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OBJECTIVE

We investigated sex and racial differences in insulin sensitivity, b-cell function,
and glycated hemoglobin (HbA1c) and the associations with selected phenotypic
characteristics.

RESEARCH DESIGN AND METHODS

This is a cross-sectional analysis of baseline data from 3,108 GRADE (Glycemia
Reduction Approaches in Diabetes: A Comparative Effectiveness Study) partic-
ipants. All had type 2 diabetes diagnosed <10 years earlier and were on metformin
monotherapy. Insulin sensitivity and b-cell function were evaluated using the
HOMA of insulin sensitivity and estimates from oral glucose tolerance tests, in-
cluding the Matsuda Index, insulinogenic index, C-peptide index, and oral dispo-
sition index (DI).

RESULTS

The cohort was 56.66 10 years of age (mean6 SD), 63.8% male, with BMI 34.26
6.7 kg/m2, HbA1c 7.56 0.5%, and type 2 diabetes duration 4.06 2.8 years.Women
had higher DI than men but similar insulin sensitivity. DI was the highest in Black/
African Americans, followed by American Indians/Alaska Natives, Asians, and
Whites in descending order. Compared with Whites, American Indians/Alaska
Natives had significantly higher HbA1c, but Black/African Americans and Asians had
lower HbA1c. However, when adjusted for glucose levels, Black/African Americans
had higher HbA1c than Whites. Insulin sensitivity correlated inversely with BMI,
waist-to-hip ratio, triglyceride-to-HDL-cholesterol ratio (TG/HDL-C), and the pres-
ence of metabolic syndrome, whereas DI was associated directly with age and
inversely with BMI, HbA1c, and TG/HDL-C.

CONCLUSIONS

In the GRADE cohort, b-cell function differed by sex and race and was associated
with the concurrent level of HbA1c. HbA1c also differed among the races, but not by
sex. Age, BMI, and TG/HDL-C were associated with multiple measures of b-cell
function and insulin sensitivity.
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b-Cell function declines progressively
during the transition from normal glu-
cose tolerance to impaired glucose tol-
erance and ultimately to type 2 diabetes
(1). The UK Prospective Diabetes Study
(UKPDS) showed that b-cell function, as
evaluated by the HOMA2-B index, was
already diminished by$50% at the time
of diagnosis of type 2 diabetes and
continued to decline over the 6-year trial
despite ongoing glucose-lowering med-
ication (2). Since progressive loss of b-
cell function represents one of the most
important challenges to maintenance of
glycemic control in people with long-
term type 2 diabetes (1), identifying
factors associated with b-cell function
and interventions to delay or prevent its
deterioration would be of great value.
Previous studies have reported several

potential mechanisms underlying pro-
gressiveb-cell dysfunction, includingmet-
abolic abnormalities suchasglucotoxicity
and lipotoxicity, local or systemic inflam-
mation, oxidative and endoplasmic re-
ticulum stress, and amyloid deposition
(3). The phenotypic characteristics asso-
ciated with b-cell dysfunction in patients
with type 2 diabetes have not been
clearly defined. The results vary depend-
ing on the method of measuring b-cell
functionand thecohort studied.Previous
cross-sectional studies showed that b-
cell function differed by sex and type of
glucose-lowering medication (4). Insulin
treatment initiation as an indirect mea-
sure of more severe b-cell dysfunction
was associated with diabetes duration,
levels of glycated hemoglobin (HbA1c),
triglycerides (TG), and HDL cholesterol
(HDL-C) (5).
Other studies have reported racial

differences in the relationship between
HbA1c and plasma glucose concentra-
tion, notably that Black/African Ameri-
cans have higher HbA1c compared with
Whites for similar blood glucose levels
(6–8). In studies of patients with diabe-
tes, this difference persisted when ad-
justed for sociodemographic and lifestyle
factors (9) and adherence to glycemic-
lowering medications (10). In this study,
we studied the racial and ethnic differences
inHbA1c in a large andwell-characterized
cohort of patients with type 2 diabetes
and also assessed whether such differ-
ences were associated with measures of
b-cell function.
Our objective was to describe the sex

and racial differences in b-cell function,

insulin sensitivity, and glycemia. In ad-
dition, we investigated the association of
selected participant characteristics with
b-cell function, insulin sensitivity, and
glycemia in the Glycemia Reduction Ap-
proaches in Diabetes: A Comparative
Effectiveness Study (GRADE) cohort com-
prised of participants with a relatively
recentdiagnosis of type2diabetes (mean
duration ;4 years) using metformin
monotherapy.

