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Abstract

Background: The Environmental Determinants of the Diabetes in the Young

(TEDDY) study has prospectively followed, from birth, children at increased

genetic risk of type 1 diabetes. TEDDY has collected heterogenous data longi-

tudinally to gain insights into the environmental and biological mechanisms

driving the progression to persistent islet autoantibodies.

Methods: We developed a machine learning model to predict imminent tran-

sition to the development of persistent islet autoantibodies based on time-

varying metabolomics data integrated with time-invariant risk factors (eg, ges-

tational age). The machine learning was initiated with 221 potential features

(85 genetic, 5 environmental, 131 metabolomic) and an ensemble-based fea-

ture evaluation was utilized to identify a small set of predictive features that

can be interrogated to better understand the pathogenesis leading up to persis-

tent islet autoimmunity.

Results: The final integrative machine learning model included 42 disparate

features, returning a cross-validated receiver operating characteristic area

under the curve (AUC) of 0.74 and an AUC of �0.65 on an independent valida-

tion dataset. The model identified a principal set of 20 time-invariant markers,

including 18 genetic markers (16 single nucleotide polymorphisms [SNPs] and

two HLA-DR genotypes) and two demographic markers (gestational age and

exposure to a prebiotic formula). Integration with the metabolome identified

22 supplemental metabolites and lipids, including adipic acid and ceramide

d42:0, that predicted development of islet autoantibodies.

Conclusions: The majority (86%) of metabolites that predicted development

of islet autoantibodies belonged to three pathways: lipid oxidation, phospholi-

pase A2 signaling, and pentose phosphate, suggesting that these metabolic

processes may play a role in triggering islet autoimmunity.
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Highlights

• A machine learning model can significantly predict imminent development

of islet autoimmunity based on environmental, genetic, and metabolic

features.

• The machine learning algorithm feature selection identified type 1 diabetes-

associated single nucleotide polymorphisms from The Environmental Determi-

nants of the Diabetes in the Young (TEDDY) analysis are correlated to related

data from the Diabetes Autoimmunity Study in the Young (DAISY) study.

• Most of the metabolic features predicting the development of islet autoanti-

bodies belonged to three pathways; lipid oxidation, phospholipase A2

signaling, and pentose phosphate.

1 | INTRODUCTION

The risk of type 1 diabetes (T1D) involves both genetic and
nongenetic factors. Our understanding of the role of
human leukocyte antigen (HLA) and other genes in devel-
opment of islet autoimmunity and subsequent progression
to T1D is continually expanding.1-3 Recent work has
focused on understanding how these genetic factors inter-
act with environmental factors and biomarkers of T1D
risk.4-7 Better prediction of the risk of T1D incorporating
multiple predictive factors to offer new strategies for early
diagnosis and treatment is one of the core goals of birth
cohort studies studying genetically susceptible children,
such as The Environmental Determinants of Diabetes in
the Young (TEDDY) and Diabetes Auto Immunity Study
in the Young (DAISY). Herein we focus on prediction of
imminent progression to the development of persistent
islet autoantibodies to insulin (IAA), glutamic acid decar-
boxylase (GADA), or insulinoma antigen-2 (IA-2A) in
TEDDY participants by integrating data such as met-
abolomics that are measured within 6 months prior to the
diagnosis of persistent autoimmunity with associated risk
factors, such as genetics and environment.

Identification of robust molecular markers from large
and complex data has been noted as one of the major chal-
lenges of personalized medicine.8,9 One strategy is to uti-
lize a knowledge-based approach, where known risk
factors for a disease are combined in a machine learning
framework to make individualized predictions. Alterna-
tively, a data-driven approach can be taken that allows
potential markers, such as metabolite characterization
from high-throughput 'omic studies, to be incorporated
into the model and further interrogated to identify an opti-
mal subset of risk factors to make statistical-based predic-
tions of interest. In recent studies we took the latter

approach to evaluate a small cohort from DAISY at vari-
ous time points prior to the development of persistent
autoantibodies Islet autoimmunity (IA) to both predict
phases of development and also to identify the core fea-
tures of importance.10 In this study, we expand on this
approach to perform machine learning-based ensemble
feature selection on 314 children who had metabolomic
data across time in the TEDDY nested case-control
study.11 We utilize a probability-based machine learning
integration strategy combined with an optimization-based
feature selection process to identify a core set of predictive
markers. We further examine the core features that drive
the machine learning model and assess the mechanistic
changes associated with these features. We present results
in the context of cross-validation and an independent
holdout set.

