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A B S T R A C T   

The recent outbreak of coronavirus disease 2019 (COVID-19) by SARS-CoV-2 has led to uptodate 24.3 M cases 
and 0.8 M deaths. It is thus in urgent need to rationalize potential therapeutic targets against the progression of 
diseases. An effective, feasible way is to use the pre-existing ΔORF6 mutant of SARS-CoV as a surrogate for SARS- 
CoV-2, since both lack the moiety responsible for interferon antagonistic effects. By analyzing temporal profiles 
of upregulated genes in ΔORF6-infected Calu-3 cells, we prioritized 55 genes and 238 ligands to reposition 
currently available medications for COVID-19 therapy. Eight of them are already in clinical trials, including 
dexamethasone, ritonavir, baricitinib, tofacitinib, naproxen, budesonide, ciclesonide and formoterol. We also 
pinpointed 16 drug groups from the Anatomical Therapeutic Chemical classification system, with the potential to 
mitigate symptoms of SARS-CoV-2 infection and thus to be repositioned for COVID-19 therapy.   

1. Introduction 

The COVID-19 pandemic, which has led to huge economic losses by 
the Great Lockdown, is an ongoing global threat caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. As of August 
2020, ~24.3 M cases with ~828 k deaths have been reported across 188 
countries and territories, leading to an ~3.4% mortality rate, 34 times 
higher than that of H1N1. Unfortunately, no drug or vaccine has been 
approved to treat human coronaviruses, and new interventions are likely 
to take months to years to develop. In this regard, rationalizing semi-
empirical or empirical strategies to protect currently hospitalized vic-
tims (~8.4 M uptodate) from death is urgent and necessary. The SARS- 
CoV-2 is linked to the severe acute respiratory syndrome coronavirus 
(SARS-CoV, which led to 774 deaths out of 8096 infected individuals 

~16 years ago) and the Middle East respiratory syndrome coronavirus 
(MERS-CoV, which led to 858 deaths out of 2494 cases ~8 years ago) in 
that they share a high degree of genomic similarity (~80% between 
SARS-CoV and SARS-CoV-2, e.g.) [2]. As such, one plausible way to 
rationalize empirical strategies in a timely manner is to use available 
SARS-CoV/MERS-CoV data and perform fast, effective in silico analyses, 
thereby identifying candidate remedies from currently available 
medications. 

In addition to genomics, SARS-CoV-2 and SARS-CoV share a certain 
degree of similiarity. It has been shown that SARS-CoV-2 shares similar 
transmission mechanisms and pathogenic sequelae with SARS-CoV. 
First, both viruses are group B coronaviruses utilizing the same recep-
tor, angiotensin-converting enzyme 2 (ACE2), to bind to the host cell 
surface [3]. Second, the pathology of SARS-CoV-infected lung shows 
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features of acute injury and fibrinous organizing pneumonia patterns 
[4], which were also found in SARS-CoV-2 infected lung, including 
diffusive acute alveolar injury with edema, hyaline membrane forma-
tion, proteinaceous exudate, focal reactive hyperplasia, immune cell 
infiltration, and intra-alveolar fibroblastic plug formation [5]. The 
consequence is the respiratory failure, the leading cause for the mor-
tality, as no gas exchange can be performed in such foamy, fibroblastic 
alveolar space. Intervening in the disease progression requires an 
explicit molecular cellular understanding of the pathogenesis, which is 
currently limited. What has been noted is the involvement of highly 
inflammatory responses that produce enormous chemokines implicated 
in cytokine storm [6,7]. Futhermore, a key difference between SARS- 
CoV and SARS-CoV-2 is a truncation of the open reading frame (ORF) 
3b, ORF6, in SARS-CoV-2, which affects the viral antagonistic effect 
toward interferon response [8]. These lines of evidence suggest that it is 
plausible to use available SARS-CoV data as a surrogate for devising the 
empirtical strategy and that immune modulation might be involved in 
such strategy. Fortunately, a mutant of SARS-CoV with the truncation in 
ORF6 has been found and used to infect a human lung cell line, Calu-3, 
for empirical study. Here, we took advantage of these preexisting data 
and applied bioinformatic analysis on SARS-CoV-infected cells (as the 
reference) and SARS-CoV ΔORF6-infected cells (as the surrogate to 
mimic SARS-CoV-2 infection) to identify medications that can be 
repurposed for COVID-19 therapy. 

2. Materials and method 

2.1. Expression data 

Transcriptomes of Calu-3 cells infected by infectious clone-derived 
(ic)SARS CoV and icSARS ΔORF6 mutant (GSE33267) were queried 
using GEOquery. The downloaded data had already been normalized. 
Probe-level expression values (n = 30,772) were log2-transformed and 
were aggregated to become gene-level expression values (n = 18,113) by 
maximum value. Gene symbols were further checked and corrected 
using the HGNChelper package. 

2.2. Identification of differentially expressed genes 

Differentially expressed tests were conducted on the time-series 
microarray data (ΔORF6-infected cells vs. control cells or SARS- 
infected cells vs. control cells) based on the following post-treatment 
time-points: 0, 3, 7, 12, 24, 30, 36, 48, 54, 60 and 72 h. To ensure the 
reliability of identified DEGs, we conducted three different methods, and 
defined differential expressed genes (DEGs) as genes that showed 
consensus (both on significance and effect direction) across methods. 
The three methods used different ways of normalization (normexp 
method and quantile normalization for background correction and 
robust multichip average (RMA) for method 1 and 3; normexp method 
and quantile normalization for background correction, RMA and 
between-sample normalization for method 2), different ways of gene 
summarization (maximum value aggregation for methods 1 and 3; 
Tukey Biweight estimator for method 2), and different ways of identi-
fying significant genes across groups, as following: Method (1): Limma 
method. By assuming smooth expression changes over time, we fitted a 
regression spline with effective degrees of freedom of five to capture the 
temporal trends, and then compared the differences in curves between 
groups (∆ORF6 vs. mock and wild-type vs. mock). Then for each gene, a 
linear model that implemented in limma [9] was fitted and an empirical 
Bayes moderated F-statistic was calculated for testing the change in 
expression level over the time points. Five coefficients corresponded to 
differences in two curves were retrieved from the fitted model and then 
averaged to produce a mean coefficient value. To control the false 
positive rate, raw p-values were adjusted using the Benjamini-Hochberg 
–(BH) method. Significant genes (out of 18,113 genes) of the method 
(1) were defined as genes with BH-adjusted p-value <0.05. Up or 