RESEARCH DESIGN AND METHODS

GRADE is a National Institutes of Health–
funded multicenter study designed to
compare the effectiveness of four differ-
ent glucose-lowering medications, each
from a different class: glimepiride (sul-
fonylurea),sitagliptin(dipeptidylpeptidase
4 inhibitor), liraglutide (glucagon-like
peptide 1 receptor agonist), or insulin
glargine on glycemic control when added
to metformin. The study randomly as-
signed 5,047 adults with type 2 diabetes
at 36 clinical centers and 9 additional
subsites across the U.S. We present in
this study cross-sectional analyses on a
subgroup of this cohort with complete
baseline data. The rationale and full de-
tails of the study design are found else-
where (11). All participants provided
written informed consent, and the study
was approved by each center’s institu-
tional review board.

Eligibility
Participants were eligible to participate
in the GRADE Study if they had been
diagnosed with type 2 diabetes for ,10
years at the time of screening and
were $30 years of age ($20 years if
American Indian) at the timeofdiagnosis,
with HbA1c 6.8–8.5%, and taking at least
1,000mg ofmetformin/day at the end of
the run-in period. Exclusion criteria in-
cluded: suspected type 1 diabetes, treat-
ment with glucose-loweringmedications
other than metformin within the pre-
vious 6 months, use of medications that
could impact glucosemetabolism such as
systemic corticosteroids, and significant
medical illness or organ failure (11).

Study Procedures
Eligible participants completed a 4–14-
week run-in, during which they were
provided metformin, and the dose was
increased to 2,000 mg/day or a maximal
tolerated dose $1,000 mg/day. At the
end of the run-in, after an 8-h overnight

fast, eligible participants (HbA1c between
6.8 and 8.5%) underwent an oral glucose
tolerance test (OGTT) with metformin
held the morning of the test. The par-
ticipant consumed a 75-g glucose drink
within 5 min, and blood samples were
drawn at 0, 15, 30, 60, 90, and 120 min
relative to the start of glucose ingestion.
Samples were collected on ice, spun and
aliquoted promptly, and frozen at280°C
before being shipped on dry ice to the
central laboratory (University of Minne-
sota Advanced Research and Diagnos-
tic Laboratory, Minneapolis, MN), where
they were assayed.

Assays
HbA1c was measured in EDTA whole
blood on the Automated Glycohemoglo-
bin Analyzer HLC-723G8 (Tosoh Medics,
Inc., San Francisco, CA) using an auto-
mated high-performance liquid chroma-
tography method. Calibration of this
method was evaluated using standard
values derived by the NGSP. Glucose was
measured in EDTA plasma by a hexoki-
nase method on a Cobas c501 chemistry
analyzer (Roche Diagnostics, Indianapo-
lis, IN). Insulin and C-peptide were mea-
sured in EDTA plasma on a Cobas e601
immunoassay analyzer using a sandwich
immunoassay (Roche Diagnostics). Base-
line samples for those randomized to the
glargine group (n 5 1,263) have not yet
been assayed for insulin. These baseline
samples are being reserved for potential
measurement bymass spectrometry ow-
ing to difficulties in measuring insulin
with immunoassays in patients treated
with glargine.

Measures of Insulin Sensitivity and
b-Cell Function
TheHOMAof insulin sensitivity (HOMA2-
S) was calculated using the HOMA2 Cal-
culator version 2.2.3 (Diabetes Trials Unit,
UniversityofOxford,Oxford,U.K.) (12,13).
Mean plasma glucose (Gm) in milligrams
per deciliter andmean insulin (Im) in milli-
international units per liter were calcu-
lated from the values at 0, 30, 60, 90, and
120 min during the OGTT (14). The Mat-
suda Index of insulin sensitivity was cal-
culated as 104/(I0 3 G0 3 Im 3 Gm)

1/2,
whereG0and I0arethe fastingglucoseand
insulin.

