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Role of deubiquitinating enzymes in DNA double-strand break repair
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Abstract: DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate
transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused
by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks
(DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and
cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple
mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms
for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair.
Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated
chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes
(DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new
insights to combat human diseases and develop novel therapeutic approaches.
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1 Introduction

Human body suffers hundreds and thousands of
occurrences of DNA damage every day, which will
eventually cause DNA aberrations (Lindah and Barnes,
2000). Some DNA lesions arise via natural metabolic
processes, such as reactive oxygen species (ROS),
alkylation agents, and lipid peroxidation productions
(Cadet et al., 1997). DNA also can be damaged by
environmental agents. This exogenous damage is caused
by ultraviolet (UV) radiation and ionizing radiation
(IR), viruses, and hydrolysis. DNA double-strand break
(DSB) induced by IR is one of the most serious kinds
of damage. IR generates many DNA lesions, includ‐
ing base changes, deoxyribose changes, DNA strand
cross-links, DNA protein cross-links, and DNA strand

breakage, due to the deoxyribose destruction of de‐
oxyribose or the breaking of phosphodiester bonds
(Khanna and Jackson, 2001). Living organisms have
developed DNA repair mechanisms in order to main‐
tain DNA integrity. If the repair function is not effec‐
tive to fix DNA damage, accumulation of DNA le‐
sions evidently causes gene mutation, genome in‐
stability, cell chromosome loss, and cell apoptosis;
these lead to aging and age-related diseases such as
tumorigenesis (Schmitt et al., 2007).

There are five types of DNA repair in eukary‐
otes: nucleotide excision repair (NER), base exci‐
sion repair (BER), mismatch repair (MMR), single-
strand break repair (SSBR), and DSB repair (DSBR).
NER can remove large fragments of DNA damage,
BER can repair individual base damage, and MMR
is used to repair base mismatches. SSBR can repair
DNA single-strand break. DSBR includes three
mechanisms: non-homologous end joining (NHEJ),
homologous recombination (HR), and microhomology-
mediated end joining (MMEJ) (Harrison and Haber,
2006; Kawanishi et al., 2006; Harper and Elledge,

Review
https://doi.org/10.1631/jzus.B2000309

* Jian YUAN, yuanjian229@hotmail.com
Jian YUAN, https://orcid.org/0000-0002-2801-8849

Received June 9, 2020; Revision accepted Nov. 17, 2020;
Crosschecked Dec. 16, 2020

© Zhejiang University Press 2021



| J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2021 22(1):63-72

2007; Gupta and Heinen, 2019; Olivieri et al., 2020).
Posttranslational modification (PTM) of proteins, es‐
pecially ubiquitination, is essential for DNA repair,
protein stability, and cell communication in the cel‐
lular DNA damage response (DDR). The process of
deubiquitination, the removal of ubiquitin chains
from proteins, is important to prevent the degrada‐
tion of targeted proteins. In this review, we will dis‐
cuss the role of deubiquitination modification in
DNA DSBR in regulating DNA damage response
and maintaining genomic stability.

2 Repair of DNA DSBs

NHEJ and HR are two major mechanisms in
DNA DSBR (Lieber, 2008; san Filippo et al., 2008;
Scully et al., 2019). NHEJ occurs throughout the cell
cycle. It is a rapid and highly efficient pathway to
DNA sequences of minor reference alleles. NHEJ is
often considered to be error-prone (Karanam et al.,
2012; Chiruvella et al., 2013). By contrast, HR is re‐
stricted to the S and G2 phases due to the requirement
for a sister chromatid. It repairs precisely by using the
sequence template from sister chromatids. As a result,
HR is a high-fidelity repair pathway compared to
NHEJ (Kakarougkas and Jeggo, 2014).

