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Insulin sensitivity in critically ill patients: are 
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Abstract 

Background:  Glycaemic control (GC) in intensive care unit is challenging due to significant inter- and intra-patient 
variability, leading to increased risk of hypoglycaemia. Recent work showed higher insulin resistance in female pre-
term neonates. This study aims to determine if there are differences in inter- and intra-patient metabolic variability 
between sexes in adults, to gain in insight into any differences in metabolic response to injury. Any significant differ-
ence would suggest GC and randomised trial design should consider sex differences to personalise care.

Methods:  Insulin sensitivity (SI) levels and variability are identified from retrospective clinical data for men and 
women. Data are divided using 6-h blocks to capture metabolic evolution over time. In total, 91 male and 54 female 
patient GC episodes of minimum 24 h are analysed. Hypothesis testing is used to determine whether differences are 
significant (P < 0.05), and equivalence testing is used to assess whether these differences can be considered equiva-
lent at a clinical level. Data are assessed for the raw cohort and in 100 Monte Carlo simulations analyses where the 
number of men and women are equal.

Results:  Demographic data between females and males were all similar, including GC outcomes (safety from hypo-
glycaemia and high (> 50%) time in target band). Females had consistently significantly lower SI levels than males, 
and this difference was not clinically equivalent. However, metabolic variability between sexes was never significantly 
different and always clinically equivalent. Thus, inter-patient variability was significantly different between males and 
females, but intra-patient variability was equivalent.

Conclusion:  Given equivalent intra-patient variability and significantly greater insulin resistance, females can receive 
the same benefit from safe, effective GC as males, but may require higher insulin doses to achieve the same glycae-
mia. Clinical trials should consider sex differences in protocol design and outcome analyses.
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Background
Stress-induced hyperglycaemia is frequent in critically 
ill patients, resulting from excessive glucose produc-
tion and increased insulin resistance [1, 2]. The result-
ing abnormal increase in blood glucose (BG) levels is 
associated with increased morbidity and mortality [3]. 

Glycaemic control (GC) to lower BG to safe ranges has 
had beneficial impact [4–7]. However, many other stud-
ies and analyses have shown safe, effective GC is hard to 
achieve safely and effectively for all patients [8–16]. The 
increased risk of hypoglycaemia with GC and its asso-
ciation with increased mortality has been identified as 
one major safety issue for GC targeting normoglycaemic 
ranges [12, 17–21]. Hence, there has been a decade long 
debate on optimal glycaemic targets, considering possible 
benefits against the consequences of increased hypogly-
caemic risks [22] with lower target bands [23].
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A recent independent analysis simulated the Normo-
glycemia in Intensive Care Evaluation-Survival Using 
Glucose Algorithm Regulation (NICE-SUGAR) protocol 
with virtual patients and compared the results against 
clinical reported outcomes. The results suggested the 
outcomes of this randomised clinical trial (RCT) could 
be biased [24]. More specifically, this study shows poor 
clinical compliance to protocol may have affected the 
results, and thus the associated increased hypoglycaemia 
and risk could be a consequence of GC protocol design, 
rather than GC itself. Additionally, the NICE-SUGAR 
protocol’s lack of patient-specificity and consequent ina-
bility to safely manage inter- and intra-patient variability 
could also affect control performance and safety, where 
these factors have been widely shown to be critical for 
success [2, 25–32].

Patient-specific solutions using key physiological 
parameters to tailor control for each patient individually, 
including risk assessment for GC, can improve control 
and patient outcomes [26, 33, 34]. Such control protocols 
exist, and have successfully shown safe, effective control 
while targeting lower glycaemic ranges [35–38], without 
sacrificing nutrition delivery or other care aspects [39].

In a previous study, equivalence testing on insulin sen-
sitivity (SI) levels and variability was analysed between 
survivors and non-survivors to understand whether these 
subgroups are more or less difficult to control [40]. The 
main outcome of this analysis showed non-survivors had 
higher SI levels compared to survivors, and this differ-
ence was not clinically equivalent. However, SI variability 
between these cohorts was clinically equivalent. These 
results suggest GC outcome, and thus associated mor-
tality, is function of protocol design, rather than patient 
condition. Thus, high levels of safety and performance 
should be able to be achieved in a mixed intensive care 
unit (ICU) cohort, regardless of the severity of injury or 
eventual outcome, which is critical to seeing potential 
benefits [41]. These outcomes also confirm the impor-
tance for a GC design to address metabolic variability 
correctly, which is really what makes safe, effective GC 
hard to achieve [31, 40].