Early insulin and C-peptide responses
to glucose during the OGTT were calcu-
lated using the insulinogenic index (IGI)
and the C-peptide index, respectively.
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They were calculated as the increment in
insulin or C-peptide values over the first
30 min, respectively, divided by the in-
crement in glucoseover30minas follows
(15): IGI 5 100(I30 2 I0)/(G30 2 G0) and
C-peptide index5100(C302C0)/(G302G0).
The late insulin response to glucose was
calculated as the ratio of the area under
the curve (AUC) for insulin dividedby the
AUC of glucose values from 60 to 120
minutes: 100 3 (InsulinAUC60–120/60 2 I0)/
(GlucoseAUC60–120/602 G0). The oral dis-
position index (DI), as ameasure ofb-cell
function, was calculated as the ratio of IGI
over fasting insulin (DI 5 IGI/I0) (16).
We used the ratio of fasting C-peptide

to fasting insulin (1,000 * C0/I0) as a
measure of basal insulin clearance based
on the assumption that insulin and C-
peptide are secreted into the portal vein
in a 1:1 molar ratio, and C-peptide is
cleared primarily by the kidney (17).
The International Diabetes Federation

definition ofmetabolic syndromewas used
tocategorizeparticipants inthiscohort (18).

Participants
Of a total of 5,047 GRADE participants, a
subgroupwith complete data on glucose,
insulin, and C-peptide values during the
baseline OGTT was included in this study.
Insulin was not measured in the 1,263
participants randomized to the glargine
group, and thus, this group was excluded
from the analysis. Also excluded were
321 participants with incomplete glucose
data, 350with incomplete insulin data, and
5 with incomplete C-peptide data. Thus,
data froma total of 3,108wereavailable for
this analysis. There was no significant dif-
ference in baseline characteristics of par-
ticipants included in this study compared
with those excluded (data not shown).
Among the 3,108 participants, 2,083

participants (67%) wereWhite, including
423 (14%) Hispanic and 1,651 (53%) non-
Hispanic, 553 (18%) Black/African Amer-
ican, 119 (4%) Asian, 103 (3%) American
Indian/AlaskaNative, and250 (8%)other.

Statistical Analysis
Participant characteristics are presented
using means and SDs for quantitative
variables and counts and column percen-
tages for qualitative variables. Compar-
isons betweenmen andwomen used the
x2 test of independence for qualitative
variables and the Student t test with
unequal variances using the Welch-
Satterthwaite approximation to the df
for quantitative variables. Comparisons of

the race categories used the x2 test of
independence for qualitative variables
and the ANOVA F test for quantitative
variables. In Table 1, only racial groups
withat least100memberswereconsidered
for analysis.

The P values for the sex-based differ-
ence in Fig. 1A are from a least-squares
regression of the ranks of each of the
responses on sex adjusted for age, race,
and diabetes duration in the combined
cohort. The box plots are based on the
residuals from ordinary regression mod-
els of each response on age, race, and
diabetes duration. The P values in Fig. 1B
are froma least-squares regressionof the
ranks of each of the responses on racial
categories adjusted for sex, age, and
diabetes duration. The box plots are
based on the residuals from ordinary
regression models of each response on
age, sex, and diabetes duration. In Fig. 2,
the Spearman correlation between two
responses is computed as the Pearson
correlation of the residuals from sepa-
rate linear regressionmodels of the ranks
of each response on age, sex, race, and
diabetes duration. Correlations with the
IGI, C-peptide index, and late insulin
response are adjusted for insulin sensi-
tivity (HOMA2-S). In order to eliminate
significant correlations that are not clin-
ically meaningful, any correlations with
r, 0.1 in absolute value are considered
clinically nonsignificant even if theywere
statistically significant at the 0.05 level.

