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INTRODUCTION

In patients with suspected aortic dissection, computed 
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tomography (CT) is the preferred imaging modality due to 
its widespread availability, and rapid image acquisition 
and processing compared to other imaging modalities, as 
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well as excellent sensitivity of 95% (1-4). As stated in the 
2014 European Society of Cardiology guidelines on the 
diagnosis and treatment of aortic diseases, multiplanar 
reformation images based on CT play an important 
complementary role in confirming diagnosis, determining 
the extent of involvement, and measuring the vascular 
diameter specifically and precisely, including the entire 
aorta (EA), true lumen (TL), and false lumen (FL) (1-
5). Multiplanar reformation includes centerline analysis 
involving calculation of the geometric vessel center, and 
allows for measurement of the diameter along its course 
(6). For type B aortic dissection (TBAD), it is important 
to measure vascular diameters accurately. In patients 
with uncomplicated TBAD, conservative treatment is 
recommended (1), and accurate diameter measurements 
are needed to monitor lumen morphology during follow-up. 
In patients with complicated TBAD, thoracic endovascular 
aortic repair is recommended (1), and it is important to 
choose the appropriate size of stent by accurate assessment 
of the proximal and distal landing zones in order to reduce 
postoperative complications, such as displacement of stent, 
retrograde type A aortic dissection, and endoleaks (6, 7). 
The guidelines require that accurate diameter measurements 
should be made perpendicular to the axis of flow in the 
aorta. However, due to restrictions in the positioning of 
X-ray tubes, only anteroposterior to left anterior oblique 
60° projections can be obtained during endovascular repair, 
which makes it difficult to measure the true diameter. 
Instead, true measurements can be achieved from CT images 
through multiplanar reformation, since this method presents 
planes perpendicular to the course of the aorta. 

At present, the vascular diameter on CT images is 
measured manually, which is subjective, time-consuming, 
and introduces inter- and intra-observer variations (8). 
Medical image-processing with the help of artificial 
intelligence may lead to automated measurement without 
these limitations. Deep learning (DL) is a powerful new 
machine-learning tool that has made breakthroughs in 
disease detection (9). DL has been applied across many 
medical tomographic imaging areas, inspired by numerous 
achievements in image processing (10, 11). Various 
methods have been developed for vessel segmentation, and 
convolutional neural network (CNN) is a typical method 
for image recognition, processing, and segmentation 
that has shown promising results (12-17). Although 
previous research has mainly focused on two-dimensional 
(2D) images, with the development of DL, DL has been 

applied to three-dimensional (3D) images in recent years. 
Automatic segmentation of the aorta and detection of 
abdominal aortic aneurysms have been reported using a 
modified 3D U-Net combined with ellipse fitting. Recently, 
a serial multi-task CNN model has provided accurate and 
efficient segmentation of TBADs (18). However, automatic 
measurement of the aortic diameter has not yet been 
explored.

In this study, we implemented a DL algorithm to segment 
TBADs, process 3D images, establish the centerline, and 
measure the diameter automatically. Our hypothesis was 
that aortic diameter could be measured more accurately, 
reliably, and efficiently using a DL method than with 
the manual method. The success of this technique could 
reduce the work of radiologists in aortic measurement and 
establish a foundation for the application of DL in TBAD 
image-processing and diagnosis.

MATERIALS AND METHODS 

Dataset
This retrospective study was approved by the Institutional 

Review Board with a waiver of informed consent. Patients 
diagnosed with TBAD according to aortic computed 
tomography angiography (CTA) from December 1, 2016 to 
June 30, 2019 were consecutively included. Patients with 
thrombus in the FL were excluded (n = 89); 13 patients 
were excluded due to aortic rupture or poor image quality; 
21 were excluded as the TL was compressed to a thin line 
with a thickness less than 3 mm; and another 18 were 
excluded because their supra-arch branches had abnormal 
origins. Finally, 139 patients were included. Using a random 
number table, the data were randomly divided into training, 
validation, and testing sets at an approximate ratio of 
7:1:2. Aortic CTA was performed with various multidetector-
row (64-slice to 256- slice) scanners across different years, 
including the Discovery CT750 HD scanner (GE Healthcare), 
Revolution CT (GE Healthcare), SOMATOM Definition 
(Siemens Healthineers), SOMATOM Definition Flash (Siemens 
Healthineers), or the Brilliance iCT (Philips Healthcare). 
Spiral CT scans were performed from the level of the thoracic 
inlet to the pubic symphysis, and reconstructed with slices 
of 0.625, 0.75, 1, or 1.5 mm. A tube voltage of 120 kV was 
used for patients with a body mass index (BMI) > 30 kg/m2, 
100 kV for a BMI 20–30 kg/m2, and 80 kV for a BMI < 20 
kg/m2. The X-ray tube current was adjusted automatically. 
The characteristics of patients and CTA parameters are listed 
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in Table 1.