While quality of GC should not be influenced by 
patient condition, it is possible other metabolic differ-
ences could influence control if differences in patient-
specific metabolic stress response existed. In particular, a 
previous study on neonatal ICU patients showed greater 
endogenous insulin secretion in girls, suggesting higher 
insulin resistance and a difference between sexes in this 
cohort [42–44]. However, to the authors’ knowledge, no 
analysis clearly analysed sex-related differences in the 
context of GC in adult ICU.

Women have been clearly under-represented in clini-
cal trials [45, 46]. In the 1980s–1990s, the lack of women 

included in trials was recognised [47], despite consuming 
80% of pharmaceuticals in the US at that time [48, 49]. In 
particular, differences in how women metabolise or clear 
some drugs has led to significantly different and unin-
tended concentrations, which should necessitate different 
dosing instructions [50]. However, their higher metabolic 
variability was seen as a potential outcome bias, and, in 
consequence, induced a male bias in preclinical and clini-
cal research [51].

In this study, retrospective data are used to analyse 
SI levels and variability between male and female adult 
ICU patients, to understand if there exists a difference in 
these subgroups. Similar to the previous study [40], a sig-
nificant difference or equivalence could help understand 
whether GC is different and/or more difficult between 
males and females. Equally, given the impact of metabolic 
stress response on metabolism, it could also indicate 
whether a difference exists between the sexes in meta-
bolic response to injury, which is currently unknown. 
If so, it would provide guidance on whether GC should 
explicitly consider sex differences in protocol and trial 
design, or via personalised care.

Based on previous evidence, it is hypothesised inter- 
and intra-patient variability between sexes are equiva-
lent, given no bias and similar safety and performance 
GC outcomes. More plainly, we hypothesise insulin sen-
sitivity levels and their hour-to-hour variability are the 
same given no prior evidence or indications to the con-
trary in adult cohorts. This study tests this hypothesis 
and rationale.

Methods
Patients and data
Retrospective clinical data from 371 patients on the Spe-
cialised Relative Insulin Nutrition Tables (SPRINT) [6] 
GC protocol between August 2005 and April 2007 in the 
Christchurch Hospital Department of Intensive Care are 
used. This SPRINT protocol is the precursor of the Sto-
chastic Targeted (STAR) GC framework [52, 53], devel-
oped to modulate both nutrition and insulin. SPRINT 
provided safe (low incidence of moderate and severe 
hypoglycaemia), effective (in low mean BG and high per-
centage time in 4.4–8.0 mmol/L target band) control for 
nearly all patients, averaging 16 measurements per day 
[35]. SPRINT was implemented as the standard of care 
in a general ICU setting, and de-identified data audit and 
analysis were approved by the New Zealand Health and 
Disability Ethics Committee Upper South Regional Eth-
ics Committee B (Ref: URB/07/15/EXP).

From this cohort, only patients who started GC within 
12 h after ICU admission and received insulin for a mini-
mum of 24 h are used to avoid any bias due to different 
time since ICU admission. This specification ensures a 
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similar starting time and progression from insult toward 
recovery for all patients, and thus eliminates a potential 
source of bias or error in results.

Both cohort and per-patient data are compared. 
Cohort data reflect the distribution of specific outcome 
metrics as a whole and is highly dependent on number of 
hours in each patient episode, and thus in the group. In 
contrast, per-patient statistics reflect distribution of spe-
cific GC outcome metrics for each episode individually, 
by computing the median over the entire episode (thus 
only one median per patient or episode). Showing cohort 
statistics allows to determine whether GC outcome met-
rics are acceptable as a whole, and per-patient statistics 
whether they are acceptable individually for each patient.

Patient‑specific SI
Patient-specific and model-based SI is identified hourly 
using the clinically validated Intensive Control Insulin–
Nutrition–Glucose (ICING) physiological model [54] and 
integral-based fitting methods [55]. SI is a time-varying, 
treatment independent parameter characterising patient-
specific metabolic response to insulin and glucose [56]. 
Hence, it also reflects patient-specific general metabolic 
state. Consistent low SI (high insulin resistance) suggests 
significant stress and inflammatory state, which alleviates 
as the initial insult subsides [1–3, 57, 58].

While model-based SI is used to determine whether 
more or less insulin needs to be used to lower BG levels 
to a safe target range, its hour-to-hour percentage change 
(%ΔSI) is used to assess potential risks of metabolic vari-
ability and dysglycaemia for a given intervention over a 
1–3 hourly timeframe [52, 59–61]. This variability is what 
makes GC difficult to achieve safely [31]. For example, 
at a given insulin infusion rate, a sudden increase in SI 
could lead to unintended hypoglycaemia. It is extremely 
important for a GC design to assess and manage both 
inter- and intra-patient variability [31]. Hence, time-
varying changes in SI levels impact control difficulty and 
also reflects metabolic response to injury.