Measuresof insulin,HOMA2-S,HOMA2-
B, Matsuda Index, insulinogenic and C-
peptide indices, late insulin response,
and the DI included some extreme out-
liers. To reduce the influence of outliers
on analyses, these variables were win-
sorized (i.e., values above or below spec-
ified cutoffs were replaced by cutoffs)
(19). For each variable, the winsorization
upper (lower) cutoff was set to the
median plus (minus) 8.9 times the dis-
tance from the median to the upper
(lower) quartiles. For a normally distrib-
uted variable, this would result in cut-
offs 6 SDs above and below the mean.
The number ofwinsorized values ranged
from 5 (0.2%) to 26 (0.8%). Analyses
were performed using R version 3.6.0.

RESULTS

Differences in Phenotypic andMetabolic
Characteristics by Sex and Race
Table 1 shows characteristics of the co-
hort stratified by sex and race. Overall,

the majority were male, on average mid-
dle-aged, obese, and had known diabe-
tes for 4.0 6 2.8 years. There were no
differences between men and women in
HbA1c or fasting insulin, but men had
significantly higher fasting but lower 2-h
glucoses and higher HOMA2-S but lower
IGI (Table 1). Adjusting for all of these
factors yields mean HbA1c values of 7.55
6 0.02 (mean 6 SE) among men versus
7.54 6 0.02 among women (P # 0.83).
Men had lower BMI but greater waist-to-
hip ratio (WHR) compared with women.
In addition, men had higher systolic
and diastolic blood pressures, despite
reporting more prevalent use of blood
pressure–loweringmedications.Theyalso
had higher TG levels but lower cholesterol
levels (total, LDL, and HDL) and reported
moreprevalentuseof lipid-loweringmed-
ications (Table 1).

There were also racial differences in
characteristics (Table 1). American Indi-
ans/Alaska Natives were the youngest,
reflecting their lower age inclusion cri-
terion, and they had the shortest dura-
tion of diabetes. Asians had the lowest
BMI, and American Indians/Alaska Na-
tives had the highest BMI. There were
also significant differences in the use of
blood pressure and lipid medications
among races (Table 1).

There were small but significant racial
differences in HbA1c (#0.2%; P5 0.004)
(Table 1) and differences in fasting and
2-h glucose, fasting insulin, HOMA2-S,
and IGI (Fig. 1B). Unadjusted, the Amer-
ican Indians/Alaska Natives had the
highest HbA1c value (7.59%). This was
followed by White (7.51%) and Black/
African American (7.44%). The pairwise
comparisons of Black/African American
versus American Indians/Alaska Natives
(P5 0.006) and versusWhite (P5 0.004)
were significant. However, when ad-
justed for the fasting and 2-h glucoses,
the Black/African American had higher
HbA1c thanWhites (7.53% vs. 7.48%; P5
0.009). These results were virtually un-
changedwith further adjustment for sex,
fasting insulin, HOMA2-S, and the IGI.

In additional analyses, the 423 His-
panicWhite and 1,651 non-HispanicWhite
groups had mean HbA1c of ;7.5%, but
the estimates differed significantly when
adjusted for fasting and 2-h glucose
levels (7.46% vs. 7.56%; P , 0.001). Ad-
justed forglucoses, themeanHbA1camong
the Black/African American (7.54%) was
not different from that of the Hispanic
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Figure 1—A: Distributions of insulin sensitivity, insulin and C-peptide responses, insulin clearance, and HbA1c for men and women. The box plots are
adjusted forage, race, anddiabetesduration.ThePvaluesare for comparisonsbetweenmenandwomenadjusted for covariates includingage, race,and
diabetes duration. B: Distributions of insulin sensitivity, insulin and C-peptide responses, insulin clearance, and HbA1c by race for American Indian (AI),
Asian (As), Black/AfricanAmerican (AA), andWhite (W). Thebox plots are adjusted for age, sex, and diabetes duration. TheP values are for comparisons
among different races adjusted for covariates including age, sex, and diabetes duration.
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White (7.56%) butwas significantly higher
than that of the non-Hispanic White
(7.46%; P , 0.001).