Training, Validation, and Testing Sets
The training set included 99 patients to train the model, 

and 15 patients were included in the validation set to 
estimate the performance of the model. The images for 
training and validation were labeled manually by experts via 
Mimics (Materialise). 

Additional aortic CTA data from 25 TBAD patients 
were collected to demonstrate the segmentation and 
measurement performance of the model. In terms of 
verifying the segmentation accuracy of the model, the 
segmentation results were compared with the ground 
truth, which was the manual annotation of aortic lumen 
by an experienced radiologist. Four radiologists (R1–
R4) with > 3 years of experience in vascular image post-
processing and diagnosis were invited to measure. All the 
diameters were measured based on multiplanar reformation, 
which is considered the most accurate and reliable, as 
well as having the lowest inter-observer variability (2, 
3, 19). The reference standard was the average value of 
measurements from R1 and R2. If the difference between 
the two radiologists was > 10% ([R1–R2]/R

−
 > 10%), a third 

radiologist (R3) was invited to reach a final consensus. 
The first radiologist measured each diameter twice, and the 
measurements were performed after an interval of at least 2 
weeks to assess intra-observer variability. Additionally, the 
first measurements performed by R1 and the measurements 
performed by R2 were compared to evaluate the inter-
observer variability of manual measurements. To access 
the accuracy and consistency of manual and DL methods, 
the measurements from R4 and the DL method were each 

compared to the reference standard. 

Data Preprocessing
First, all images were denoised with a non-local mean 

threshold algorithm. Second, a region of interest detection 
algorithm was used to target the aortic lumen. Considering 
the huge diversity of data, the CTA images were resampled 
for normalization regarding the voxel size and value before 
training.

DL Framework
The framework of our deep CNN is illustrated in Figure 1. 

An end-to-end connected 3D U-Net architecture was used 
for EA segmentation, and intersection over union (IoU) 
tracing was used to identify the TL and FL. The U-Net model 
was a full CNN model with 125 layers, as shown in Figure 
2. This pipeline combined a U-Net with DenseNet and an 
IoU tracing model. The U-Net used a network structure 
that included down-sampling and up-sampling processes. 
The down-sampling path had a filter size of 3 x 3 x 32 and 
stride 2 in each convolution layer. All convolution layers 
were processed with batch normalization, Rectified Linear 
Units, and same-padding. The final EA segmentation result 
from the U-Net model was obtained by assigning each pixel 
to the class with the highest probability. The IoU tracing 
method was applied to recognize the membrane, divide 
the EA into two lumens, and judge the TL and FL. After 
automatic segmentation of the EA, TL, and FL, a traversal 
algorithm was used to measure the diameter. 

Model Training
The network was implemented in PyTorch (version 1.0) on 

Table 1. Characteristics of Patients and CTA Parameters
Overall (n = 139) Training Set (n = 99) Validation Set (n = 15) Testing Set (n = 25)

Patient characteristics
Male* 111 (79.9) 78 (78.8) 12 (80.0) 21 (84.0)
Age (years)† 48.7 ± 8.7 48.3 ± 8.2 47.6 ± 7.1 50.1 ± 9.7

CTA Parameters
Slice thickness (mm)† 0.855 ± 0.023 0.782 ± 0.019 0.891 ± 0.025 0.875 ± 0.014
CT scanners*
GE Discovery CT 23 (16.5) 18 (18.2) 2 (13.3) 3 (12.0)
GE Revolution CT 22 (15.8) 15 (15.2) 3 (20.0) 4 (16.0)
Siemens Definition CT 9 (6.5) 5 (5.1) 2 (13.3) 2 (8.0)
Siemens Definition Flash CT 31 (22.3) 22 (22.2) 3 (20.0) 6 (24.0)
Philips iCT 54 (38.8) 39 (39.4) 5 (33.3) 10 (40.0)

*Data are number of patients and data in parentheses are percentages, †Data are mean ± standard deviation. CT = computed tomography, 
CTA = computed tomography angiography
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a machine with 125G memory, Interl CPU, and two NVIDIA 
GeForce GTX1080 Ti GPUs. Training stopped when the loss 
value stopped decreasing in the validation set after 30 
steps. An adaptive learning rate was adopted with an initial 
setting value of 0.01, and the learning rate was reduced to 
0.95 times the previous value every 80 epochs. The SoftMax 
activation function was used in the last layer in all tasks 
to identify the aortic branches. Before feeding into the 
networks, the CTA images were pre-processed and re-sized 
to 128 x 128 x 128, and data augmentation by rotation 
and flipping were applied. The hyper parameters α, β, and γ 
were set to 1, 3, and 6 respectively.