downregulated DEGs were defined by the average coefficient of > 0 or 
< 0, respectively. Method (2): Rnits method. In this method, probe 
expression values were further undergone between sample normaliza-
tion and collapsed into gene-level using a robust Tukey Biweight esti-
mator, which performs penalization on outlier values. Next, significant 
genes were identified by testing whether each gene expression trajectory 
from the treatment group (∆ORF6 or wild-type) and mock (control) 
group are the realizations of the same underlying basis B-spline curve 
[10]. The significant genes (out of 18,109 genes) of the method (2) were 
defined as genes that passed a BH-adjusted p-value threshold of 0.05. Up 
or downregulated significant genes were defined by ratio statistic of >
0 or < 0, respectively. Method (3): timecourse (tc) method. This method 

was implemented in timecourse package, which calculated a T̃
2 

statistic 
for each gene using multivariate empirical Bayes approach. This method 
incorporated the correlation coefficient information across genes to 
diminish false-positivity and false-negativity. The significance of each 

gene was calculated by F-statistic that derived from the T̃
2 

statistic. The 
significant genes (from total 18,113 genes) of the method (3) were 
defined as genes that passed a Bonferroni-adjusted p-value threshold of 
0.05. Since this method didn’t output information regarding the up or 
downregulation of significant genes, we thus calculated the logarithmic- 

transformed multiple of change (logFC) as ln

⎛

⎜
⎜
⎝

∑
Ej

Nj∑
Ei

Ni

⎞

⎟
⎟
⎠, ∀j∈∆ORF6 or 

wild-type-infected cells and ∀i∈control cells, of each gene from 
normalized expression data. Finally, we defined DEGs as genes that were 
identified as significant genes in the above three methods and with the 
same effect direction. 

2.3. Construction of co-expression clusters 

ΔORF6-infected cell expression data were summarized to Gencode 
v33 [11] and the median-centering before network analysis. Gene 
clusters were identified using weighted correlation network analysis 
(WGCNA) [12]. A weighted signed network was constructed using a 
thresholding power of 10, which is the smallest value to get a scale-free 
r2 fit of 0.85. The pairwise gene-to-gene topological overlap (TO) matrix 
was then calculated. The pre-clusters were identified by applying a top- 
down dynamic tree cut method (module gene size > 200 and deepSplit 
parameter 2), and pre-clusters were defined as branches of the hierar-
chical cluster tree. Pre-clusters with pairwise cluster eigengene (PC1) 
correlation values (r) > 0.85 were further merged into clusters. 

2.4. Cluster enrichment test for DEGs 

Enrichment test for DEGs across multiple time points in co-expressed 
clusters was conducted using two-tailed Fisher’s exact test. The odds 
ratios (ORs) were calculated. We defined OR > 1 and p-value < 0.05 as 
significant overrepresentation (enrichment). 

2.5. Transcription factor binding site (TFBS) analysis 

Depending on the initial data (either PWM information or target 
genes of a TF) retrieved from databases, two different strategies were 
adopted as follows: (1) sequence-based enrichment test. Given a set a 
gene with size NG and several candidate transcription factors (TFs) with 
known position weight matrix (PWM) or motif, we want to identify 
whether the TFs’ binding motif was enriched in the promoter sequence 
of genes in the given gene set. To do this, we scanned the promoter 
region (2000 basepair (bp) upstream from the transcription start site 
(TSS)) for the NG genes. We retrieved TFs’ human PWM information 
from MotifDb package. For each PWM, a threshold-free log-normal 
distribution was calculated by fitting 500 bp chunks of 2000 bp pro-
moters from all human genes (hg19). The PWM enrichment test of each 
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TF was performed using PWMEnrich package. We further conducted 
Bonferroni correction to reduce false positivity, and (2) gene-based 
permutation test. Given a set of gene with size NG and several candi-
date TFs with known target genes from database(s) (such as ChIP-seq 
results from the ENCODE), we conducted gene-based permutation test 
by counting the overlapped genes of TF-regulated genes to the given 
gene set and performed permutation test to assess the enrichment of 
overlapped count number as following: For each TF, we counted the 
overlapped target number (n) in the given gene set with size N. Next, we 
randomly selected N genes from the background gene set and then 
counted the overlapped number of targets of this TFs. This process was 
repeated for 99,999 times to produce a null distribution n1, …, n99999 of 
target number for the given TFs. We then calculated the single-tailed p- 
value as (no. of n, n1, …, n99999 ≥ n)/(size of n, n1, …, n99999). 

2.6. Gene ontology and REACTOME pathway analysis 

Genes in co-expressed clusters were characterized using Gene 
Ontology (GO) biological processes (BPs) and REACTOME pathways 
using clusterProfiler [13] and ReactomePA [14], respectively. Q-values 
were calculated for multiple testing corrections. The top 20 enriched 
terms were selected for visualization. 