Analysis
Raw data cohort
SI and %ΔSI are analysed using 6-h blocks between males 
and females over the first 72 h of control. Cumulative dis-
tribution functions are compared for each metric. Due 
to the large data size, hypothesis testing is performed 
using bootstrapping methods to examine the difference 
in median SI and %ΔSI between male and female cohorts 
[62, 63]. For each 6-h block, data are bootstrapped 1000 
times with replacement to create bootstrap samples of 
similar size to the original cohort in that block. For each 
bootstrap sample, the difference in median SI and %ΔSI 
are calculated, and the 95% confidence interval (CI) of 

these differences over all 1000 runs can thus be deter-
mined. If this 95% CI does not cross zero, this difference 
can be considered statistically different (P ≤ 0.05) [62]. 
Because it is uncertain whether each comparison can 
be considered independent, a Bonferroni correction for 
multiple comparisons (n = 12) is also used for complete-
ness [62], using the 99.6% CI to match a significance level 
threshold of P ≤ 0.004, instead of 0.05 for significance.

In the clinical environment, it is possible that a sta-
tistically significant difference (P < 0.05) can have mini-
mal impact clinically and would be too small to affect 
decision-making. Equivalence testing is used to assess 
difference based on clinical significance and determine 
whether this difference in median SI and median %ΔSI 
is within a clinically set equivalence range [64]. This 
range was previously determined as within an absolute 
12–15% difference in median values, where a typical BG 
measurement error cannot be detected within this range, 
nor will it affect a change in insulin or nutrition admin-
istration [40]. If the 95% CI (or 99.6% CI after Bonfer-
roni correction) of percentage difference in median SI or 
in the absolute difference in %ΔSI is within the equiva-
lence range, the two distributions can be considered 
equivalent, despite any potential statistically significant 
difference. Details are also available in supplemental 
materials/appendixes of [40], which is open access and 
freely available.

Monte Carlo simulations for robustness
While the raw data in the original cohort as presented are 
analysed first (91 males or 63% versus 54 females or 37%), 
the analysis was repeated using Monte Carlo methods to 
randomly create resampled sub-cohorts with the same 
proportion of males and females. This approach allows a 
fair comparison to ensure no bias results from the spe-
cific patients and proportions in the original cohort [62, 
63].

New resampled male and female cohorts (N = 50 each) 
were created by randomly selecting patients from the 
original cohorts with replacement. In these cohorts, 8 
patients (16%) were randomly selected from patients 
with type 2 diabetes mellitus (T2DM) so this factor was 
also balanced. This process was repeated 100 times, and 
hypothesis and equivalence testing on SI and %ΔSI were 
undertaken each time. The percent (%) of times the null 
hypothesis was rejected and equivalence accepted is 
calculated for each 6-h block. This secondary analysis 
ensures no bias due to proportions or specific patient 
subsets, adding robustness to the overall results. Note, 
this analysis does assume the patients in each group 
are representative of the range of behaviours, which 
can be further confirmed by consistency of results over 
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the bootstrapped cases to assess any impact of outlying 
patients.

Results
Cohort selection and demographic results
In total, 145 patients (39% of 371 patients) started GC 
within 12 h after ICU admission and received insulin for 
a minimum of 24 h. In these 145 patients, 91 (63%) were 
males and 54 (37%) females, which is a typical breakdown 
in ICU cohorts. Demographic characteristics are sum-
marised in Table  1. In addition, patient dropout based 
on sex is presented in Fig. 1, where the ratio female/male 
patients remained in a tight range of 50–60%, which was 
never significantly different in proportion.

In this analysis, the male and female cohorts were 
similar in all ways (Table  1). Age, diabetes, severity of 
injury (APACHE II and SOFA scores), length of stay, GC 

Table 1  Demographic summary of male and female cohorts

 P-values are not adjusted for multiple comparisons. Median [IQR] is given where appropriate. T2DM = pre-diagnosed type 2 diabetes mellitus, GF = goal feed, and 
BG = blood glucose. BG is hourly resampled to allow fair comparison.