Quantitative Evaluation with Parameter Measurement
Eight measurement positions were chosen, including 

those recommended in the guidelines (1). The positions 
were proximal to the innominate artery origin (P1), 
proximal to the left common carotid artery origin (P2), 
proximal to the left subclavian artery origin (P3), distal to 
the left subclavian artery origin (P4), at the level of the 
diaphragm (P5), at the superior border of the celiac axis 
origin (P6), at the superior border of the lower renal aorta 

origin (P7), and proximal to the aortic bifurcation (P8). If 
there were two renal arteries on one side, the larger one was 
the target. The diameters of 32 parameters were assessed, 
from the inner to inner lumen wall, excluding calcium, as 
follows: The maximum and minimum diameter of the EA at 
P1–P8, and the maximum and minimum diameter of the TL 
and FL at P5–P8. If the TBAD did not involve P5–P8, the 
maximum and minimum diameters of the TL and FL were 
recorded as 0 mm. In the DL method, we applied a traversal 
algorithm to measure the diameter after the automatic 
segmentation and IoU tracing methods. At the specified 
level, the center point on the centerline was selected, 
the lumen was rotated to obtain different diameters, 
and the maximum and minimum values were selected as 
the maximum and minimum diameters. In the manual 
method, the diameters were measured with an image post-
processing workstation (Advantage Workstation Release 4.6 
software, GE Healthcare). The window width and level were 
set to 700/200 and individually adjusted if necessary. The 
diameters at each position were calculated based on the 
following steps: 1) The centerlines of the EA, TL, and the FL 
were each extracted and smoothed. The centerlines of the 
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EA, TL, and the FL were acquired by placing seed points into 
the lumen of the ascending aorta and the iliac artery, the 
proximal and distal TL, and the proximal and distal FL. The 
centerline was manually adjusted if it was not in the center 
of the vessel. 2) The corresponding straightened images 
were generated according to each of their centerlines. 
3) Each branch was located based on the centerline to 
determine the specified measurement position. 4) The 
maximum and minimum diameters of the EA, TL, and the FL 
auto-recognized by the workstation were recorded. The time 
required, including for centerline preparation and diameter 
measurement, was recorded for each patient. 

Statistical Analysis 
Continuous data are reported as means ± standard 

deviations. Segmentation performance was evaluated with 
the dice coefficient score (DCS). Kolmogorov-Smirnov 
tests were used to assess the distribution of the data. 
Measurements and times between the DL and manual 
methods were compared, and the intra- and inter-observer 

reproducibility of the manual method was assessed. Paired 
t test (for variables normally distributed) or Wilcoxon 
signed rank test (for variables not normally distributed) 
was applied for these comparisons. All p values were two-
sided, and a p value < 0.05 was considered statistically 
significant. Two-way mixed intra-class correlation (ICC) 
analyses were used to assess the consistency of R1, R2, 
and R4, and an ICC coefficient of > 0.8 was considered 
an excellent agreement. Linear correlation graphs and 
Bland-Altman plots were used to show the differences 
between reference standards and measurements from the 
two methods. Correlation coefficients were calculated. All 
statistical analyses were performed using SPSS version 22.0 
(IBM Corp.).

RESULTS

Accuracy of Segmentation by DL
The DCSs of the EA, TL, and the FL for 25 cases are shown 

in Figure 3. The segmentation results of DL corresponded 
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well with ground truth. The corresponding distributions of 
the DCS values for different aortic regions and lumens are 
shown in Figure 3B and C. The model worked well in the 
testing process, reaching mean DCS values of 0.958, 0.961, 
and 0.932 for EA, TL, and FL segmentation, respectively 
(Fig. 3C), which was significantly higher than that reported 
in a previous study (18). In order to further evaluate the 
performance of aorta segmentation in difference regions, we 
separated the aorta into the ascending aorta, aortic arch, 
descending aorta, and the abdominal aorta (Fig. 3B). The 
results showed that the DCS was high in each region, while 
the segmentation performance was comparatively poor in 
the abdominal aorta.