2.7. Identification of targetable genes 

Targetable genes were defined as genes with it (protein) products 
that could be targeted by specific ligands (drugs) from the IUPHAR/BPS 
Guide to PHARMACOLOGY [15]. Further data sanitization steps 
including (i) limited only drugs with target species of human; (ii) ligands 
that annotated as non-endogenous agents; (iii) ligands with clear and 
explicit “action” and “type” annotations; and (iii) ligands with explicit 
target gene (symbol). Finally, the drug-gene pairs were collapsed across 
time points and further visualized using circlize, VennDiagram, RCo-
lorBrewer, and igraph packages. 

2.8. Permutation test for the ATC groups of drugs 

The Anatomical Therapeutic Chemical (ATC) classification of each 
ligand was annotated from the DrugBank database [16]. Given the size 
of NG for the final targetable genes, we randomly selected NG genes from 
the targetable gene list and mapped the ligands that may target the 
genes. Next, we summarized the number of drugs that belong to a spe-
cific ATC group. We repeated this process for n = 99,999 times and 
calculated the probability of obtaining a number of drugs that equal to 
or greater than original data in the particular ATC group. We further 
computing BH-adjusted p-values for multiple testing corrections and 
selected a BH-adjusted p-value of 0.1 as a threshold of significance. 

2.9. Statistical analyses 

In this study, we used R (http://www.r-project.org/ and http://cran. 
r-project.org/) or Bioconductor (http://www.bioconductor.org/) to 
perform all statistical association tests, enrichment analyses, and visu-
alization tasks. 

3. Results 

3.1. Characterization of icSARS ΔORF6 infection-related genes 

In contrast to SARS-CoV, SARS-CoV-2 shows ablated antagonism to 
interferon (IFN) due to an amino acid truncation in the viral ORF6 gene 
[8]. We therefore leveraged a previously published dataset (GSE33267) 
[17] that contains time-dependent transcriptomic profiling of infectious 
clone-derived (ic)SARS-CoV ΔORF6 (henceforth called “ΔORF6”) in 
human Calu-3 cells. Since ΔORF6 is a mutant form of SARS-CoV that 
cannot express ORF6, it is reasonable to use ΔORF6 as a surrogate for 

SARS-CoV-2 (which also contains truncated ORF6) to reveal its patho-
physiology and explore drug repositioning (Fig. 1). 

To identify genes that respond to ΔORF6 infection in Calu-3 cells 
(ΔORF6 infection-related genes), we analyzed the differential expres-
sion of genes by comparing ΔORF6-infected cells (n = 33; 3 replicates 
for 11 different time points including 0, 3, 7, 12, 24, 30, 36, 48, 54, 60 
and 72 h) to control cells (n = 33; 3 replicates for 11 different time 
points) by applying three complementary methods (i.e. method (1), (2) 
and (3) as described in “Materials and Methods” section) that used 
different strategies to identify differentially expressed genes (DEGs) of 
time-series expression data. In parallel, we conducted similar tests on 
wild-type icSARS-CoV-infected Calu-3 cells (henceforth called “wild- 
type” or “SARS”) for comparison (Fig. 2a). We revealed a wide range of 
percentages of up or downregulated DEGs (0% to 77.74%), suggesting 
different sensitivity and specificity across methods. 

For significant genes detected by each method, we defined DEGs as 
genes identified by all three methods and with the same effect of di-
rection (upregulated and downregulated) across methods (Fig. 2b). 
Therefore, we detected no down-regulated DEGs in this study. Espe-
cially, we detected 3373 and 848 upregulated DEGs in ΔORF6-infected 
cells and SARS-infected cells, respectively. However, none of the ΔORF6 
group or SARS group shows consensus results regarding downregulated 
genes. 

Significance values of genes were further transformed into 0–1, and 
the outcome similarity of three methods was quantified using Pearson’s 
product-moment correlation coefficients (rP). We observed moderate-to- 
high correlations (rP = 0.7 and 0.69 in ∆ORF6-infected cells and SARS- 
infected cells, respectively; Fig. S1) between the results of methods (1) 
and (3); while the results from the method (2) deviated from that of 
methods (1) and (3) (rP ranged from 0.25–0.60; Figs. 2c and S2). 

To investigate the effect of ∆ORF6 or SARS infection on cytokinome 
profiles, we assessed the significance of 121 cytokines/chemokines (li-
gands) and 144 corresponding receptor genes (in total 265 cytokines/ 
chemokines-related genes, a.k.a. cytokinome genes; Fig. S3) from the 
results of the differentially expressed test across multiple time points. 
We quantified the number (and percentage) of ligands or receptors. The 
p-values were calculated by using a one-tailed binomial test (with a 
“greater” alternative hypothesis and confidence level of 95%) by 
comparing it to the background gene list (excluding cytokinome genes). 
False positivity was controlled by using Bonferroni correction. As a 
result, we found that the numbers of ligand genes (cytokines/chemo-
kines) were significantly higher than the background genes (Fig. S4). 
However, we didn’t identify any significance in receptor genes. These 
data suggested that ∆ORF6 or SARS infection has a great effect on the 
cytokine (and chemokine) levels. 

3.2. Time-dependent co-expression networks of icSARS ΔORF6-induced 
genes 

To depict the co-expression dynamics of ΔORF6 infection-related 
genes in human lung cells after viral infection, we constructed time- 
dependent co-expression networks from the GSE33267. Post-infection 
transcriptomic profiles of ΔORF6-infected Calu-3 cells (from 0 to 72 h, 
across 11 time-points, each with 3 replicates) were found to be parti-
tioned into 6 clusters based on pairwise correlations between gene 
expression values; the number of genes in each cluster ranged from 232 
to 4517 (Fig. 3a). In the following steps, we categorized the significantly 
upregulated DEGs in ΔORF6-infected cells into two groups: (i) specif-
ically in ΔORF6-infected cells (denoted by “ΔORF6-specific” or “spe-
cific”; which containing 2613 genes) and shared in both ΔORF6- and 
wild-type-infected cells (denoted by “shared”; which containing 760 
genes). 