Statistical difference is shown using (a) the Wilcoxon rank-sum test or (b) Fisher exact test where appropriate. (c) indicates clinical equivalence regardless of statistical 
significance, as further explained in the methods

Males Females P-value

Demographic statistics

 # Patients 91 (63%) 54 (37%)

 Age 67 [57, 77] 67 [58, 74] 0.63a

 Mortality 18% 19% 1.0b

 APACHE II score 20 [16 27] 19.5 [17, 26] 0.98a

 First day SOFA score 6 [4 8] 5.5 [4, 8] 0.46a

 ICU length of stay (h) 108 [67.2, 188.4] 127.2 [64.8, 213.6] 0.91a

 SPRINT duration (h) 83 [45.5, 157.3] 86.5 [39, 167] 0.81a

 T2DM (%) 13 (14%) 11 (20%) 0.4b

Per-patient GC statistics

 Median BG (mmol/L) 5.7 [5.2, 6.1] 6.0 [5.3, 6.4] 0.06a

 Median % BG 4.4–8.0 mmol/L 83 [72, 90] 82 [67, 89] 0.3a

 Median % BG < 4.0 mmol/L 1.4 [0, 5.5] 1.4 [0, 6.9] 0.42a

 Median %BG < 2.2 mmol/L 0 [0, 0] 0 [0, 0] 1.0a

 BG measurements/day 15.8 [14.4, 17.5] 15.7 [14.5, 18.2] 0.47a

 Median insulin (U/h) 3 [2, 3] 3 [2, 3] 0.26a

 Median feed excl. hours not fed (g/h) 3.5 [2.1, 5.5] 2.8 [1.8, 3.9]  < 0.01a

 Median feed excl. hours not fed (%GF) 51 [30, 80] 51 [30, 75] 0.61a

 GF (g/h) 6.5 [6.5, 7.4] 5.2 [5.2, 5.7]  < 0.01a

Cohort statistics

 Cohort BG (mmol/L) 5.6 [4.9, 6.6] 5.9 [5.0, 6.9]  < 0.01ac

 % BG 4.4–8.0 mmol/L 80.6 76.9  < 0.01b

 % BG < 4.0 mmol/L 3.2 3.8 0.11b

 %BG < 2.2 mmol/L 0 0 1.0b

 Insulin (U/h) 3 [1 4] 3 [2 4]  < 0.01a

 Hours not fed 1914 (35%) 861 (27%)  < 0.01a

 Feed excl. hours not fed (g/h) 3.8 [2.0, 5.8] 2.4 [1.7 3.9]  < 0.01a

 Feed excl. hours not fed (%GF) 55 [29 83] 47 [29 75]  < 0.01a

Fig. 1  Patient dropout evolution over time
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outcomes, measurement frequency, and insulin admin-
istration were all not significantly different. In cohort 
statistics, only the overall cohort BG levels, and insulin 
and nutrition rates were significantly different. However, 
the former was well within equivalence range consider-
ing measurement error and impact on outcomes [65–67], 
and can thus be considered not statistically different 
from a clinical perspective. Per-patient, only median feed 
administration rates achieved and goal feed were statisti-
cally different (Table 1).

Thus, the only characteristic differentiating the two 
cohorts at a per-patient level here was the consistently 
lower total grammes of dextrose administered to the 
female cohort. However, this difference can arise from 
the typically lower caloric target for women based on 
lower body weight [6, 68], resulting in similar grammes 
per kg. When nutrition was considered as the percent 
of the original target goal feed (GF), which is consistent 
and based on frame size an body weight [6, 68], nutrition 
was not statistically different anymore (Table 1). Overall, 
these two cohorts can be considered as having very simi-
lar demographic characteristics.

Raw data cohort analysis
Overall SI cumulative distribution functions for males 
and females are shown in Fig.  2. Clearly, the female 
cohort was more resistant than men (lower SI levels). 
SI level comparison results between males and females 
for every 6-h block are detailed in Table  2 and shown 
in Fig. 3. SI levels increased over time in both cohorts, 
as expected [40, 57, 58]. The 95% CI of difference in 
median levels between male and female never crossed 
zero, suggesting the difference was statistically sig-
nificant not only overall, but also for each 6-h block. 

Considering the Bonferroni correction, 60% (7/12) of 
the 6-h blocks remained significantly different.

The results of equivalence testing on SI are shown 
in Fig.  4. The 95% CI percentage difference in medi-
ans between males and females was always outside the 
clinical equivalence range. Thus, SI levels differences 
between male and female were statistically different, 
and this difference was not clinically equivalent. In par-
ticular, it showed one would expect different clinical 
insulin and/or nutrition administration to account for 
the non-equivalence.

Figure  5 shows male and female cohorts overall 
%ΔSI. %ΔSI comparison for each 6-h block is presented 
in Table  3 and shown in Fig.  6. The 95% CI of boot-
strapped percentage difference in median %ΔSI levels 
between male and female always crossed zero, except 
for one 6-h block (30–35  h). Male and female SI vari-
ability was thus not significantly different, especially 
when Bonferroni correction was considered, resulting 
in no 6-h blocks statistically significantly different.