Accuracy and Reliability of Manual and DL Methods
The diameters of the EA, TL, and the FL were calculated 

at each of the 8 positions using the two methods. The ICC 
coefficient was 0.976 (95% confidence interval, 0.973–
0.979) (p < 0.001) between R1, R2, and R4, demonstrating 
an excellent consistency in the measurements of these 
three observers. We found linear relationships between 
reference and measurements from manual and DL methods, 
with Pearson’s correlation coefficients of 0.964 and 0.991, 
and coefficients of determination of 0.759 and 0.911, 
respectively (Fig. 4). The measurement errors with the DL 
method were much fewer than with manual method at all 
positions in each lumen (Fig. 5). The DL model maintained 
high accuracy at all positions in the EA, TL, and the FL, 
while the performance of the manual method in the TL and 
FL was not as good as in the EA. 

The detailed measurements are listed in Table 2. The 
average measurement error was the mean error from the 

Fig. 3. Automatic segmentation results with the DL method.
A. Four levels (a, b, c, d) of ground truth and DL segmentation of aorta. B. DCSs for the Ascending, Arch, DA, and AA in the test set. C. DCSs for 
the entire aorta, TL and FL in the test set. (B, C) are the corresponding mean and error bar plot, displaying the distribution of DCS in test set 
based on minimum, mean, and maximum values. AA = abdominal aorta, Arch = aortic arch, Ascending = ascending aorta, DA = descending aorta, 
DCS = dice coefficient score, DL = deep learning
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reference standard in all 25 cases at each measurement 
position. It was clear that the average DL measurement 
error at each position was fewer than that observed with 
the manual measurement. For the EA, TL, and the FL, 
the average measurement errors at all positions with the 
DL method were 1.64, 2.46, and 2.50 mm, while those 
with manual method were 4.13, 11.67, and 8.02 mm, 
respectively. The performance for the EA was better than 
that for the TL and FL, regardless of the method used, and 
the differences were greater in the manual measurements. 

There were statistically significant differences in the 
measurements between the two methods, which indicated 
that the measurements using the DL method were more 
accurate than those using the manual method.

Bland-Altman plots revealed the deviations of the 
diameters between the reference standard and the manual or 
DL method. The mean difference in the diameters between 
the manual method and reference standard was -0.042 mm 
(-3.412 to 3.330 mm) for the EA, -0.376 mm (-3.328 to 
2.577 mm) for the TL, and 0.026 mm (-3.040 to 3.092 mm) 

Fig. 4. Linear relationships between reference and measurements from manual and DL methods. 
A. Correlation between measurements from manual method and reference standard (p < 0.001, r = 0.964, R2 = 0.759). B. Correlation between 
measurements from DL method and reference standard (p < 0.001, r = 0.991, R2 = 0.911). The correlation between measurements from DL method 
and reference standard was better than that from manual method. R = Pearson’s correlation coefficient, R2 = coefficient of determination
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for the FL. The mean difference in the diameters between 
the DL method and the reference standard was -0.166 mm 
(-1.419 to 1.086 mm) for the EA, -0.050 mm (-0.970 to 
1.070 mm) for the TL, and -0.085 mm (-1.010 to 0.084 
mm) for the FL. We found that the diameters measured with 
the DL method were considerably more consistent with the 
reference standard than those measured with the manual 
method (Fig. 6).

Intra- and Inter-Observer Reproducibility of Diameter 
Measurements 

The diameters measured by the manual method were 
assessed to evaluate reliability. The intra-observer 
reproducibility of the EA diameter was good (p = 0.889), 
while the differences between the two measurements for 
the TL and FL diameters were statistically significant (p = 
0.013 and 0.018, respectively) (Table 3). For inter-observer 
reproducibility, the difference in the EA diameter between 
the two observers was statistically significant (p < 0.001), 
while there was no statistical difference in the TL and FL. 
There were no intra- and inter-observer differences in the 
DL method.

Time for Analysis
The measurement time using the DL method was 

significantly shorter than that of the manual method (21.7 
± 1.1 [20.0 to 23.5] vs. 82.5 ± 16.1 [60 to 100] minutes for 
one case, p < 0.001). This finding demonstrated that the DL 
method is both time- and labor-saving.