We posited that additional mapping of ΔORF6 infection-related 
DEGs in an identified cluster should be observed if the particular clus-
ter reflects a pathophysiological process in ΔORF6-infected Calu-3 cells. 
To determine the convergence of identified co-expressed clusters of 

H.S.-C. Wong et al.                                                                                                                                                                                                                             

http://www.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.bioconductor.org/


Genomics 113 (2021) 564–575

567

ΔORF6 infection-related genes, we conducted enrichment tests for 
ΔORF6-specific and shared DEGs using an over-representation analysis 
(ORA). Among up-regulated DEGs (both ΔORF6-specific and shared 
genes) in response to ΔORF6 infection, significant enrichment was 
detected for clusters 1 (Fig. 3b). We next depicted the temporal trajec-
tory of cluster 1 by calculating the first principal component (PC1; i.e., 
cluster eigengene) and assessing the value of eigengene across time. 
Eigengene can be viewed as a summarized value of gene expression in 
the specific cluster. In particular, genes in cluster 1 were up-regulated 
and sustained at approximately 30 to 72 h upon ΔORF6 infection 
(Fig. 3c). In details, the eigengene of cluster 1 from ΔORF6-infected cells 

gradually increased from 0 to 54 h post-infection, and then slightly 
dropped from 60 to 72 h. 

3.3. Biological meanings of cluster enriched for upregulated ΔORF6 
infection-related DEGs 

To characterize the key factor(s) in up-regulated DEGs, we hypoth-
esized that if there exists a key factor that causes the up-regulation and 
sustainability of genes from approximately 30 to 72 h after ∆ORF6 
infection, the key factor gene(s) should be also continuously expressed, 
and exert its/their regulatory functions. Since key factors should be able 

Fig. 1. Flowchart of the approach in this study. Transcriptomic-driven network discovers pathophysiology of human coronavirus (HCoV) and contribute to drug 
repositioning for SARS-CoV-2 infection. 
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to regulate—turn on and off—genes’ expression (upregulation), we 
thence focused on transcription factor(s) (TFs). Therefore, we derived a 
sequence-based enrichment test (please see “Materials and Methods” 
section) to identify TFs that may regulate the expression of ∆ORF6- 
specific or shared (with wild-type/SARS) DEGs. As a result, we identified 
57 and 18 TFs that passed the significance threshold in ∆ORF6-specific 
and shared groups, respectively (Fig. S5). To validate our findings in 
∆ORF6-specific up-regulated DEGs, we leveraged the chromatin immu-
noprecipitation sequencing (ChIP-seq) data from the Encyclopedia of 
DNA Elements (ENCODE) database. Of the 10 available TFs data in 
ENCODE, only the FOSL1 was overlapped with the 57 identified TFs. 
We, therefore, adopted the FOSL1 ChIP-seq results for validation. Given 

the information on regulatory interactions regarding FOSL1, we con-
ducted a gene-based permutation test (please see “Materials and 
Methods” section) to assess the enrichment of (∆ORF6-specific) up- 
regulated DEGs in FOSL1 targets. As a result, we successfully repli-
cated the significance of enrichment regarding FOSL1 using ENCODE 
ChIP-seq evidence (p-value <0.00001; Fig. S6). 

We next sought to determine whether correlated genes in cluster 1 
share biological functions or regulatory mechanisms. The top 20 most 
significantly enriched Reactome pathways and Gene Ontology (GO) 
biological process (BP) annotation terms suggested that the genes in 
cluster 1 were implicated in cellular defensive response to the virus, 
which includes interferon (especially, type I) signaling pathways 

Fig. 2. Up-regulated differentially expressed genes (DEGs) in ΔORF6- and SARS-infected Calu-3 cells. (A) Barplot showing the percentage (x-axis) of identified 
significant genes in methods (1), (2) and (3) (y-axis). The results of ΔORF6 (delta-orf6) and SARS (wild-type) were further classified by the effect of direction, i.e. 
upregulation or downregulation. The numbers in parenthesis indicate methods. (B) Venn diagrams showing the number of intersected up or downregulated sig-
nificant genes in ΔORF6- and SARS-infected cells across three methods. (C) Pairwise comparison of three methods by using normalized significance values of genes. 
The numbers in parenthesis indicate methods. The color of the lines is corresponding to the color of numbers in the main title. In each comparison, one method 
(black) is selected and we sort the genes (x-axes) according to its normalized significance values (y-axes). The normalized significant values of genes from the other 
method (brown/blue/grey) are then compared with the black line, with smaller bandwidth indicates higher outcome similarity between methods. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(Fig. 3d). 

3.4. Discovery of candidate pharmacological ligands (drugs) that 
potentially oppose SARS-CoV-2 infection 

Based on the fact that SARS-CoV-2 possesses a truncated ORF6 gene, 
which is critical for viral sensitivity to type I IFN and may influence host 
immune response [17], we utilized ΔORF6 as a model for SARS-CoV-2 to 

compare specific and/or shared biological functions of DEGs in human 
lung cancer cell line infected with wild-type or ΔORF6 SARS-CoV. 
Specific and shared genes induced in ΔORF6-infected cells were of in-
terest for our analysis, as both groups may provide clues for drug 
repositioning. By restricting our study to upregulated genes responsive 
to ΔORF6 infection, we were able to pinpoint candidate drugs that may 
inhibit the gene products. DEGs upregulated at different time-points 
were classified into two cluster categories (i.e., “Cluster 1” and 