NHEJ mainly requires a DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), Ku70, Ku80,
DNA ligase IV (LIG4), Artemis X-ray repair cross-
complementing protein 4 (XRCC4), and XRCC4-like
factor (XLF). The DSB is repaired by blunt end liga‐
tion independent of sequence homology (Ceccaldi et al.,
2016). Ku70 and Ku80 make up the Ku70/80 het‐
erodimer, which is the core NHEJ protein. The Ku70/
80 complex initiates NHEJ by binding to DNA DSB
ends. The Ku70/80 heterodimer is a sensor which acti‐
vates and recruits the DNA-PKcs to the DNA ends
(Gottlieb and Jackson, 1993). The DNA-PKcs auto-
phosphorylates and activates itself, which in turn reg‐
ulates NHEJ end processing. It also facilitates recruit‐
ment of LIG4, XRCC4, and XLF for a ligation com‐
plex. There are some additional proteins, such as poly‐
nucleotide kinase 3' phosphatase and Artemis, that also
contribute to end processing (Cottarel et al., 2013).
Artemis is a nuclease, which is essential for DNA end
joining (Riballo et al., 2004). In conclusion, the mecha‐
nism of NHEJ is simple and does not rely on a template.

The NHEJ process is very active in organisms with
more complex genomes, compared with HR. However,
in organisms with simpler genomes, especially in
single-cell form, NHEJ is likely to destroy the integrity
of original sequences, so it is not favored (Britton
et al., 2013).

HR restores the missing sequence information at
the DSB site using a non-damaged sister chromatid as
a template. The following factors or complexes play
a crucial role in HR repair: meiotic recombination
11 (MRE11)/DNA repair protein RAD50 homolog
(RAD50)/Nijmegen breakage syndrome 1 (NBS1) (MRN),
CtBP-interacting protein (CtIP), replication protein A
(RPA), RAD51, RAD52, breast cancer susceptibility 1
(BRCA1)/partner and localizer of BRCA2 (PALB2)/
BRCA2, and XRCC2/3 (Symington and Gautier, 2011).
MRN complex and CtIP bind the single-stranded DNA
(ssDNA) on the DNA breaks, and initiate HR (Takeda
et al., 2007). MRN-mediated resection generates 3' over‐
hangs by MRE11 exonuclease activity on the DNA
breaks. Resected DNA is further processed and extended
the length of ssDNA by DNA2 and exonuclease 1
(EXO1) (Symington and Gautier, 2011). Next, the 3'
overhangs of ssDNA are coated by RPA, which prevents
the ssDNA from forming secondary structures. RAD51
displaces RPA in dependent of BRCA1/PALB2/
BRCA2 complex, XRCC2/3 complex, RAD52, and
other proteins (Pellegrini et al., 2002). RAD51 loading
mediates strand invasion and strand displacement on
the undamaged homologous template. Subsequently,
extension of the D-loop helps to generate a Holliday
junction and capture the second end lead for repair
(Kennedy and Andrea, 2005). In summary, as
mentioned previously, HR repair reaches a high
degree of accuracy by using homologous sequences,
such as DNA replication from sister chromatids, as
templates for synthesizing DNA. Therefore, HR is
considered the safest and most reliable DSB repair
pathway.

3 Deubiquitinating enzymes

Protein ubiquitin modification is involved in al‐
most all cellular processing, including cell cycle regula‐
tion, cell proliferation, cell death, differentiation, and
metastasis; it acts by regulating protein stability, pro‐
tein localization, and signal transduction (Welchman
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et al., 2005). Similar to phosphorylation, methylation,
and acetylation, protein ubiquitination is also a re‐
versible process. To reverse the ubiquitination reac‐
tion, the deubiquitinating enzymes (DUBs) remove
ubiquitin molecules or polyubiquitin chains from
substrates (Nishi et al., 2014; Hanpude et al., 2015).
In total, there are around 100 DUBs. These DUBs
are grouped into six sub-families, which include the
ubiquitin-specific proteases (USPs), the Machado-
Joseph Disease protein domain proteases (MJDs),
the Jun activation domain-binding protein 1 (Jab1)/
myeloproliferative neoplasm (MPN)/Mov34 family
(JAMM/MPN+ ), the ubiquitin C-terminal hydrolases