Furthermore, the 95% CI difference of median %ΔSI 
between males and females is shown in Fig. 7 for each 
6-h block in terms of equivalence. The difference was 
within the equivalence range for all 12 6-h blocks. 
Therefore, %ΔSI was not statistically significantly 

Fig. 2  Overall cumulative SI levels (L/mU/min) between male and 
female cohorts

Table 2  Median [IQR] SI levels (L/mU/min) comparison 
for  the  first 72  h between  male and  female cohorts using 
6-h blocks

Equivalence is indicated by ⇔, Non-equivalence is indicated by × . Equivalence 
is a separate analysis to statistical difference. Hours where the medians are 
statistically different (95% CI does not cross zero) to P < 0.05 are in italic
a  Difference remaining significant after Bonferroni correction (P < 0.004)

Hours Male cohort 
SI (× e−4)

female cohort 
SI (× e−4)

Median SIM−SIF 
[95% CI] (× e−4)

Overall

 0–71 3.1 [1.7 5.5] 2.5 [1.5 4.0] 0.6 [0.5 0.8]a  × 

Day 1

 0–5 1.5 [0.5 2.7] 1.3 [0.5 2.3] 0.2 [0.0 0.5]  × 

 6–11 2.2 [1.3 3.7] 1.8 [0.7 3.3] 0.4 [0.1 0.7]  × 

 12–17 3.1 [1.7 4.8] 2.2 [1.1 4.2] 0.9 [0.5 1.3]a  × 

 18–23 3.3 [1.8 5.9] 2.4 [1.5 3.9] 0.9 [0.5 1.2]a  × 

Day 2

 24–29 3.3 [1.8 5.7] 2.8 [1.6 4.0] 0.5 [0.1 1.1]  × 

 30–35 3.7 [2.1 6.5] 2.7 [1.8 4.6] 1.0 [0.5 1.4]a  × 

 36–41 3.6 [2.0 6.0] 2.8 [1.7 4.3] 0.8 [0.2 1.4]a  × 

 42–47 3.6 [2.0 6.0] 2.9 [1.8 4.2] 0.7 [0.2 1.1]a  × 

Day 3

 48–53 4.0 [2.2 6.8] 2.9 [1.9 4.4] 1.1 [0.6 1.6]a  × 

 54–59 4.4 [2.4 6.7] 3.2 [1.9 4.8] 1.1 [0.4 1.6]a  × 

 60–65 3.8 [2.3 6.0] 3.2 [2.1 4.6] 0.6 [0.1 1.0]  × 

 66–71 3.8 [2.5 5.7] 3.0 [2.4 4.7] 0.8 [0.4 1.2]a  × 
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Fig. 3  Comparison of cumulative distribution of SI levels (L/mU/min) between male and female over 6-h time intervals for the first 72 h of GC
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different for these cohorts and can also be considered 
equivalent.

Monte Carlo simulations results
Hypothesis and equivalence testing results for resampled 
(N = 50) male and female sub-cohorts, with the same 
number of T2D patients (16%) matched those of the raw, 
original cohort analysis. Differences in SI levels between 
sexes were typically significant (Fig. 8a), and never equiv-
alent (Fig.  8b). Differences in %ΔSI were generally not 
significant (Fig.  8c), and almost always within equiva-
lence range (Fig. 8d). These results confirm results from 
the overall population cohort analysed here.

Discussion
Raw cohort analysis
The results of equivalence testing on SI suggest, in addi-
tion to being statistically different, male and female 
median SI levels were never equivalent, clinically. In 
particular, it showed one would expect different clinical 
insulin and/or nutrition administration to account for 
the non-equivalence. However, the %ΔSI analysis results 
suggested SI variability is not statistically different and 
is clinically equivalent. Two observations can be taken 
from this set of outcomes. First, equivalent SI variability 
suggests both cohorts should be able to benefit from the 
same quality of GC, as they are equally easy/hard to con-
trol. Second, women are more insulin resistant than men 
(Fig.  2, Table  2). In this analysis, both cohorts received 
same GC quality (Table 1). All else equal, this result sug-
gests the metabolic stress response is higher or stronger 
for females than for males, thus explaining this higher 
observed model-based insulin resistance.

