal stem cell growth
and tumorigenesis [25, 26]. ACSL3, an androgen-responsive
gene involved in the generation of fatty acyl-CoA esters,
could promote intratumoral steroidogenesis in prostate
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cancer cells [27]. CRYAB, a member of the small heat shock
protein family, could regulate several signaling pathways
including PI3K/AKTand ERK pathways in cancers [28, 29].
PTGS2, also named cyclooxygenase-2, targeting the PGE2/
NF-kappaB pathway, could promote the proliferation and
serve as an anti-inflammatory drug target in OC [30, 31].
ALOX12, a member of a nonheme lipoxygenase family of
dioxygenases, plays a crucial role in ALOX12-12HETE-
GPR31 signaling axis and was dysregulated in recurrence of
hepatocellular carcinoma [32]. ALOX12 is also required for
p53-mediated tumor suppression through a distinct fer-
roptosis pathway [33]. Lin28A could enrich HSBP1 and

upregulate its expression and then regulate the stem-like
properties of OC [34]. SLC1A5 protects patients with non-
serous OC from recurrent disease, presumably by means of
biological mechanisms that are unrelated to cytotoxic drug
sensitivity [35]. ,e SLC7A11-encoded cystine transporter
supplies cells with cysteine which is a key source of GSH
[36]. Antisense lncRNA As-SLC7A11 suppresses
epithelial ovarian cancer progression mainly by targeting
SLC7A11 [37]. ZEB1, best known for driving an epithelial-
to-mesenchymal transition (EMT) in cancer cells to pro-
mote tumor progression, is required by tumor-associated
macrophages (TAMs) for their tumor-promoting and
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Figure 6: Comparison of the ssGSEA scores between different risk groups in the TCGA training set. (a) ,e correlation between the nine
ferroptosis-related genes and risk score and different immune cells. (b) Heatmap of the immune cell infiltration between different groups. (c)
Detailed risk scores and comparison in high risk group and low risk group. (d),e expression level and comparison of nine ferroptosis-related
genes in high risk group and low risk group. ,e meaning of the statistical difference is as follows: ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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chemotherapy resistance functions in a mouse model of
ovarian cancer [38].

Based on the prognostic model, we divided patients into
high risk groups and low risk groups from TCGA and ICGC
cohort and then risk scores were calculated using the formula.
After validation of the prognostic model, ssGSEAmethod was
used for identifying the relationship between ferroptosis and
tumor immunity. Interestingly, the immune cells and these
nine genes were significant between high risk groups and low
risk groups. Although the mechanisms of OC still remain
largely unknown, the research we performed took an insight
into several pathways in OC based on the concept of fer-
roptosis and immune status. Based on functional analysis,
KEGG pathway enrichment analysis showed the DEGs were
mainly enriched in cell adhesion molecules [39], JAK-STAT

signaling pathway [40], MAPK signaling pathway [41], PI3K-
Akt signaling pathway [42], ECM-receptor interaction [43],
complement and coagulation cascades [44, 45], focal adhesion
[46–48], and so on, which were not only iron-related but also
immune-related. Interestingly, DEGs between high risk group
and low risk group were found enriched in several immune-
related GO terms such as adaptive immune response [49],
immune response-activating cell surface receptor signaling
pathway [50], immune response-activating signal
transduction, lymphocyte mediated immunity, regulation of
cell growth, regulation of immune effector process, and so on.

To our knowledge, this ferroptosis-related gene signature
has not been previously reported and it will provide assis-
tance to clinical practice. First, in this model, we only need
targeted sequencing based on specific genes which greatly
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reduces the financial burden of patients. Second, it also does
not require the identification of somatic mutations and copy
number variation in patients. ,ird, we can detect the ex-
pression of these genes by single cell sequencing in circu-
lating tumor cells to patients who are poor candidates for
surgery. In addition, we also integrated with other clinical
factors and we found the synthesized clinical factors and
ferroptosis-related gene signature improved prognostic ac-
curacy relative to the ferroptosis-related gene signature
alone, which may become routinely used in the future.

However, there are still several limits of our present
study. First, all data processed in this study were publicity
data. ,e real world data need to be warranted to verify our
results. Second, although we have tested the robustness of
our model several times, the intrinsic weakness is still in-
evitable. Finally, experimental studies need to be carried out
to investigate the functional roles and confirm the presence
of gene products by immunohistochemistry of the nine
genes in OC in future work.

In summary, this study constructed a model containing 9
ferroptosis-related genes. ,e model was validated to be
associated with OS in the TCGA training set, TCGA test set,
and ICGC cohort. ,e ssGSEA method demonstrated that
ferroptosis had a tight link with tumor immunity but needs
further experimental validation.