(UCHs), the ovarian tumor proteases (OTUs) (Nij‐
man et al., 2005b; Mevissen et al., 2013), and the
motif interacting with Ub-containing novel DUB
family (MINDY) family (Rehman et al., 2016). Deu‐
biquitinases interact with substrates by recognizing
specific domains and motifs, including the ubiquitin
interacting motif (UIM) domain, ubiquitin-E2-like
variant (UEV) domain, and ubiquitin-associated
(UBA) domain (Hurley et al., 2006; Komander
et al., 2009). DUBs also play a crucial role in the
DNA repair process and DNA damage response path‐
way (Table 1) (Nowsheen et al., 2020). Here, we
will discuss the role of DUBs in DNA DSBR.

Table 1 DUBs involved in DNA damage

DUB

USP1

USP3

USP4

USP7

USP11

USP13

USP14

USP16

USP20

USP28

USP38

USP39

USP47

USP50

USP51

BRCC36

OTUB1

OTUB2

OTUD4

OTUD5

UCHL3

POH1

BAP1

Substrate

CHK1

CHK1; RNF168

CtIP and MRN complex

TIP60; MRN-MDC1 complex

BRCA1-PALB2-BRCA2 complex

RAP80-BRCA1 complex

Ku70

RNF8/RNF168

Claspin

Claspin; PIRH2 and CHK2

HDAC1

CHK2

IK

Ku70

H2AK13,15ub

BRCA1-RAP80 complex

E2s

RNF168, BRCA1/RAP80 complex

Unclear

Ku80

Rad51/Ku80

RNF8 and Rad51

BRCA1, RAD51 and RPA

Reference

Nijman et al., 2005a; Guervilly et al., 2011

Doil et al., 2009; Cheng and Shieh, 2018

Liu et al., 2015; Wijnhoven et al., 2015

Sun et al., 2005

Schoenfeld et al., 2004; Orthwein et al., 2015

Li et al., 2017

Sharma et al., 2020

Shanbhag et al., 2010

Yuan et al., 2014

Zhang et al., 2006; Wang et al., 2018

Yang et al., 2020

Wu JH et al., 2019

Ka et al., 2020

Cai et al., 2018

Wang et al., 2016

Dong et al., 2003; Sobhian et al., 2007; Wang and Elledge, 2007;
Cooper et al., 2009; Shao et al., 2009; Feng et al., 2010;
Hu X et al., 2011

Juang et al., 2012; Sato et al., 2012; Wiener et al., 2012

Altun et al., 2015

Wu ZQ et al., 2019

Li et al., 2019

Luo et al., 2016

Butler et al., 2012

Ismail et al., 2014

DUB: deubiquitinating enzyme; USP: ubiquitin-specific protease; BRCA: breast cancer susceptibility; BRCC36: BRCA1/2-containing
complex 36; OTUB: otubain; OTUD: ovarian tumor domain-containing protein; UCHL3: ubiquitin C-terminal hydrolase L3; POH1:
Pad1 homologue; BAP1: BRCA1-associated protein 1; CHK: checkpoint kinase; RNF: RING finger protein; MRN: meiotic recombination
11 (MRE11)/DNA repair protein RAD50 homolog (RAD50)/Nijmegen breakage syndrome 1 (NBS1); TIP60: Tat-interactive protein-60 kDa;
MDC1: mediator of DNA damage checkpoint protein 1; PALB2: partner and localizer of BRCA 2; RAP80: receptor-associated protein 80;
PIRH2: p53 induced RING-H2 protein; HDAC1: histone deacetylase 1; RPA: replication proteinA; CtIP: CtBP-interacting protein; H2AK13,15ub:
ubiquitylation on histone H2A at K13 and K15; E2s: E2 ubiquitin enzymes.
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4 Deubiquitination modification of the core
proteins in DNA repair pathways