Fig. 3. Cluster identification and enrichment for up-regulated differentially expressed genes (DEGs) in ΔORF6-infected Calu-3 cells. (A) Network analysis 
dendrogram showing co-expressed clusters of post-infected ΔORF6-infected Calu-3 cells’ expression profiles across multiple time points. The size of each cluster (n =
gene number) is illustrated in the parenthesis. (B) For each cluster, enrichment tests for up-regulated DEGs (ΔORF6-specific only, denoted as “Specific”; wild-type- 
sharing, denoted as “Shared”; and all up-regulated DEGs upon ΔORF6 treatment, denoted as “All”) are performed. This heat map shows the results of enrichment 
tests, with significant enrichments colored in corresponding to the color of the enriched module. Clusters that are not significant at a particular time point are in 
white. The numbers indicate the odds ratios (ORs) of enrichment tests. (C) Characterization of temporal dynamics of cluster 1. Each colored point indicates the 
principal component 1 (PC1; a.k.a. eigengene; y-axis) of genes in cluster 1 at different time points (x-axis). The post-infection temporal expression trajectory (grey 
line) is fitted by using a locally least-squares fitting algorithm. (D) The top 5 significant (all Q-values < 0.05) gene ontology (GO) biological process (BP) terms and 
Reactome pathways, with red vertical line indicates a Q-value of 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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“Other”). Together, DEGs that were specifically induced by ΔORF6 
(denoted as “Specific”) or up-regulated in both ΔORF6 and SARS 
treatment (denoted as “Shared”) were subjected to drug repositioning 
analysis using the drug (ligand)-gene pairing information from the 
IUPHAR PHARMACOLOGICAL database. In total, 2396 drug-gene pairs 
(305 unique targetable genes and 1931 unique ligands) were identified, 
with 1365 (56.97%) pairs from the “Specific” group and 1031 (43.03%) 
from the “Shared” group (Fig. 4a). Among them, 1811 (75.58%) pairs 
were from “Cluster 1” and the remaining 585 (24.42%) pairs were from 
“Other”. Therefore, we identified a substantial number of candidate 
drug-gene pairs in “Cluster 1” and “Other” groups. The identified 3373 
up-regulated genes were considered “targetable” or “druggable” and 
may be potentially useful to guide repositioning of drugs for the treat-
ment of SARS-CoV-2 (Fig. 4b). 

From the gene perspective, for the initial 3373 up-regulated DEGs, 
we consequently identified 305 unique targetable (druggable) genes by 
intersecting the DEGs with druggable genes from the database, with 200 
(65.57%) genes were “Specific” and 105 (34.43%) genes were “Shared” 
(Fig. 4c). Moreover, 236 (77.38%) genes were from “Cluster 1” and 69 
(22.62%) genes were from “Other”. From the ligand perspective, we 
ascertained in total 1931 unique candidate ligands (Fig. 4d), with some 
duplicated ligands been identified in different categories due to multiple 
target genes (Fig. 4e). We thus investigated the number of multiple gene 
targets of each ligand and found that most of the ligands (1557 out of 
1931, 80.63%) may target unique up-regulated DEGs (Fig. 4f). However, 
374 (19.37%) candidate ligands have multiple targets. 

Since McCreary et al. suggested several putative 

pharmacotherapeutic options for COVID-19 based on current clinical 
evidence (up to March 28, 2020) [18], we sought to verify our primary 
findings by examining the candidate drugs identified and discussed in 
the study. Among previously identified drug candidates, our analysis 
successfully identified baricitinib (targeting JAK1 and JAK2), sarilumab 
(targeting IL6R) and ritonavir (targeting CYP3A4) as potential drugs for 
the treatment of SARS-CoV-2 infection (Fig. 5). Since the upstream 
(IL6R) and downstream (JAK1/2) genes in IL6 signaling pathway were 
up-regulated, we thus checked the significance of IL6 gene. Indeed, IL6 
has successfully been identified as up-regulated DEGs (i.e., passed the 
significant threshold of three methods, Fig. S7). After prioritization, we 
found two drugs (siltuximab and sirukumab) as candidate ligands for the 
treatment COVID-19. Furthermore, we also detected dexamethasone 
(targeting gene product of NC3R1 and NC3R2) as a candidate ligands for 
SARS-CoV-2, which was proved to reduce mortality in COVID-19 pa-
tients who received respiratory support [19]. These results suggested 
that our pipeline could be empirically supported by current therapeutic 
options. 

We reasoned that our transcriptomic-driven drug discovery 
approach may provide a novel perspective regarding the pharmacolog-
ical mechanisms of drugs that could be considered for repositioning to 
SARS-CoV-2 infection. To assess the pharmacological actions of the 
candidate ligands, pharmacological and chemical properties of drugs 
were annotated using the Anatomical Therapeutic Chemical (ATC) 
classification code. As a result, we identified 345 (17.87% of 1931) li-
gands with available ATC code which may target 92 druggable genes. A 
permutation test was conducted to assess the enrichment of specific ATC 

Fig. 4. Drug repositioning based on up-regulated DEGs from ΔORF6-infected cells. Chord diagrams (top) and tables (bottom) showing the relationship between 
ΔORF6-specific (“specific”) and wild-type-sharing (“shared”) to cluster categories (“cluster 1” or “other”) of (A) drug-gene pairs; (B) up-regulated DEGs; (C) 
intersected genes between up-regulated DEGs and targetable (druggable) genes; and (D) candidate ligands for repurposing. (E) Venn diagram showing the intersected 
number of candidate ligands between ligands from ΔORF6-specific (“Specific”) or wild-type-sharing (“Shared”) and cluster categories (“Cluster 1” or “Other”). (F) 
Bar plot showing the number of targeting DEGs (x-axis) of candidate ligands. The numbers of ligands that may target 1– 5 up-regulated DEGs are counted (y-axis). 
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groups for the 92 unique targetable genes and revealed significant 
enrichment in 16 out of 57 (28.07%) ATC groups (FDR < 0.1; Fig. 6a). 
Especially, the top 3 most significantly enriched ATC groups with FDR <
0.05 were “ophthalmologicals” (FDR = 0.00057), “immunosuppres-
sants” (FDR = 0.00086), and “drugs for obstructive airway diseases” 
(FDR = 0.0268). 