These outcomes match the hypothesis of intra-patient 
variability being equivalent between male and female 
patients. However, results showed inter-patient variabil-
ity in insulin sensitivity level is statistically significantly 
different for these groups for most blocks of time and 
never equivalent. Clinically, significantly different insulin 

Fig. 4  Equivalence testing on insulin sensitivity for each 6 h 
block. The blue lines give equivalence range for typical 9.4% BG 
measurement error. The 95% CI (bars) bootstrap intervals cross, or are 
outside, the equivalence range, indicating these 6-h blocks are not 
equivalent

Fig. 5  Overall cumulative %ΔSI between male and female cohorts

Table 3  Median [IQR] %ΔSI (%) levels comparison 
between male and female cohorts using 6-h blocks

Equivalence is indicated by ⇔, non-equivalence is indicated by × . Equivalence 
is a separate analysis to statistical difference. Hours where the medians are 
statistically different (95% CI does not cross zero) to P < 0.05 are in italic. No 
blocks were statistically significant after the Bonferroni correction (P < 0.004)

Hours Male cohort 
%ΔSI

Female cohort 
%ΔSI

Median 
%ΔSIM − %ΔSIF 
[95% CI]

Overall

 0–71 2.2 [− 17.8 21.6] 3.0 [− 14.4 24.9] − 0.9 [− 2.7 1.0] ⇔
Day 1

 0–5 4.5 [− 23.1 61.3] 1.6 [− 34.5 51.1] 8.0 [− 9.7 9.8] ⇔
 6–11 7.2 [− 12.7 38.7] 9.9 [− 15.4 42.0] − 2.8 [− 9.7 4.0] ⇔
 12–17 5.4 [− 10.6 27.4] 4.5 [− 16.3 37.6] 0.7 [− 8.3 7.5] ⇔
 18–23 2.9 [− 15.5 24.2] 2.4 [− 14.6 25.0] 0.8 [− 4.7 7.1] ⇔

Day 2

 24–29 2.5 [− 12.5 22.1] 4.7 [− 13.0 24.9] − 2.3 [− 6.9 1.4] ⇔
 30–35 0.2 [− 15.6 23.7] 5.6 [− 12.0 24.5] − 5.8 [− 11.0 

− 0.7]
⇔

 36–41 1.2 [− 11.4 16.2] 0.3 [− 17.0 16.4] 1.1 [− 3.4 6.5] ⇔
 42–47 2.0 [− 12.3 19.8] 0.6 [− 11.9 18.2] 1.4 [− 3.7 5.1] ⇔

Day 3

 48–53 2.7 [− 8.6 16.3] 0.7 [− 10.8 18.7] 1.6 [− 2.8 5.4] ⇔
 54–59 − 0.8 [− 15.0 13.1] 1.3 [− 10.2 18.1] − 2.3 [− 5.8 1.9] ⇔
 60–65 1.3 [− 11.0 17.5] 4.5 [− 10.0 19.6] − 3.9 [− 8.0 0.3] ⇔
 66–71 1.9 [− 9.6 13.6] 1.6 [− 9.0 14.3] − 0.6 [− 5.3 3.4] ⇔
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dosage may be required to achieve similar glucose tar-
get in glycaemic control between males and females, but 
the risk associated with a specific treatment are similar 
between sexes.

No weight information was available for this cohort, 
but GF is calculated using the ACCP recommenda-
tion of 2000  kcal/day [68], and personalised for each 
patient according to age, sex, and body frame size using 

Fig. 6  Comparison of cumulative distribution of %ΔSI (%) levels between male and female over 6-h time intervals for the first 72 h of GC
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a standardised scale for consistency [39]. These three fac-
tors cover energy demands based on weight, sex, and age, 
where the first covers demand based on mass, the second 
accounts for differences in metabolic requirement per 
unit body weight for women, and the third accounts for 
decreasing demand as age rises. Personalised nutrition 
goals can thus vary between 1025 and 2450 kcal/day over 
all patients.

More specifically, as noted above, per-patient nutri-
tion was similar in %GF delivered, but higher in grammes 
per hour for men due to their larger frame size. Thus, 
in Table  1, GF (g/h) was higher for males, as expected, 
reflective of their typically higher body mass. However, 
males and females achieved similar %GF, suggesting 
overall caloric goals per body mass are very similar across 
cohort after accounting for weight and size, given the 
similar age in both groups (Table 1). In addition, insulin 
delivery was not significantly different for both males and 
females.

Hence, given similar per-patient %GF delivered and 
total insulin administration in each group (Table  1), 
females received similar g/h of nutrition per body weight 
and demand, but were given higher insulin per body 
mass. More explicitly, in this comparison, %GF was nor-
malised to mass in (large) part, but insulin delivery was 
not. It thus confirms females require more insulin per 
unit of estimated body mass to remove similar amounts 
of glucose given per unit of estimated body mass, sup-
porting the lower SI found for females in this analysis.