4.1 Regulation of ATM and ATR kinases

As the key DDR kinases, ataxia-telangiectasia
mutated (ATM) and ATM and Rad3-related (ATR) are
important in initiating the DNA DSBR mechanism
(Durocher and Jackson, 2001; Kerzendorfer and
O'Driscoll, 2009). By screening most of the DUBs,
Yuan et al. (2014) confirmed that USP20 participates
in the ATR-related DDR pathway as a major regula‐
tor. ATR phosphorylates USP20, and E3 ubiquitin
ligase homologous to E6-AP carboxyl terminus (HECT)
and RLD domain-containing E3 ubiquitin protein
ligase 2 (HERC2) disassociates from USP20 in order
to stabilize USP20. In turn, USP20 activates ATR-
checkpoint kinase 1 (CHK1) signaling through
deubiquitinating and stabilizing Claspin. In addition,
another study showed that USP28 can also stabilize
Claspin by promoting the ATR-mediated activation of
CHK1 and maintaining the G2 arrests (Wang et al.,
2018).

Multiple DUBs are reported to regulate ATM sig‐
naling. USP7 is shown to stabilize ATM to promote
DNA damage signaling (Sun et al., 2005). IK is a spli‐
ceosomal component which is important for maintain‐
ing the proper splicing of the ATM pre-messanger
RNA (pre-mRNA) in proteins related to DDR. Deplet‐
ing IK can induce ATM protein deficiency. USP47 is
reported to interact directly with IK and stabilize it
through deubiquitination (Ka et al., 2020). Moreover,
a recent study revealed that ovarian tumor domain-
containing protein 4 (OTUD4) regulates DNA repair
and radio-sensitivity in non-small cell lung cancer
(NSCLC) cells via ATM/CHK2/p53 signaling (Wu
ZQ et al., 2019).

4.2 Regulation of CHK1 and CHK2

CHK1 is a serine (Ser)/threonine (Thr) protein
kinase which regulates the cell cycle checkpoint re‐
sponse as well as DDR. CHK1 is phosphorylated and
activated by the upstream kinase ATR, leading to the
initiation of DNA repair and cell cycle checkpoints.
CHK1 is reported to be modified by the K63-linked
Ub chain following cellular stress treatment (Latif et al.,
2004; Rodriguez and Meuth, 2006; Meuth, 2010).
USP3, the DUB, reduces K63 poly-ubiquitination
of CHK1. In addition, loss of USP3 elevates CHK1

ubiquitination, which in turn leads to prolonged
CHK1 chromatin association and activation (Cheng
and Shieh, 2018). On the other hand, USP1 is reported
to regulate DNA repair through deubiquitinating fan‐
coni anemia complementation group D2 (FANCD2),
which in turn stabilizes CHK1 (Nijman et al., 2005a;
Guervilly et al., 2011).

CHK2 is also a Ser/Thr kinase, and functions as
a key mediator in DDR. Compared to CHK1, CHK2
is phosphorylated and activated by ATM. A recent
study has reported that deubiquitination plays a criti‐
cal role in CHK2 regulation. USP28 stabilizes CHK2
and tumor protein p53-binding protein 1 (53BP1) to
induce apoptosis following DNA damage (Zhang
et al., 2006). Moreover, USP28 interacts with p53-
induced RING-H2 protein (PIRH2) and CHK2,
which in turn stabilizes CHK2 through blocking
PIRH2-induced ubiquitination and degradation of
CHK2 (Wang et al., 2018). Recently, USP39 has been
reported as a new deubiquitinase of CHK2. USP39
deubiquitinates CHK2 and enhances its stability. In
addition, after ablation of USP39, CHK2 is degraded,
which leads to decreased apoptosis and makes cancer
cells resistant to ionizing radiation and chemotherapy
drugs (Wu JH et al., 2019).