Differences in Insulin Sensitivity and
b-Cell Function by Sex and Race
After adjustment for age, race, and di-
abetes duration, DI was higher in women
than men (P 5 0.022) (Fig. 1A). The IGI
(P5 0.004), C-peptide index (P5 0.014),
and late insulin responses (P 5 0.021)
were also higher in women (P 5 0.045)
(Fig. 1A). There were no differences be-
tween men and women in insulin sen-
sitivityquantifiedasHOMA2-S (P50.527)
and theMatsuda index (P5 0.091), basal
insulin clearance (P 5 0.138), or HbA1c
(P 5 0.460) (Fig. 1A).
After adjustment for age, sex, and di-

abetes duration, DI was the highest in
Black/African Americans followed by
American Indians/Alaska Natives, Asians,

andWhites in descending order (Fig. 1B).
Asians had the highest insulin sensitivity
(by HOMA2-S). Black/African Americans
andAmerican Indians/AlaskaNativeshad
higher insulin and C-peptide responses
than the others (Fig. 1B). Whites had the
lowest late insulin response, while Black/
African Americans had the lowest insulin
clearance (Fig. 1B).

Association of Insulin Sensitivity and
b-Cell Function With Selected
Phenotypic Characteristics
Figure 2 presents the correlations of
participant characteristicswithmeasures
of insulin sensitivity and b-cell function.
BMI and WHR were inversely correlated
with insulin sensitivity (r 5 20.51 and
r 5 20.47 for HOMA2-S and Matsuda
withBMI, respectively; r520.28and r5
0.27 for WHR, P , 0.001 for both). The
correlation of both BMI and WHR with

insulin sensitivity was greater in men
than women (r 5 20.55 vs. r 5 20.44
and r520.53 vs. r520.36 for HOMA2-S
and Matsuda index, respectively, P ,
0.001 for both) (Supplementary Tables 1
and 2). Insulin sensitivity also correlated
inversely with the triglyceride-to-HDL-
cholesterol ratio (TG/HDL-C) (r520.32
with HOMA2-S and r 5 20.31 with
Matsuda, P , 0.001 for both) and pres-
ence of metabolic syndrome (r520.30
for both HOMA2-S and Matsuda, P ,
0.001) (Fig. 2 and Supplementary Tables
1 and 2). Again, the association of insulin
sensitivity with either lower TG/HDL-C
ratio or the absence of metabolic syn-
drome was greater in men (Supplemen-
tary Tables 1 and 2). The correlations of
metabolic syndrome and TG/HDL-C ratio
with insulin sensitivity were greater in
Black/AfricanAmericans thanWhites (Sup-
plementary Tables 1 and 2). Age, diabetes

Figure 2—Partial Spearman correlations (Corr) of measures of insulin sensitivity and insulin/C-peptide response with participant characteristics.
Correlations are adjusted for age, sex, race, and diabetes duration (excluding the variable being correlated with insulin response or sensitivity). Insulin
and C-peptide responses (IGI, C-peptide index, late insulin response, and insulin clearance) are also adjusted for HOMA2-S. The gray band marks
correlations that are smaller than60.1, and the dotted linemarks the correlation of 0. Partial correlations are shownas a black dot if they are nominally
significant at the 0.05 level and at least 0.1 in absolute value and as a white dot otherwise. There were no meaningful correlations with diuretics,
b-blockers, calcium channel blockers, statins, or fibrates.
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duration, and HbA1c were not associated
with insulin sensitivity (Fig. 2).
DI was positively associated with age

(r 5 0.18; P , 0.001) while negatively
correlated with BMI, HbA1c, and the TG/
HDL-C ratio (r 5 20.10, r 5 20.26, and
r520.15 respectively, P, 0.001 for all)
(Fig. 2 and Supplementary Table 5). The
association of DI with age, BMI, HbA1c,
or the TG/HDL-C ratio was stronger in
Whites thanBlack/AfricanAmericans (Sup-
plementary Table 5).
Age also had a positive association

with markers of b-cell responses, includ-
ing IGI (r 5 0.13), C-peptide index (r 5
0.12), late insulin response (r 5 0.13),
and insulin clearance (r50.25,P,0.001
for all) (Fig. 2 and Supplementary Tables
3–8). The association of age with meas-
ures of b-cell response (IGI, C-peptide
index, and late insulin response) was
stronger in Whites than Black/African
Americans (Supplementary Tables 3, 4,
and 6). BMI was associated directly with
the IGI (r 5 0.19), C-peptide index (r 5
0.13), and late insulin response (r5 0.15)
but inversely with insulin clearance (r 5
20.13, P , 0.001 for all) (Fig. 2 and
Supplementary Table 3). The association
of BMI with measures of b-cell response
(IGI, C-peptide index, and late insulin
response)wasstronger inmenthanwomen
and not different between Whites and
Black/African Americans (Supplementary
Tables 3, 4, and 6).
Diabetes duration was inversely cor-