2 | METHODS

2.1 | Participants selection and data
generation

The TEDDY study includes 8676 participants with
increased T1D risk HLA-DR/DQ genotypes, recruited
before the age of 4.5 months from four countries; United
States, Germany, Sweden, and Finland.12 The children
were evaluated for the development of persistent islet
autoantibodies every 3 months until either the develop-
ment of T1D or 48 months. At this point for those with
autoantibody seroconversion visits continue every
3 months, and for the rest, visits proceed at 6-month
intervals. All study participants had written informed
consent from a parent or primary caretaker. The TEDDY
study was approved by the local institutional review
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boards where the data were collected and is monitored
by an external evaluation committee formed by the
National Institutes of Health (NIH).

2.2 | Islet autoantibody measurements

IAA, GADA, or IA-2A were measured in two laboratories
by radiobinding assays as previously described.13,14 In the
United States, all sera were assayed at the Barbara Davis
Center for Diabetes at the University of Colorado Denver;
in Europe, all sera were assayed at the University of Bris-
tol, United Kingdom. Both laboratories have previously
shown high sensitivity and specificity14 as well as concor-
dance. To optimize concordance, harmonized assays for
GADA and IA-2A (12) replaced previous assays, in
January 2010. Based on a receiver-operator curve (ROC)
analysis, prior samples that needed to be reanalyzed with
the harmonized assays, included Denver GADA between
−0.015 and 0.042; Bristol GADA between 10.69 and
36.72; Denver IA-2A between −0.004 and 0.016; and Bris-
tol IA-2A between 6.69 and 10.58. All positive islet auto-
antibodies and 5% of negative samples were retested in
the other reference laboratory and deemed confirmed if
concordant.

2.3 | Outcomes

Persistent confirmed islet autoimmunity (IA) was
defined as two consecutive visits positive for a specific
islet autoantibody confirmed in a second laboratory.
Date of IA was the draw date of the first sample of the
two consecutive samples that deemed the child
persistent confirmed positive for any islet autoantibody.

2.4 | Nested case-control study

Because of the large cohort size, it is cost and time pro-
hibitive to perform many 'omics-based analyses, such as
microbiome15,16 and metabolomics,17 for all the samples.
The case-control study design can also help to reduce the
batch effects associated with large-scale 'omics studies.
The TEDDY Data Coordinating Center generated nested
case-control pairs using a design that is based on the time
point at which a child is positive for an event. The event
is either the presentation of persistent islet autoanti-
bodies or clinical diagnosis of T1D. Once a case is
defined, an associated control is selected from all event-
free participants at that same time point for the case. The
best control for the case is selected based on matching
factors of clinical center, sex, and family history of

T1D.11,18,19 In the analyses presented here, we included
157 cases who developed persistent islet autoantibodies
and 157 matched controls, a 1:1 nested case-control
design described in detail by Lee et al.11

2.5 | Data sources

The predictive model developed here was based on three
sources of data: (a) participant risk factors (RF) previously
identified in the study population,6,11 (b) participant
genetic risk (T1D-associated single nucleotide polymor-
phisms [SNPs]3), and (c) participant metabolomic risk
(metabolites and lipids). The goal of this modeling effort is
the prediction of progression to persistent autoimmunity,
thus all data used is either independent to or collected
prior to the observance of autoantibodies.