4.3 Regulation of RING finger protein 8/168

The RING finger protein 8 (RNF8)/RNF168
members of E3 ligase cascade promote H2A ubiqui‐
tination and recruit BRCA1 complex and 53BP1,
which are critical for DNA damage signaling trans‐
duction and activation of HR and NHEJ (Mattiroli
et al., 2012). Mounting evidence reveals that DUBs
(such as Pad1 homologue (POH1), USP3, BRCA1/
2-containing complex 36 (BRCC36), USP16, otubain
1/2 (OTUB 1/2), and USP51) function as the negative
regulators of the RNF8 pathway. USP3 and USP16
oppose H2A ubiquitylation induced by the RNF8/
RNF168 pathway (Weake and Workman, 2008). The
RNF168 accumulation at DSB sites is blocked when
USP3 is overexpressed (Doil et al., 2009). In addition,
RNF8/RNF168-mediated transcriptional silencing is
reversed by USP16 (Shanbhag et al., 2010). Another
two DUBs, BRCC36 and POH1, also display strong
deubiquitination activity for RNF8/RNF168-mediated
K63 ubiquitination at DSB sites (Dong et al., 2003;
Sobhian et al., 2007; Wang and Elledge, 2007; Cooper
et al., 2009; Shao et al., 2009; Feng et al., 2010; Hu X
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et al., 2011; Butler et al., 2012). Another study found
that USP51 directly binds H2A-H2B and deubiqui‐
tinates RNF168-mediated H2AK15ub at DSB sites.
Following DNA damage, USP51 is recruited to DSB
sites and deubiquitinates H2AK15ub, which in turn
regulates the irradiation-induced foci (IRIFs) of BRCA1
and 53BP1 (Wang et al., 2016).

OTUB1, an ovarian tumor (OTU) -family DUB,
negatively regulates RNF168-dependent ubiquitina‐
tion. Interestingly, OTUB1 interacts with E2 ubiquitin
enzymes (UBCH5 and UBC13) and blocks ubiquitin
transfer for RNF168. In addition, OTUB1 also inhibits
the UBE2D and UBE2E, and another E2 families
(Nakada et al., 2010; Juang et al., 2012; Wiener et al.,
2012). OTUB2 is also an OTU-family DUB, which
specifically recognizes K63-ubiquitin chains at DSB
sites (Kato et al., 2014). OTUB2 depletion is important
for the IRIFs of 53BP1, BRCA1, and RNF168, but not
the upstream factors, mediator of DNA damage check‐
point protein 1 (MDC1) or RNF8 (Altun et al., 2015).

4.4 Regulation of the core factors in HR pathways

CtIP endonuclease activity is essential for DNA
end processing and HR repair (Sartori et al., 2007).
USP4 binds to CtIP and regulates DNA end resection
following DNA damage. Knocking down USP4 im‐
pairs the recruitment of CtIP to DSB sites. Auto-
deubiquitination of USP4 can stimulate interaction with
CtIP/MRN, but USP4 CA mutant (a catalytically inactive
mutant) cannot mediate its auto-deubiquitination and
has lost the ability to interact with CtIP/MRN complex
(Liu et al., 2015; Wijnhoven et al., 2015). In addition,
USP7 interacts with the MRN/MDC1 complex and
USP7 deubiquitinates and stabilizes MDC1. USP7
depletion leads to MDC1 degradation, which in turn
impairs the foci formation of 53BP1 and BRCA1 (Su
et al., 2018). DUB Ataxin-3 is recruited to DNA
damage sites that depend on SUMOylation by
small ubiquitin-like modifier 1 (SUMO1). Ataxin-3
antagonises RNF4 activity and negatively regulates
ubiquitylation of MDC1, which is important to
increase staining intensity of MDC1 foci and MDC1-
dependent repair of DSBs (Pfeiffer et al., 2017).