5. Conclusions

,is is the first study to report a novel ferroptosis-related
prognostic model to predict OS of OC.
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different risk groups in the TCGA test set. (a) ,e risk score
between the nine ferroptosis-related genes and different im-
mune cells. (b) Heatmap of the different groups and com-
ponents. (c) Detailed risk scores and comparison in high risk
group and low risk group. (d) ,e expression level and
comparison of nine ferroptosis-related genes in high risk group
and low risk group. ,e meaning of the statistical difference is
as follows: ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. Figure S3.
Comparison of the ssGSEA scores between different risk
groups in the ICGC cohort. (a),e risk score between the nine
ferroptosis-related genes and different immune cells. (b)
Heatmap of the different groups and components. (c) Detailed
risk scores and comparison in high risk group and low risk
group. (d) ,e expression level and comparison of nine fer-
roptosis-related genes in high risk group and low risk group.
,emeaning of the statistical difference is as follows: ∗p< 0.05,
∗∗p< 0.01, and ∗∗∗p< 0.001. Table S1: ferroptosis-related
genes. Table S2: ferroptosis-related genes associated with OS.
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I. Skirnisdottir, “,e clinical and prognostic correlation of
HRNPM and SLC1A5 in pathogenesis and prognosis in ep-
ithelial ovarian cancer,” PLoS One, vol. 12, no. 6, p. e0179363,
2017.

[36] H. Ogiwara, K. Takahashi, M. Sasaki et al., “Targeting the
vulnerability of glutathione metabolism in ARID1A-deficient
cancers,” Cancer Cell, vol. 35, no. 2, p. 177, 2019.

[37] J. Yuan, Z. Liu, and R. Song, “Antisense lncRNA As-SLC7A11
suppresses epithelial ovarian cancer progression mainly by
targeting SLC7A11,” Die Pharmazie, vol. 72, no. 7,
pp. 402–407, 2017.

[38] M. Cortés, L. Sanchez-Moral, O. de Barrios et al., “Tumor-
associated macrophages (TAMs) depend on ZEB1 for their
cancer-promoting roles,” )e EMBO Journal, vol. 36, no. 22,
pp. 3336–3355, 2017.

[39] V. R. Figliuolo da Paz, D. Figueiredo-Vanzan, and A. Dos
Santos Pyrrho, “Interaction and involvement of cellular ad-
hesion molecules in the pathogenesis of Schistosomiasis
mansoni,” Immunology Letters, vol. 206, pp. 11–18, 2019.

[40] K. L. Owen, N. K. Brockwell, and B. S. Parker, “JAK-STAT
signaling: a double-edged sword of immune regulation and
cancer progression,” Cancers, vol. 11, no. 12, p. 2002, 2019.

[41] R. Jakhar, C. Sharma, S. Paul, and S. C. Kang, “Immuno-
suppressive potential of astemizole against LPS activated Tcell
proliferation and cytokine secretion in RAW macrophages,
zebrafish larvae and mouse splenocytes by modulating MAPK
signaling pathway,” International Immunopharmacology,
vol. 65, pp. 268–278, 2018.

[42] E. Vergadi, E. Ieronymaki, K. Lyroni, K. Vaporidi, and
C. Tsatsanis, “Akt signaling pathway inmacrophage activation
and M1/M2 polarization,” )e Journal of Immunology,
vol. 198, no. 3, pp. 1006–1014, 2017.

[43] S. Mardpour, A. A. Hamidieh, S. Taleahmad, F. Sharifzad,
A. Taghikhani, and H. Baharvand, “Interaction between
mesenchymal stromal cell-derived extracellular vesicles and
immune cells by distinct protein content,” Journal of Cellular
Physiology, vol. 234, no. 6, pp. 8249–8258, 2019.

[44] C. De Luca, A. M. Colangelo, L. Alberghina, and M. Papa,
“Neuro-immune hemostasis: homeostasis and diseases in the
central nervous system,” Frontiers in Cellular Neuroscience,
vol. 12, p. 459, 2018.

[45] L. Min, J. Cheng, S. Zhao et al., “Plasma-based proteomics
reveals immune response, complement and coagulation
cascades pathway shifts in heat-stressed lactating dairy cows,”
Journal of Proteomics, vol. 146, pp. 99–108, 2016.

[46] S. J. H. Soenen, N. Nuytten, S. F. De Meyer, S. C. De Smedt,
and M. De Cuyper, “High intracellular iron oxide

nanoparticle concentrations affect cellular cytoskeleton and
focal adhesion kinase-mediated signaling,” Small, vol. 6, no. 7,
pp. 832–842, 2010.

[47] S. Ehnert, C. Linnemann, R. Aspera-Werz et al., “Immune cell
induced migration of osteoprogenitor cells is mediated by
TGF-β dependent upregulation of NOX4 and activation of
focal adhesion kinase,” International Journal of Molecular
Sciences, vol. 19, no. 8, p. 2239, 2018.

[48] A. Osipov, M. T. Saung, L. Zheng, and A. G. Murphy, “Small
molecule immunomodulation: the tumor microenvironment
and overcoming immune escape,” Journal for Immuno)er-
apy of Cancer, vol. 7, no. 1, p. 224, 2019.

[49] M. G. Netea, A. Schlitzer, K. Placek, L. A. B. Joosten, and
J. L. Schultze, “Innate and adaptive immune memory: an
evolutionary continuum in the host’s response to pathogens,”
Cell Host & Microbe, vol. 25, no. 1, pp. 13–26, 2019.

[50] Z. B. Ke, Y. P. Wu, P. Huang et al., “Identification of novel
genes in testicular cancer microenvironment based on ES-
TIMATE algorithm-derived immune scores,” Journal of
Cellular Physiology, vol. 236, no. 1, p. 706, 2020.

14 Journal of Oncology