related with markers ofb-cell responses,
including IGI (r 5 20.13), C-peptide in-
dex (r520.12), and late insulin response
(r520.12, P, 0.001 for all) (Fig. 2 and
Supplementary Tables 2–6).
HbA1c was not correlated with insulin

sensitivity, but was inversely correlated
with other measures of b-cell function
(r 5 20.26 for DI, r 5 20.24 for IGI,
r 5 20.25 for C-peptide index, and r 5
20.34 for late insulin response, P ,
0.001) (SupplementaryTables1–7).HbA1c
was also negatively correlated with in-
creasing age (r 5 20.11) and increasing
diabetes duration (r520.14, P, 0.001
for both).
Neither treatment for hypertension

(ACE/angiotensin receptor blocker, diu-
retics, b-blockers, or calcium channel
blockers) nor dyslipidemia (statins or
fibrates) was associated with insulin re-
sponse or sensitivity (Supplementary
Tables 1–7).

CONCLUSIONS

In the GRADE cohort, there weremodest
differences between men and women in
insulin sensitivity, insulin clearance, and
b-cell function in unadjusted models
(Table 1). However, with the exception
of b-cell function, sex differences in in-
sulin sensitivity and clearance attenu-
ated when adjusted for age, race, and
diabetes duration (Fig. 1A). There was
also no sex difference in HbA1c even
though men had a higher fasting glucose
and lower 2-h glucose.

In unadjusted analyses, we observed
small racial differences in HbA1c, with
higher levels among Whites. However,
after adjusting for fasting and2-h glucose
levels, the Black/African Americans had a
slightly higher mean HbA1c than Whites
(7.53% vs. 7.48%). In an analysis of
Hispanic and non-Hispanic White sepa-
rately, adjusted for glucoses, the differ-
ence between Black/African American
and non-Hispanic White was equivalent
to that in the full cohort (7.54% vs.
7.46%). Others have also reported in-
terracial and interethnic differences in
the relationship of average glycemia and
HbA1c (7,9,10,20,21). Most studies, with
rare exceptions (22,23), have not col-
lected reliable measures of average gly-
cemia and have not evaluated differences
in red blood cell turnover or genetic
variation in hemoglobin glycation as
plausiblemechanisms (24,25). To further
investigate the relationship of average
glucose and HbA1c among different ra-
cial/ethnic groups, continuous glucose
monitoring and evaluation of red blood
cell age and turnover studies will be
completed in a subgroup of the GRADE
cohort, which should help to distinguish
the contribution of abnormalities in red
blood cell turnover from differences in
glycation (26).

There were also significant racial dif-
ferences in insulin sensitivity and b-cell
function as well as the early insulin and
C-peptide responses, late insulin re-
sponse, and insulin clearance in the
fasting state. Black/African Americans
were more insulin sensitive thanWhites,
but Black/African Americans had higher
insulin and C-peptide responses com-
pared with others, resulting in the high-
est DI among different races. These racial
differences in b-cell function, as well as
HbA1c, persisted when adjusted for basic
factors.

Racial differences in b-cell function
have been previously reported (20,27–30).
The ADOPT study (20) enrolled 4,360
participants with type 2 diabetes aged
30–75 years (mean57 years) of,3 years’
duration on diet therapy alone with
plasma glucose 7–10 mmol/L. In the
subset of patients from North America,
compared with the 1,815 Caucasians,
Blacks had a higher HbA1c (8.0% vs. 7.3%)
and lower fasting insulin and higher in-
sulin secretory index despite no differ-
ence in fasting glucose.