BRCA1 is an important regulator in DNA damage
repair, DNA replication, cell growth and apoptosis
(Hu YD et al., 2011). BRCA1 interacts with DDR pro‐
teins such as receptor-associated protein 80 (RAP80), CtIP,
Abraxas (CCDC98), and Broad complex, Tramtrack,

Bric-a-brac (BTB) domain and cap'n'collar (CNC)
homolog 1 (BACH1). BRCC36 is a K63-specific
DUB and its localization relies on RAP80. BRCC36
initially forms a “BRCA1-A complex,” including the
HR-promoting factors BARD1, mediator of RAP80
interactions and targeting 40 kDa (MERIT40), BRCC45,
BRCA1, and CCDC98 (Chen et al., 2006; Kim et al.,
2007b; Liu et al., 2007). BRCA1 colocalizes with
CCDC98 (Abraxas), which is essential for the forma‐
tion of BRCA1 foci in DSB sites. RAP80 and
CCDC98 form complexes with BRCA1, which in
turn are recruited to DSBs through RAP80  s UIM
domain binding to H2A ubiquitination chains (Kim
et al., 2007a; Wang et al., 2007; Coleman and Green‐
berg, 2011). USP13 is an important DUB which is
phosphorylated by ATM to facilitate USP13 recruit‐
ment to DSBs. In turn, USP13 deubiquitinates
RAP80 and promotes RAP80 recruitment to DSBs
following DNA damage. Taken together, USP13
regulates RAP80-BRCA1 foci formation by a phos‐
phorylation-deubiquitination axis (Li et al., 2017).
USP48 deubiquitinates H2AK125/127/129Ub and inhibits
the function of the BRCA1 E3 ligase. Loss of
USP48 and 53BP1 increases retention at the break
site and DNA resection lengths are extended (Uckel‐
mann et al., 2018). USP15 deubiquitinates BRCA1-
associated RING domain protein 1 (BARD1) and
promotes the retention of BRCA1/BARD1 at DSBs.
In the USP15 mutation of cancer cells, the interac‐
tion between USP15 and BARD1 is decreased, and
the sensitivity of poly(ADP-ribose) polymerase (PARP)
inhibitors is increased (Peng et al., 2019). In cancer
cells, BRCA1 interacts with USP9X, a DUB that
regulates HR repair, and is involved in the sensitivity
of cancer cells to PARP inhibitors (Lu et al., 2019).
USP26 and USP37 are critical to DSB repair in the
BRCA1-Abraxas-RAP80-MERIT40 complex. As the
core DUBs, USP26 and USP37 promote interaction
of BRCA1 with the PALB2 complex and ultimately,
HR repair at DSBs (Typas et al., 2015). In addition,
BRCA1 interacts with the BRCA2/PALB2 complex
and facilitates RAD51 loading. Kelch-like ECH-
associated protein 1 (KEAP1), an E3 ubiquitin
ligase, ubiquitinates PALB2, which limits binding
between PALB2 and BRCA1. However, USP11
deubiquitinates PALB2 and counteracts the process.
Furthermore, the ubiquitination-mediated blocking
interaction of BRCA1 and PALB2 limits DNA end
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resection in G1 (Schoenfeld et al., 2004; Orthwein
et al., 2015).

Ubiquitin C-terminal hydrolase L3 (UCHL3) is a
novel deubiquitinase that regulates the BRCA2-RAD51
pathway following DNA damage. ATM phosphorylates
and activates UCHL3, and subsequently UCHL3
deubiquitinates RAD51, promoting interaction between
BRCA2 and RAD51 (Luo et al., 2016). In addition,
POH1 (PSMD14) also enhances the loading of RAD51
to DNA damage sites and facilitates the HR repair path‐
way, which is a 53BP1-independent mechanism (Butler
et al., 2012). Loss of POH1 reduces the foci formation
of RAD51 to DSBs, compromises HR repair ability, and
enhances the sensitivity of cells to DNA damage. POH1
is reported to remove ubiquitin chains and RAP80 foci,
which in turn switches NHEJ to HR (Kakarougkas et al.,
2013). Another study shows that ATM phosphorylates
the deubiquitinase BRCA1-associated protein 1 (BAP1),
which is rapidly recruited to DSB sites and promotes
DNA repair (Yu et al., 2014). Depletion of BAP1 leads
to impairment of the foci formation of BRCA1, RPA,
and RAD51, which in turn reduces HR repair and
sensitizes cells to IR (Ismail et al., 2014).