It is important to note that while per-patient median 
%GF achieved was not statistically significant, by cohort, 

the %GF achieved considering every hour was signifi-
cantly different. This difference implies the distribution 
of %GF received for women considering every hour is 
skewed slightly lower. Given similar per-patient median 
%GF received, women take longer to achieve essentially 
the same median value than men, as nutrition rates tend 
to rise over time in general with STAR [39, 69]. This 
outcome does not change the central conclusion of the 
research as it implies women receive more insulin and 
similar or less nutrition, and are thus more insulin resist-
ant in achieving similar glycaemic outcomes.

Monte Carlo simulations analysis
Although the proportions in this cohort reflects what is 
typically seen in general ICUs and are similar to those in 
large randomised trials [4, 8, 9], Monte Carlo simulations 
were used to account and reduce bias from unbalanced 
sexes and T2DM cohort proportions. These simulations 
assumed patient cohorts were representative of the gen-
eral ICU population, which is the case here. Thus, resa-
mpled cohorts were created with equal numbers (N = 50) 
of males and females, and equal proportion of T2DM 
patients (16%), allowing fair and robust comparison 
between sexes.

Results for the Monte Carlo analyses matched the raw 
data results. The difference in SI levels can be considered 
significant, and this difference was never equivalent clini-
cally. The difference in SI variability was never significant, 
and this difference was always clinically equivalent. Thus, 
these results further support and add robustness to the 
raw data outcome analysis of inter-patient variability 
being significantly different and intra-patient variability 
being equivalent across these subgroups of patients.

Reasons for differences between the sexes
The SI metric used in this context comes from a validated 
physiological model and has been widely shown to cor-
relate well with gold standard measures [70–72]. All else 
equal, the difference found in these model-based identi-
fied SI levels likely arise from two main parameters in the 
ICING physiological model: a higher endogenous glucose 
production for women than estimated; and/or a lower 
estimated insulin secretion rate. In the first case, higher 
endogenous glucose production would suggest a stronger 
stress response to injury, since severity are similar across 
the two cohorts (Apache II and SOFA scores, Table 1). In 
the second, the lower insulin secretion would also imply 
a greater suppression of insulin secretion due to stress 
response arising from the insult compared to men. A 
combination is also likely, and possible, given the impact 
of stress response on both issues [1–3, 73–76].

Until early 1990s, clinical trials were mainly conducted 
on men [47, 48]. Outcomes were thus biased, based on 

Fig. 7  Equivalence testing on insulin sensitivity variability (%ΔSI) for 
each 6 h block. The blue lines give equivalence range for typical 9.4% 
BG measurement error. The 95% CI (bars) bootstrap intervals never 
cross, and are always within, the equivalence range limits, indicating 
these 6-hourly blocks are equivalent
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male clinical research results, leading to drug dosage 
for females being typically derived from average male 
requirements [49]. Women have clearly been under-rep-
resented in clinical trials [46], and are still severely under-
represented today [45]. While their higher metabolic 
variability or difference in response to treatment was 
seen as a potential outcome bias [51], it has been more 
recently stated it should be considered as a critical fac-
tor impacting outcomes [47, 49]. More specifically, some 
drugs, beneficial for men, may sometimes significantly 
increase problems in women [77] and women can have 
significantly different metabolic or clearance rates for 
drugs resulting in very different concentrations for the 
same dosing protocol [50]. All these points support the 
importance of identifying potential sex-related effects in 
clinical trials and care, similar to the differences shown in 
this study.

In particular, many clinical trials, although includ-
ing both men and women, often fail to account for 

potential differences in drug effectiveness or safety 
between men and women [50]. In the context of GC, 
protocols are often “one size fits all” solution, lack-
ing the ability to account for significant inter- and 
intra-patient variability [33, 34], where insulin dosage 
is similar regardless of age, body mass, or sex. How-
ever, our result showed a clear difference between 
males and females for insulin requirements, due to the 
higher insulin resistance seen in females, which would 
require different dosing protocols and/or a personal-
ised approach.

Dynamic, model-based approaches such as in STAR, 
or SPRINT, and their patient-specific, risk-based 
approach are able to capture this variability [52], and 
thus, intrinsically, account for differences between 
patients, such as sex. Such algorithms can recognise 
and correct the effect upon the SI resulting from any 
sex-related differences, where the algorithm initiation 
rules can be adapted based upon sex input.

a c

b d

Fig. 8  Hypothesis and equivalence testing using 6-h blocks from 100 resampled male and female (N = 50 each) sub-cohorts from which 16% have 
T2DM
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Sex differences in insulin resistance, insulin secretion, 
glucose effectiveness or endogenous glucose produc-
tion have already been shown in specific populations [43, 
78–83]. The results shown in these studies sometimes 
contradict, but tend to say women are more sensitive to 
insulin than men in healthy and outpatient scenarios. 
In critical care patients, only one study showed a differ-
ence, demonstrating, in opposition to the above studies, 
higher insulin secretion and thus greater resistance in 
female preterm neonates compared to male preterm neo-
nates in the neonatal ICU [43, 44]. These NICU results 
would not necessarily be expected to extend to adults, 
but the results presented show the same bias in adult 
ICU cohorts, suggesting a different in metabolic stress 
response at these two extremes of age and development.