Since “immunosuppressants” was identified as an enriched ATC 
term, implying the roles of immune-related functions for drug reposi-
tioning to COVID-19. Therefore, we investigated whether other 
immune-relevant molecules could be exploited for drug repositioning in 
SARS-CoV-2 infection, which exemplified by immune checkpoint 
markers, such as PDCD1 and HAVCR2. However, in this study, differ-
entially expressed tests and following drug repositioning analyses were 
derived from virus-infected human Calu-3 cells. Since T cells data was 
not being included in our research, we could not analyze the differential 
expression pattern of PDCD1 and HAVCR2, which mainly be expressed 
on T cells. We thus investigated the DEG results of CD274 and 
PDCD1LG2 genes due to the following reasons: (1) CD274 and 
PDCD1LG2 were druggable by immune checkpoint inhibitors (ICIs) and 
(2) CD274 and PDCD1LG2 could bind to PDCD1 gene product to trigger 
T-cell exhaustion. We found a significant up-regulation of CD274 (but 

not for PDCD1LG2) as DEG, and thus identified atezolizumab, avelumab, 
and durvalumab (targeting gene product of CD274) as candidate 
ligands. 

3.5. Prioritization of candidate ligand-gene pairs for drug repositioning to 
SARS-CoV-2 infection 

Given the substantial number of identified drugs with the potential to 
be repositioned for treatment of SARS-CoV-2 infection, we utilized 
several drug-based (a.k.a. ligand-based) and gene-based criteria to pri-
oritize our candidate drug-gene pairs. For six identified clusters, we first 
restricted the results to “Cluster 1” genes based on following reasons 
(Fig. S8): (1) known candidate targetable genes (JAK1, JAK2, CYP3A4, 
IL6R, NC3R1 and NC3R2) were restricted in Cluster 1; (2) In compared 
to Cluster 1 (18% ~ 61%, approximately), Clusters 2–6 showed a lower 
level of intersection to the ∆ORF6-infected DEGs (0% ~ 11%, approxi-
mately); (3) For Cluster 1, a number of 236 druggable genes were found. 
However, for Clusters 2–6, only 0–1 druggable gene was identified; (4) 
Similar results were inspected while examining the number of drug-gene 
pairs and number of candidate ligands. In light of the underrepresen-
tation of ∆ORF6-infected DEGs and candidate druggable genes in 

Fig. 5. The network of (total) 1931 drug-gene pairs. The total identified drug-gene pairing network is displayed by using the Fruchterman-Reingold (FR) force- 
directed algorithm. In addition to dexamethasone (targeting gene product of NR3C1 and NR3C2), the drugs (and corresponding genes) that have been discussed 
in the review article of EK McCreary et al.21 and immune checkpoint inhibitors (ICIs) targeting PD-L1 (gene product of CD274) and their targeting genes are 
illustrated. 
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Clusters 2–6, Cluster 1 was focused for drug repositioning, and resulting 
in 236 (77.38%) unique genes and 1467 (75.97%) unique ligands. 

We then leveraged a network (cluster) property, so-called within- 
cluster connectivity (WCC; i.e. the sum of weights connecting to the 
gene) to perform gene-based prioritization. We compared the distribu-
tions of WCC scores between druggable genes and the remaining genes 
and found that WCC scores of druggable genes were significantly lower 
than that of the remaining genes in Cluster 1 (asymptotic general in-
dependence test Z value = − 2.85; p-value = 0.0043; Fig. 6b). This result 
indicated that genes with lower connectivity (non-hub) tend to be 
developed as a pharmacotherapeutic target. We therefore selected the 
genes with a WCC score of ≤ 2177.606, which was the WCC score of 
NR3C1 (targeted by dexamethasone), and resulting in 188 druggable 
genes (Fig. 6c). These 188 genes corresponded to 1165 candidate li-
gands. Notably, JAK2 and IL6R were filtered in this step due to higher 
WCC scores. 

Additionally, in consideration of some candidate ligands from 
IUPHAR PHARMACOLOGY database were under investigation and thus 
may not be suitable for drug repositioning, we performed ligand-based 
prioritization by limiting our candidate drugs to those with ATC anno-
tation. Finally, 55 druggable genes and 238 candidate ligands were 
discovered for drug repositioning to SARS-CoV-2 infection (Fig. S9). 

To validate our findings, we next asked whether some of the candi-
date drugs for repositioning to SARS-CoV-2 infection identified from our 
study are in ongoing clinical trials for COVID-19. Indeed, our analysis 
identified seven drugs (including ritonavir, baricitinib, tofacitinib, 
naproxen, budesonide, ciclesonide and formoterol) in ongoing clinical 
trials. These seven drugs target 7 genes found in our study, including 
CYP3A4, JAK1, PTGS1, PTGS2, NR3C1, NR3C2 and ADRB2. It is note-
worthy that dexamethasone was also been identified as candidate li-
gands, which targets PTGS1 and PTGS2 genes (Fig. 7). 