4.5 Regulation of the core factors in the NHEJ
pathway

NHEJ is initiated by the Ku heterodimer. Ku80
ubiquitination causes removal of Ku70/80 from DNA
damage sites, which contributes to selection of the
DNA repair pathway. The deubiquitinases UCHL3 and
OTUD5 deubiquitinate and stabilize Ku80 directly, and
thus serve as important regulators of NHEJ repair.
Depletion of UCHL3 reduces the foci formation of
Ku80, decreases NHEJ efficiency, and makes cells
sensitive to IR (Nishi et al., 2018). OTUD5 depletion
impairs NHEJ repair during the S/G2 phase, but not
HR repair (Li et al., 2019). Another Ku heterodimer
subunit, Ku70, is also reported to be modified by
deubiquitination. USP14 deubiquitinates and stabilizes
Ku70. AKT mediates USP14 Ser432 phosphorylation,
which is required for the foci formation of USP14
(Sharma et al., 2020). Overexpression of USP50 is
reported to downregulate Ku70 protein levels by
promoting Ku70 degradation, but apparently has no
effect on mRNA levels, which suggests that USP50
may indirectly regulate Ku70 protein stability (Cai et al.,
2018). In addition, following DNA damage, USP38
interacts with and deubiquitinates HDAC1 directly,

which in turn increases the deacetylase activity of
HDAC1 and promotes NHEJ (Yang et al., 2020).

5 Role of DUBs in therapeutics

Ubiquitin-proteasome system is an essential
regulator system for protein degradation in cells. The
dynamic balance of protein ubiquitination and deu‐
biquitination regulates most cellular processes, such
as cell growth, signal transduction, and cell devel‐
opment. If DUB functions become abnormal, a series
of human diseases may be caused. Recently, a series
of DUBs have been reported as potential therapeutic
targets, and validation of the biological substrate of
these DUBs is solidifying (Cohen and Tcherpakov,
2010; Farshi et al., 2015; Huang and Dixit, 2016). A
number of putative small-molecular inhibitor DUBs
have been identified, including USP1, USP5, USP9X,
USP10, USP13, USP25/28, USP26, USP47, UCHL1,
and UCHL5. In recent years, DUBs have been
regarded as potential targets of tumor therapy. A va‐
riety of DUB small molecular inhibitors may have
potential anti-tumor activity. For example, WP1130
can inhibit the activity of deubiquitinasing enzymes
USP9X, USP14, USP5, and UCH37, which decrease
the level of myeloid cell leukemia sequence 1 (Mcl-1,
an anti-apoptotic protein) and increase the level of
tumor suppressor p53, in turn killing cancer cells
(Nicholson et al., 2008; Kapuria et al., 2010; Lee
et al., 2010; Liu et al., 2011; Chauhan et al., 2012;
Wrigley et al., 2017; Wang et al., 2018).

In conclusion, mounting evidence shows that
DUBs are important signal molecules, especially in
DNA repair and human disease therapy. Further
exploration of the molecular mechanisms of DUB
regulation will provide new insights into human
diseases. However, at the moment it is difficult to
select DUB inhibitors for clinical development since
the crystal structure of the DUB substrate complex is
not known (Harrigan et al., 2018). Therefore, future
studies and efficient technologies should be devel‐
oped to clarify the molecular structure of DUBs.
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