DISCUSSION

Using the 3D multi-task deep CNN method, we successfully 
achieved automatic segmentation and measurement of 
TBADs. In our study, this method segmented TBAD into the 
EA, TL, and FL with high DCSs. Compared to the manual 
method, the DL method showed better performance with 
higher accuracy for the EA, TL, and the FL at all positions. 
Thus, automatic measurement is helpful to accurately 
judge the size changes of the vascular lumen during 
follow-up, and to reveal signs of surgery, including aortic 
expansion. The average measurement errors of the manual 
method were greater than the interval value between the 
different types of stent (2 mm), which could lead to the 
selection of an inappropriate stent size and increase the 
risk of adverse events, while the DL method had smaller 
measurement errors, conducive to selecting appropriate 
stents. In addition, better consistency and stability 
was observed between the DL method and the reference 
standard. Moreover, there were variations across different 
readers and times of measurement in the manual method, 
while the DL method was stable without any inter- and 
intra-observer difference. In addition, the DL method was 
more efficient in terms of time. The diameters of the EA, 
TL, and the FL were each measured after the centerlines 
were found. Although most commercially available software 
packages facilitate automatic centerline detection, in our 
clinical work, we found that the accuracy of the centerlines 
was poor. Careful manual adjustment is required to keep the 
centerline as close to the real situation as possible and to 

Table 2. Measurement Errors of Deep Learning and Manual Methods, and Differences between the Methods

Levels
EA AME (%) TL AME (%) FL AME (%) DL vs. M

DL M DL M DL M EA P TL P FL P
P1 1.56 2.75 - - - - 0.021 - -
P2 1.63 4.04 - - - - 0.050 - -
P3 1.49 2.96 - - - - 0.035 - -
P4 1.72 3.57 - - - - < 0.001 - -
P5 1.73 4.37 2.43 11.32 2.02 7.59 0.001 < 0.001 < 0.001
P6 1.61 4.81 2.19 10.61 2.19 5.61 0.001 < 0.001 < 0.001
P7 1.40 4.65 3.17 12.34 2.44 7.55 < 0.001 < 0.001 < 0.001
P8 1.98 5.85 2.03 12.41 3.36 11.33 < 0.001 < 0.001 < 0.001
AVE 1.64 4.13 2.46 11.67 2.50 8.02 - - -

The average measurement error of the diameter of EA, TL, and FL at each measurement position in 25 cases. AME = average measurement 
error, AVE = average measurement error at all evaluated positions, DL = measurement by deep learning method, EA = entire aorta, FL = 
false lumen, M = measurement by manual method, P1 = innominate artery origin, P2 = proximal to the left common carotid artery origin, 
P3 = proximal to the left subclavian artery origin, P4 = distal to the left subclavian artery origin, P5 = at the level of the diaphragm, 
P6 = at the superior border of the celiac axis origin, P7 = at the superior border of the lower renal aorta origin, P8 = proximal to the 
aortic bifurcation, TL = true lumen
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minimize deviations for each reader, which is why manual 
measurements take so long. 

Automated methods for aorta segmentation have been 
investigated extensively; most are based on classical image-
processing technologies (20-22), and rarely on artificial 

neural networks (23, 24). With the prevalence of DL in 
medical image segmentation (25, 26), deep CNN has been 
proposed to segment the aorta based on 2D images in small 
datasets (18). Recently, Cao et al. (18) applied a multi-task 
output CNN network for automatic TBAD segmentation, but 

Fig. 6. Bland-Altman plots for diameter measurements. 
Bland-Altman plots for the entire aorta (A, B), TL (C, D), and FL (E, F) for deviations of diameters between manual method and reference 
standard (A, C, E), as well as DL method and reference standard (B, D, F) at each measurement position in the 25 cases.
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only the accuracy of segmentation and volume measurement 
were assessed. Here, we used a 3D multi-task deep CNN 
in a unified framework based on a large database. To the 
best of our knowledge, this is the first application of 3D DL 
neural networks in TBAD to measure the vascular diameter, 
as well as to evaluate the accuracy and consistency of the 
model. With the DL method, the true aortic morphology 
was displayed due to it representing an accurate and stable 
measurement. Furthermore, the computerized approach was 
more efficient and labor-saving.

The current study has several limitations. First, the 
training and testing datasets were not large enough due 
to the low prevalence of TBAD. More data, especially for 
instances where there were various morphologies from 
multiple centers, would be helpful to further improve the 
robustness of the performance. Second, only TBAD was 
included, since for type A, replacement of the aorta by an 
artificial vessel is recommended and is of little importance 
to measure diameters. Furthermore, TBAD with thrombus in 
the FL was not included; we intend to focus on thrombus 
segmentation in a subsequent study. 

In conclusion, the DL model was successfully applied to 
automatically segment the aorta and measure the diameter 
for TBAD. This model enabled image processing and aortic 
measurements to be implemented efficiently. With more 
accurate, reliable, and stable measurements, DL is likely to 
play an important role in guiding intervention and assessing 
aortic remodeling. The proposed 3D deep CNN method for 
automatic segmentation and measurement of TBAD will 
reduce the labor of radiologists in the near future. 
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