It is important to note, many studies have analysed dif-
ferences in mortality outcomes, treatment effort, or other 
factors between sexes in ICU patients. However, these 
studies often contradict. Some showed higher mortal-
ity in women [84–86], but others did not [87, 88]. The 
differences between sexes are thus still not completely 
understood in ICU, although present [89], showing the 
importance of assessing the related potential implica-
tions, as done in this study.

To the authors’ knowledge, there were no studies ana-
lysing endogenous glucose production or insulin secre-
tion between sexes in adult ICU populations, which 
could differ in many ways due to their acute metabolic 
conditions. This study thus appears to be the first study 
suggesting women could be more resistant to insulin 
compared to men in this cohort, and that this outcome 
could be due to their potential greater response to insult 
induced stress.

Limitations
A smaller cohort size of 145 patients could be a limita-
tion. Despite the relatively small cohort size considered, 
an advantage of this study is the quality of the data and its 
detailed BG, nutrition, and insulin input information. In 
addition, the cohort only considers 145 patients because 
ensuring consistent start of GC from ICU admission 
of < 12  h eliminates bias due to patients being consid-
ered at different point in the evolution of stress response. 
Hence, the smaller cohort, while still providing sizeable 
data, is a result of eliminating a potential bias in this 
time-based analysis.

The potential impact of patient dropout on the results 
was not explicitly examined, but should be negligible 
based on prior results and the results in 6-hourly blocks 
showing no change over the first 72 h in overall results. 
In the previous comparable study by the authors [40], 
80 (55%) patients had minimum 72  h of control from 
this same cohort of patients, and patient dropout had no 

effect on the results (Fig.  1). The similar ICU length of 
stay and GC length in Table 1 further indicate male and 
female patients followed similar time courses through 
ICU, reinforced by the similarity of SI variability being 
equivalent at all stages of the analysis. Finally, it should 
be noted, using the 6-h blocks in this analysis captures 
patient drop-out directly, again, as seen in the results of 
Figs. 3, 4, 5, 6, 7 and Tables 2, 3. Hence, patient dropout 
has no impact on the results presented.

The observations made rely on the identification of the 
SI parameter using a mathematical model, where inac-
curacies could lead to bias. However, the ICING model 
typically performs well in the clinical ranges observed 
here, suggesting low inaccuracy. Furthermore, it has been 
validated in extensive clinical use [6, 35, 54, 90, 91].

This study does rely on retrospective data from a sin-
gle-centre study, which could limit the clinical impact of 
these results, though, in contrast, the data reflect a gener-
alised cohort of patients across multiple years of clinical 
practice. In addition, the lack of reported demographic 
information, such as weight, and body mass index, are 
a limitation to consider the caloric goals per body mass 
similar across cohort in this analysis, which can only be 
inferred at lower resolution in this study due to their use 
in setting goal feed rates. Finally, only sex and known 
diabetes mellitus have been considered in this analysis, 
while other confounders, such as ethnicity, could poten-
tially influence the results. There might also be patients 
with unknown diabetes in the cohort, where measures 
of HbA1c could have helped to clearly identify these 
patients, but are not available here.

Based on the presented results, future work should 
further explore potential known and existing sex-related 
physiological differences, such as body composition, as 
it would be theoretically useful to assess any potential 
impact on decision-making and further explain these 
observations. In addition, other metrics inputs such 
as sex hormones, should be studied as they may have 
exerted effect upon GC outcome differences. Overall, 
this information could be useful to further improve and 
tailor treatment to patient-specific needs.

Conclusions
This study compared identified SI and %ΔSI across male 
and female cohorts using hypothesis and equivalence 
testing. SI was shown statistically significantly lower for 
females and this difference is clinically not equivalent to 
males. However, %ΔSI between males and females was 
not statistically different, and clinically equivalent. These 
results strongly suggest women in a general ICU cohort 
may have stronger metabolic stress response than men, 
but this latter outcome remains to be confirmed clinically. 
These results also suggest higher insulin requirements for 
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females, while equal safety and efficacy should be able to 
be achieved for both cohorts, as reflected in the equiva-
lent variability. Future GC RCTs should thus also con-
sider randomising and analysing male–female subgroups 
for differences in primary and secondary outcomes.
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