4. Discussion 

With the pandemic threat of COVID-19 as it currently stands and the 
lack of time to develop new medical intervention for over millions of 
hospitalized victims, devising an empirical yet rationably effective 
therapeutic strategy is in urgent need. Unfortunately, no preclinical 
omic-level data from SARS-CoV-2-infected human tissues, especially for 
lung transcriptomics, are currently not available, posing substantial 
challenges for drug development or repositioning. A feasible, appealing 
approach is to use pre-existing data that closely resembled SARS-CoV-2- 
infection for bioinformatics analyses, thereby identifying candidates of 
currently available medications to be repositioned for SARS-CoV-2 

Fig. 6. Enrichment in the Anatomical Therapeutic Chemical (ATC) classification system and gene-based prioritization using within-cluster connectivity (WCC). (A) 
Enrichment of the drugs’ Anatomical Therapeutic Chemical (ATC) classification groups from 92 targetable genes. Scatterplot showing the permutation results of 
drugs’ ATC classification groups by randomly sampling 92 targetable genes for 99,999 times. The nodes representing ATC groups (x-axis) that pass the significant 
threshold (grey dashed horizontal line, i.e., false discovery rate (FDR) = 0.1; y-axis) are colored in red, while the remaining are colored in grey. The 16 significant 
ATC groups are listed, with the number in parenthesis indicates the number of drugs that may target the 92 genes and number in bracket indicates the rank of 
significance. The top 3 ATC groups (i.e. “Ophthalmologicals”, “Immunosuppressants” and “Drugs for obstructive airway diseases”) that passed FDR < 0.05 were 
highlighted using red color. (B) Box plot showing the distribution of WCC scores (y-axis) of druggable genes and the remaining genes (x-axis). (C) The distribution of 
WCC (x-axis) across genes in Cluster 1. The vertical lines indicate the genes that are targeted by dexamethasone or potential ligands discussed in EK McCreary et al. 
[18]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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therapy. In this study, we performed such task by analyzing the gene 
expression profile of a human lung cell line, Calu-3, infected with SARS- 
CoV ΔORF6, a mutant closely resembling SARS-CoV-2. The rationale for 
using the mutant as a surrogate is justified by the fact that both the 
mutant and SARS-CoV-2 lack the antagonistic effect toward interferon 
response due to a truncation in ORF6. Our method of transcriptomics- 
driven drug discovery ultimately provided a candidate list of marketed 
drugs (approved for other indications) to be used in empirical clinical 
therapy for the urgent need of SARS-CoV-2 infection. 

Specifically, we prioritized 55 targetable genes that respond to 
ΔORF6 infection. These genes can be modulated by 238 candidate drugs 
that are currently available and hence can be repositioned for COVID-19 
theraphy. The reliability of our analyses were justified by the following 
facts. First, we predicted several drugs including ritonavir, baricitinib, 
tofacitinib, naproxen, budesonide, ciclesonide and formoterol that are 
currently under clinical trials. Second, despite of an intensive discussion 
on the empirical use of several drugs including hydroxychloroquine/ 
chloroquine, remdesivir, lopinavir and ritonavir, interleukin (IL)-1 and 
− 6 inhibitors, and Janus kinase (JAK) inhibitors, no consistent or 
conclusive evidence for the safety and efficacy is available, except for 

dexamethasone, which remarkably was on our list of candidates. As 
such, the analyses we provided support the idea that analyzing tran-
scriptomic data from virus-infected cells can yield valuable information 
for potential treatments, which can further be leveraged to identify 
potential candidates for drug repositioning. 

Without any preclinical data or clinical experiments, current thera-
peutic options on COVID-19 infection are lacking in solid evidence and 
empirically limited to antiviral agents and host modifiers. In light of 
recent studies and reviews on potential drugs for COVID-19 therapy 
[18,20–23], our list of candidates contains unexpected drugs. These 
candidate drug categories can expand the scope of COVID-19 drug tar-
gets, open new avenues for future study, and include agents with solid 
track records in clinical treatment of infectious disease for empirical 
tests. For instance, we identified several repositioned candidates (e.g., 
ophthalmological agents, immunosuppressive agents, drugs for 
obstructive airway diseases, etc.), which have proven useful in treating 
other viral infections. Also identified were drugs for obstructive airway 
diseases (e.g. formoterol and ciclesonide) as candidate for repositioning 
to COVID-19. Notably, a previous in vitro study has shown that combi-
nation use of formoterol with budesonide (both were identified as 

Fig. 7. The network of (prioritized) 296 drug-gene pairs. The final prioritized drug-gene pairing network is displayed by using the Fruchterman-Reingold (FR) force- 
directed algorithm. The drugs (and corresponding genes) that belonged to immune checkpoint inhibitors (ICIs), that had undergoing clinical trials and that have been 
discussed in the review article of EK McCreary et al. [18] and it’s targeting gene(s) are illustrated. 
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candidate ligands) and glycopyrronium can inhibit the viral replication 
and cytokine production of HCoV-229E in human respiratory epithelial 
cells [24,25]. Besides, several studies have suggested that ciclesonide 
may block the replication of SARS-CoV-2 ribonucleic acid and thus 
reduce the virus-induced cytopathogenic effect in COVID-19 patients 
[26,27]. Thus, it appears reasonable to reposition and include drugs 
from other categories for COVID-19 treatment. 

One intriguing feature in our prediction was the emergence of drugs 
for immune modulation. Yet several lines of molecular clinical evidence 
suggest that taking into account immune modulation might be necessary 
for COVID-19 therapy. First, the pathology of the SARS-CoV-2 infected 
lungs showed mixed features of acute alveolar injury and diffusive im-
mune responses including immune infiltration, focal reactive hyper-
plasia, and intra-alveolar fibroblastic plug formation [5]. Second, the 
clinical severity of COVID-19 infection is linked to highly inflammatory 
responses that produce enormous chemokines implicated in a cytokine 
storm [6,7]. Third, a key difference between SARS-CoV and SARS-CoV-2 
is a truncation of the open reading frame (ORF) 3b, ORF6, in SARS-CoV- 
2, which affects the viral antagonistic effect toward interferon response 
[8]. On our list, we found a significant enrichment in the category of 
“anti-inflammatory and antirheumatic products”, which may alleviate 
immune-inflammatory injury that is known to cause increased oxidative 
stress and organ failure in virus-infected patients [28,29]. Also identi-
fied was β2-adrenergic signaling (elicited by some drugs for obstructive 
airway diseases such as formoterol, salbutamol, etc.) to be critical in 
norepinephrine-mediated processes and in the seretion of TNFα and IL- 
10, which may relieve tissue-damaging inflammation (and thus exerts a 
protective effect to patients) during viral infection [30]. 