The first data source was a combination of participant
risk factors, including genetic features, associated with
T1D risk (RF-SNP). The patient risk factors were selected
based on their availability in the case-control data and
included (a) gestational age in weeks, (b) exposure to
cow's milk formula, (c) exposure to prebiotic formula,
(d) ethnicity/race (white, unknown, multiracial), and
(e) HLA risk genotypes (DR3/4, DR4/4, DR4/8, DR4/1,
DR4/13, DR3/3) previously described in.5 Except for gesta-
tional age, each of these were represented as binary vari-
ables and thus in the dataset is represented as 12 variables.
The T1D-associated SNP data were generated using a cus-
tom genotyping array (Illumina ImmunoChip) containing
186 000 SNPs associated with autoimmune disease. The
data were collected for all TEDDY individuals with
genotyping conducted by the TEDDY Genetics Laboratory
at the University of Virginia Center for Public Health
Genomics. A total of 85 SNPs significantly associated with
T1D were used in this analysis.3,20

The second source of data was time-varying metabo-
lite and lipid measurements (MET-LIP) from participants
at time points prior to the development of persistent
autoimmunity. Untargeted metabolomics and lipidomics
data were generated for all cases and controls in the
TEDDY nested case-control study. Primary metabolites
and lipids were quantified from citrated plasma using gas
chromatography-time-of-flight mass spectrometry (GC-
TOF MS) and charged surface hybrid liquid chromatogra-
phy coupled to quadrupole TOF MS (CSH-QTOF MS),21

respectively, at the NIH West Coast Metabolomics Center
at the University of California, Davis, California. The
GC-TOF MS metabolomics data acquisition followed pre-
viously described protocols22 followed by data processing
and compound identification using the BinBase algo-
rithm23 and normalization using the sum approach.
There were 156 identified metabolites quantified for

WEBB-ROBERTSON ET AL. 145



analysis. Metabolites with less than 10% missing values
were processed with random forest imputation24 and
those with 10% or more missing data were removed. For
complex lipids, samples were extracted by methyl-
tert-butyl ether/methanol/water and analyzed using
CSH-QTOF MS in both positive and negative electrospray
ionization (ESI). Lipid chromatogram peak detection and
alignment used Mass Profiler Professional (Agilent, Santa
Clara, CA). Peaks detected in at least 30% of samples
were identified and quantification back-filled using the
Fiehn laboratory's LipidBlast spectral library.25 Locally
weighted scatter plot smoother (LOESS)-based normali-
zation was corrected for batch effects by adjusting indi-
vidual samples to intermittent quality control samples.26

There were 652 lipids identified across both positive and
negative ESI modes.

2.6 | Integrative machine learning

We built machine learning models to predict cases vs
controls at three time horizons to the development auto-
antibodies: (a) 0 months (the time at which positive auto-
antibodies were first detected for cases), (b) 3 months
prior, and (c) 6 months prior. Data were assembled by
identifying the age of the case at the time of being classi-
fied as autoantibody positive and selecting the sampling
time point for the control that matched the age of the
case as close as possible. In addition, there are situations
in which a child is identified as both a control and a case
because of the risk set sampling used for the nested case
control study design from the longitudinal study. These
situations were removed from the dataset because they
cause issues with the independence assumptions between
subjects of the machine learning models. Most children
are sampled approximately every 3 months and, thus, we
used data that represent the case and control pair at the
two prior sampling time points based on the age of the
case at confirmation of autoimmunity. The point of sero-
conversion (0 months) is included to evaluate if the pre-
diction of imminent progression can be achieved with
similar accuracy once autoantibodies are detectable.

Of all case-control pairs available for the autoimmu-
nity endpoint, there were 314 children (157 pairs) that
contained the RF-SNP and MET-LIP data at all three
time points. We segregated a validation set prior to
machine learning consisting of 25% of the pairs (78 total
children) with the remaining 236 children utilized as the
training set. Descriptive statistics of the training and vali-
dation sets are shown in Supplemental Table S1. The
39 pairs in the validation set were selected at random but
have similar overall characteristics as the training set
(last column of Table S1).

