Table 4.
The role of polyphenols against SARS-CoV, MERS-CoV, and SARS-CoV-2.
| Polyphenols | Representative | Form/Source | Virus | Mechanism | Reference |
|---|---|---|---|---|---|
| Phenolic acids | |||||
| Hydrobenzoic acids | Gallic acid | Tetra-O-galloyl-β-D glucose from Galla chinensis | SARS-CoV | Avidly binds with surface spike protein of SARS-CoV. | Yi et al. (2004) |
| Hydrobenzoic acid | Desmethoxyreserpine | SARS-CoV-2 | Inhibit replication of 3CLpro, and entry. | Kesel (2005) | |
| Flavonoids | |||||
| Flavonols | Kaempferol | Kaempferol derivatives, Kaempferol | SARS-CoV | Inhibit 3a ion channel of CoVs. | Schwarz et al. (2014) |
| MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) | |||
| Inhibit SARS-3CLpro activity. | |||||
| Quercetin | Quercetin, Quercetin 3-β-D-glucoside, isobavachalcone, and helichrysetin | MERS | Inhibit cleavage activity of MERS-3CLpro enzyme. | Jo et al. (2019) | |
| Quercetin, Quercetin-β-galactoside | MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) | ||
| Inhibit SARS-3CLpro activity. | |||||
| Quercetin and TSL-1 from Toona sinensis Roem | SARS-CoV | Inhibit the cellular entry of SARS-CoV. | Chen et al. (2008) | ||
| Quercetin | SARS-CoV-2 | PLpro and 3CLpro enzyme. | Park et al. (2013) | ||
| Myricetin | Myricetin | SARS-CoV | Inhibit nsP13 by affecting the ATPase activity. | Yu et al. (2012) | |
| SARS-CoV helicase inhibitor. | |||||
| Herbacetin | Herbacetin | MERS | Inhibit cleavage activity of MERS-3CLpro enzyme. | Jo et al. (2019) | |
| SARS-CoV | block the enzymatic activity of SARS-CoV 3CLpro. | Jo et al. (2020) | |||
| Papyriflavonol A | Broussonetia papyrifera | MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) | |
| Kazinol A, B, F and J, and broussoflavan A | Inhibit SARS-3CLpro activity. | ||||
| Amentoflavone, | Torreya nucifera leaves | SARS-CoV 3CL pro inhibitor | Ryu, Park, et al. (2010) | ||
| Kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechingallate, zingerol, gingerol, and allicin | Traditional herbs | Inhibitors of SARS-CoV-2-Mpro | block the enzymatic activity of SARS-CoV 3CLpro. | Khaerunnisa et al. (2020) | |
| Flavones | Apigenin | Ocimum basilicum | SARS-CoV | Inhibit PLpro. | Pandey et al. (2020) |
| Inhibit SARS-CoVpro activity. | |||||
| Baicalin | Scutellaria baicalensis | SARS-CoV | Inhibit Angiotensin-converting enzyme. | Chen and Nakamura (2004) | |
| Scutellarein | Scutellaria lateriflora | SARS-CoV | Inhibit nsP13 by affecting the ATPase activity. | Yu et al. (2012) | |
| Rhoifolin | Rhus succedanea. | SARS-CoV | Inhibit SARS-3CLpro activity. | (Gong et al., 2008; Nguyen et al., 2012) | |
| Luteolin | luteolin, from Veronicalina riifolia | SARS-CoV | Avidly binds with surface spike protein of SARS-CoV. | Yi et al. (2004) | |
| Daidzein | Plant-derived phenolic compounds and Root extract of Isatis indigotica | SARS-CoV | Not active. | Lin et al. (2005) | |
| 30-(3-methylbut-2-enyl)-30,4,7-trihydroxyflavone | Broussonetia papyrifera | MERS-CoV, SARS-CoV | Inhibition of cysteine proteases CoV | Park et al. (2017) | |
| neobavaisoflavone | Psoralea corylifolia | SARS-CoV | Inhibitory activity toward SARS-CoV PLpro. | Kim et al. (2014) | |
| Flavanones | Herbacetin, | Plant-derived phenolic compounds and Root extract of Isatis indigotica, | SARS-CoV | Inhibit the cleavage activity of the SARS-3CLpro enzyme. | Jo et al. (2020); Lin et al. (2005) |
| Rhoifolin pectolinarin Tetra-O-galoyl-β-d-glucose (TGG) luteoline | |||||
| Pelargonidin | Pimpinella anisum | SARS-CoV-2 | Binding affinities to 3C-like protease of SARS-CoV-2 | Hasan et al. (2020) | |
| Bavachinin | Psoralea corylifolia | SARS-CoV | Inhibitory activity toward SARS-CoV PLpro. | Kim et al. (2014) | |
| Anthocyanidins | 10 polyacylated and monomeric anthocyanins | Bure components | SARS-CoV-2 | Constructively network with catalytic dyad residues of 3CLpro of SARS-CoV-2. | Khalifa, Nawaz, et al. (2020) |
| Flavanols | Epigallocatechin gallate | Green tea | SARS-CoV | Inhibit SARS-3CLpro activity. | (Gong et al., 2008; Nguyen et al., 2012) |
| Gallocatechin gallate and epicatechingallate | Green tea | SARS-CoV | Inhibit SARS-3CLpro activity. | (Gong et al., 2008; Nguyen et al., 2012) | |
| gallocatechin-3-gallate | Green tea | SARS-CoV | Inhibit SARS-3CLpro activity. | Ghosh, Chakraborty, Biswas, and Chowdhuri (2020) | |
| Chalcone | Isoliquiritigenin | Glycyrrhiza glabra | MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) |
| Inhibit SARS-3CLpro activity. | |||||
| Broussochalcone B, broussochalcone A, and 4-hydroxyisolonchocarpin | Broussonetia papyrifera | MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) | |
| Inhibit SARS-3CLpro activity. | |||||
| isobavachalcone | Psoralea corylifolia | SARS-CoV | inhibitory activity toward SARS-CoV PLpro. | Kim et al. (2014) | |
| 4’ -O-methylbavachalcone | Broussonetia papyrifera | MERS-CoV, SARS-CoV | Inhibit PLpro. | Park et al. (2017) | |
| Inhibit SARS-3CLpro activity. | |||||
| Tannins | 19 hydrolysable tannins | Bure components | SARS-CoV-2 | Efficacious and selective anti-COVID-19 therapeutic compounds. | Khalifa, Zhu, et al. (2020) |