In a systematic review, Kodama et al.
(27) analyzed data from 74 study cohorts
comprising 3,800 individuals, the major-
ity being without diabetes, and reported
that Black/African Americans without di-
abetes had robust insulin responses to
reduced insulin sensitivity, while East
Asians were insulin sensitive and thus
required less robust insulin responses.
However, racial differences in insulin
sensitivity andb-cell responseswere less
prominent in individuals with type 2 di-
abetes, but the study was limited to
relatively small number of individuals
with type 2 diabetes (11 cohorts, n 5
255).

The etiology for these racial differ-
ences remains unknown. Decreased in-
sulin clearance in Black/African Americans,
as seen in our cohort, has been proposed
as one of the mechanisms for the higher
insulin response (31). This study sug-
gested that the racial differences in in-
sulin clearance were due to decreased
hepatic extraction of insulin during the
first pass and not the extrahepatic com-
ponentof insulin clearance (31). Proposed
mechanisms for this racial difference
include decreased expression/activity of
insulin-degrading enzyme and/or carci-
noembryonic antigen-related cell adhe-
sionmolecule-1,whichenhances the rate
of uptake of the insulin receptor com-
plex, and reduced hepatic insulin recep-
tor number or activity (31,32). The higher
C-peptide responses in Black/African
Americans suggests that other mecha-
nisms are also likely involved because
C-peptide is not degraded by the liver
(33,34). Racial differences in body size
(height, weight, and BMI), body com-
position, and fat distribution have been
proposed as potential contributors to
racial differences in insulin sensitivity or
insulin response (35). Whether the dif-
ference in DI in Black/African Americans
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represents an adaptation to a reduction
in glucose uptake or other mechanisms
independent of insulin, such as genetic
variation, cannot be discerned from
these data. However, genome-wide as-
sociation studies have reported that ra-
cial differences exist in the association
between genetic variation and T2D risk
(36,37).
In the GRADE cohort, age (positively)

and BMI, TG/HDL-C ratio, and HbA1c
(inversely) were correlated with b-cell
function.Amongbaselinecharacteristics,
HbA1c had the strongest correlation with
DI, consistent with the long-held belief
that b-cell function plays an important
role in determining glycemic control. This
observation is in keeping with other
studies, including a cross-sectional anal-
ysis comprising four ethnic groups in the
U.S. with varying glucose tolerance in
whom DI was most strongly associated
with the 2-h glucose (28). It is also con-
sistent with a study involving a large
group of people with newly diagnosed,
drug-naive type 2 diabetes in whom
more severe b-cell dysfunction was as-
sociated with a higher baseline HbA1c
anda greater risk of glycemic progression
(38). Older individuals with type 2 di-
abetes in the GRADE cohort had a higher
insulin response and DI. Our finding of
the direct association of age with b-cell
function is not supported by epidemi-
ologic studies that have shown a higher
prevalence of diabetes with increasing
age (39). This is likely the result of a
decreased ability of the b-cells to main-
tain adequate insulin responses for met-
abolic demand over time (40). The most
likely explanation is that older individuals
in the GRADE Study had less severe
disease, which is supported by the neg-
ative correlationbetween ageandHbA1c,
and thus may have better b-cell function
at the time of the study. There is also the
possibility that the inclusion criteria im-
posed by the study design excluded older
individuals who had worse b-cell func-
tion and failed metformin earlier (39).
Although BMI correlated with DI in-

versely, there was direct association of
BMIwith IGI andC-peptide response. The
association remained significant after
adjusting for age, sex, race, diabetes du-
ration, and HOMA2-S, suggesting that
obesity might be associated with higher
b-cell response beyond what was ex-
pected for decreased insulin sensitivity.
The inverse association of BMI with DI

was likely driven by the stronger reverse
association of insulin sensitivity with BMI
dominating the direct association of BMI
with b-cell response.

Similar to our findings, Ferrannini et al.
(41) reported higher fasting insulin in
obese compared with lean individuals
without diabetes and the difference re-
mained significant after adjusting for
insulin sensitivity. They also reported
significantly lower insulin clearance in
obesity independent of insulin sensitiv-
ity (41), suggesting that peripheral hy-
perinsulinemia in obese subjects may
reflect both insulin hypersecretion and
reduced insulin clearance.

Although diabetes duration correlated
inversely with insulin and C-peptide re-
sponses in this cohort, it did not correlate
significantlywithDI. This couldbe related
to the relatively short duration of di-
abetes and narrow range of diabetes
duration dictated by the GRADE Study
inclusion criteria.