Most striking was CD274 (PD-L1) identified as druggable gene in this 
study, suggesting the plausibility of repurposing ICIs (immune check-
point inhibitors) for COVID-19 therapy. We attribute this finding to the 
cell lines applied in current analysis, namely, Calu-3, a human lung 
cancer cell line. These drugs include atezolizumab, avelumab and dur-
valumab. The idea of implimenting ICIs for COVID-19 therapy is sup-
ported by a previous study showing that T-cell exhaustion markers 
(PDCD1 and HAVCR2) were overexpressed in severe cases of COVID-19 
patients [31]. Two recent commentary articles also addressed the pos-
sibility of using ICIs to reinvigorate exhuausted T-cell in the early phase 
of COVID-19 infection, yet the discussion was mainly focused on cancer 
patients receiving ICI treatment [32,33]. Should ICIs be given during 
pandemic conditions, especially for cancer patients ? We note that drugs 
targeting immune checkpoints may lead to immune checkpoint 
inhibitor-related pneumonitis (ICI-P) at a relatively low occurrence rate 
(4–13%) [34–37]. Given that immunostimulants such as ICIs may 
exacerbate the clinical symptoms (especially pneumonitis) of SARS- 
CoV-2 infection, repositioning of these drugs to COVID-19 should be 
evaluated with great caution. Moreover, it may be useful to consider 
combining ICIs with other drugs that mitigate unwanted ICI-induced 
inflammation, such as IL6 and JAK2 inhibitors [38–40]. Consistently, 
the potential of targeting IL6 signaling pathway for COVID-19 therapy 
has already been considered [18,41]. Of note, our analyses pinpointed 
several ligands targeting IL6, IL6R, JAK1 and JAK2, suggesting the 
possibility of using ICIs with IL6 signaling pathway blockers in a com-
bination therapy. 

For COVID-19, concerns have been raised on enhancing SARS-CoV-2 
virulence by treatment of widely used drugs, such as angiotensin- 
converting enzyme 2 (ACE2) inhibitors and angiotensin-receptor 
blockers (ARBs) [42–45]. Consistent with this concern, we did not 
detect significant enrichment for the category “agents acting on the 
renin-angiotensin system”. To maximize the accuracy of our drug 
repositioning predictions, we prioritized the initially identified 2396 
drug-gene pairs into a list of 296 (12.35%) drug-gene pairs. The final list 
was restricted to (i) drugs with gene target(s) in “Cluster 1”, (ii) drugs 
with target gene(s) with lower WCC compared to dexamethasone, and 
(iii) drugs with an available ATC code. Excluding candidate drug-gene 
pairs that lack ATC annotations, we identified high-priority drug-gene 

pairs with likely disease relevance. Note that our analysis may be 
undermined by a lack of data from preclinical cases of SARS-CoV-2 
infection and a lack of clinical specimens from COVID-19 patients. It 
is possible that the DEGs identified from the surrogate system may not 
fully reflect genes that respond to SARS-CoV-2 and promote disease 
progression in COVID-19 infection. Another potential caveat is that we 
did not take into account physical binding affinities in drug-gene in-
teractions. Moreover, since our analyses were based on data from 
infected cells, we might not be able to identify candidate drugs that act 
on viral proteins or human gene products involved in the process of virus 
entry. For example, ACE2 and TMPRSS2 were identified as the entry 
factors for SARS-CoV-2 [46]. Among those genes we analyzed, TMPRSS2 
was identified as a differentially-expressed gene, and TMPRSS2-upre-
gulating variants were more frequently found in European and Amer-
ican populations [47]. However, we failed to detect the corresponding 
candidate ligand targeting TMPRSS2. Neither was ACE2 identified as a 
DEG in our study. Based on the ATC enrichment test, we indeed failed to 
identify enrichment of “Agents acting on the renin-angiotensin system” 
in the candidate drug list. Thus, it is likely that the renin-angiotensin 
system may play an important role in the early stage of infection but 
not associate with the ongoing pathogenesis after viral infection. 
Although our initial attempt was to predict drugs for empirical clinical 
use, we should point out that the clinical feasibility of using candidate 
drugs for repositioning was not accessed in our study. As such, comor-
bidities and potential drug-drug interactions arising from polypharmacy 
in COVID-19 patients should be carefully considered and investigated 
before repositioning specific drugs and regimens for COVID-19 therapy. 
Likewise, preclinical experiments are needed to demonstrate the po-
tential efficacy of identified drugs, and preclinical evidence should be 
gathered before moving to clinical application. 

5. Conclusions 

In summary, our results reveal potential candidates for drug repo-
sitioning to SARS-CoV-2 therapy. The candidates we found include 
drugs from categories other than “antivirals for systemic use” (based on 
ATC code), suggesting that drugs with various indications should be 
considered in future studies. Given the scarcity of omics-level data from 
SARS-CoV-2 infected lung tissue, our surrogate transcriptomic-driven 
drug discovery approach has prioritized the list of potential candidate 
drugs to be experimentally examined in preclinical studies, to be 
considered for empirical clinical use when it is needed, and to open 
novel therapeutic avenues for the treatment of COVID-19. 
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