Similar to the previous studies (42,43),
we confirm the inverse association be-
tween TG/HDL-C ratio and insulin sensi-
tivity. Additionally, we report an inverse
association of TG/HDL-C ratio with b-cell
function. This association was previously
reported only in a small study limited
to Black/African American women (44).
However, this information should be
considered with some caution, as the
majority of participants were treated
with statins (63%) or other lipid-lowering
medications such as fibrates (3%). Our
study also investigated sex and racial
differences in the correlation between
baseline characteristics with insulin sen-
sitivity and b-cell function. We reported
that the association between insulin sen-
sitivity and traditional clinical markers
including BMI, presence of metabolic
syndrome, and TG/HDL-C ratio is stron-
ger in men than women.

In addition, correlation of BMI with
b-cell function and insulin and C-peptide
responses were stronger in men, sug-
gesting that there might be a need for
different BMI cutoffs for risk evaluation
based on sex. Epidemiologic studies have
also reported a sex-related disparity in
the prevalence of metabolic syndrome
and type 2 diabetes (45). Women are
diagnosed with type 2 diabetes at a
higher BMI than men (46), suggesting
that obesity could be defined differently
according to sex, similar to the different
cutoff values of waist circumference for

men andwomen.We also reported racial
differences in the correlation of b-cell
function with baseline characteristics.
The association of DI with HbA1c and TG/
HDL-C ratio was stronger in Whites com-
pared with Black/African Americans,
which could be the result of racial var-
iation in glycation (6) and racial differ-
ences inlipidmetabolism(47).Furthermore,
BMI and age correlatedwithDI in the entire
cohort and in Whites, but were not asso-
ciated with DI in Black/African Americans,
suggesting racial differences in the regula-
tion of b-cell function.

Our study has several strengths, in-
cluding the large and racially diverse
cohort of adults early in the course of
diabetes with a relatively short duration
of type 2 diabetes of ,10 years and
HbA1cof 6.8–8.5%whileusingmetformin
monotherapy. This cohort provided the
opportunity to investigate the associa-
tion of several characteristics with b-cell
function,whichwasevaluatedusingboth
fasting and post–glucose load b-cell re-
sponses at several time points during an
OGTT. Insulin and C-peptide assays were
performed at a central laboratory, which
minimized interassay variabilities. The
study cohort also includes both men and
women and adequate representation
from a range of ethnic and racial groups.
Further, the cohort represents a sample
of subjects with early type 2 diabetes
treated with metformin alone that is
comparable to the general U.S. popula-
tion selected to include individuals who
meet the principal GRADE eligibility cri-
teria (48).

However, a limitation is that the se-
lective nature of the cohort may limit
generalizability to thegeneral population
of those with longer diabetes duration
who have already been treated with
multiple glycemic-lowering medications.
Another limitation is that b-cell function
and insulin sensitivitywerenot evaluated
using more precise methods such as the
euglycemic/hyperglycemic clamp or the
frequently sampled intravenous glucose
tolerance test. However, measures of
insulin sensitivity and b-cell function
derived from the OGTT are reported
to agree well with those from the eugly-
cemic insulin clamp (14,49). The higher
variability in b-cell function measures
using an OGTT was likely mitigated by
the large sample size in this study. We
were unable to calculate hepatic insulin
extraction using more sophisticated
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methods and estimated only fasting he-
patic clearance. In addition, information
regarding menopausal status was un-
available, but the analysis was adjusted
for age.
In conclusion, in a large cohort of

participants with type 2 diabetes, insulin
response measures were differentially
correlated with age, BMI, and HbA1c.
There were racial differences in these
responses as well as insulin sensitivity
and insulin clearance that jointly may
explain previously observed racial differ-
ences in the level of HbA1c. The under-
lying mechanisms regulating the racial
differences in insulin sensitivity, b-cell
function, and insulin clearance are not
totally clear. As such, more studies are
needed addressing the mechanisms re-
sponsible for these differences. Under-
standing potential differences in these
mechanisms could in time lead to more
personalized approaches to diabetes
care.
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