The workflow of the analysis performed is shown in
Figure 1. The first step separated the validation data from
the training data to ensure that data quality and filtering is
independent of the validation set and will not bias the down-
stream machine learning evaluation. Once the validation set
was segregated, the data were preprocessed and the model
was developed. As is common for machine learning,27 the
metabolites and lipids were preprocessed with a paired t test
(comparing cases to controls) in the training set at each time
point to reduce the dimensionality before machine learning.
A conservative minimum significance threshold of P = 0.1
across the time points was selected; this yielded 131 markers
consisting of 45 metabolites and 86 lipids. The metabolites
and lipids in the validation set were reduced to match the
training set but were not utilized in generating the statistics
for the down-selection criteria.

Multiple machine learning algorithms, including logis-
tic regression, K-nearest neighbors, linear discriminant
analysis, Naïve Bayes classifier, random forest, and a sup-
port vector machine (linear kernel), were completed on the
base level RF-SNP features and MET-LIP features of with
five-fold cross-validation (CV) to evaluate which machine
learning algorithm best modeled the underlying structure
of the data. A random forest approach was selected for the
MET-LIB data (131 metabolome features) and a Naïve
Bayes classifier for the RF-SNP (90 SNP/environmental fea-
tures). The models were merged as the product of the pos-
terior probability from each machine learning algorithm to
attain a single probabilistic score for each child.28,29 We
validated that the merged model was equal to or superior
to combining the two sources of data into a single Naïve
Bayes or random forest model. At seroconversion the mer-
ged model returned significantly larger ROC area under
the curve (AUC)s than either a single Naïve Bayes or ran-
dom forest model based on 100 repetitions of fivefold CV
at a paired t test P-value threshold of 0.05.

Repeated optimization for feature interpretation
(ROFI) generated the features that optimize the ability to
separate those that will transition to IA positivity in the
three defined time windows.10,30 ROFI performs an
optimization-based feature selection algorithm repeated
500 times and the importance of a feature is defined as
the percentage of times it was selected for inclusion in
the model over the 500 independent optimization runs
based on five-fold CV. Given the paired nature of the
nested case-control study, the CV process ensured that
pairs were placed together in a training or a holdout set
in the CV in order to reduce bias from potential pairwise
correlation. Once the feature importance metrics were
acquired, the values were sorted and the features to be
included in the final model development were selected.
The final model was generated on the full training data
of 236 TEDDY children based on the features selected
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from ROFI; the machine learning model was applied to
the validation set to generate the likelihood that each of
the 78 children to develop persistent autoimmunity with
the defined time frame, with the full process repeated for
each of the three time points (Figure 1). The machine
learning algorithms and feature selection method are
available at https://github.com/pmartR/peppuR.

3 | RESULTS

The data here were derived from the nested case-control
design of TEDDY and, therefore, features of family his-
tory, sex, clinical center, and age are not included in the
model because they are utilized as matching criteria. The
machine learning model generates the probability that a
TEDDY child will transition from a control state to the
development of persistent autoantibodies within the next
x months (x = 0, 3, 6) based on the defined risk factors,
genetic profile, and metabolome. The average age of the
children that developed autoantibodies, “cases,” was
�2 years old (range from 0.72 to 4 years); thus,

predictions for children not in this age range may not be
applicable.

3.1 | Feature selection and performance

We performed ROFI-based feature selection on
131 metabolome features, 85 T1D-associated SNPs fea-
tures, in addition to five features representing HLA cate-
gory, gestational age, cow's milk formula exposure,
prebiotic formula exposure, and ethnicity/race. The RF-
SNP data was the same at each time point, but the
metabolome is represented as three datasets of quantita-
tive metabolite and lipid values at 0, −3, and -6 m from
seroconversion. The feature selection process identified
42 features as optimal utilizing an order-based statistic
to define the selection threshold.31 As seen in Figure 2
there is a dramatic improvement for both the cross-
validated training data (boxplots) and the associated
accuracy of the validation set (point estimate) at all time
points for the feature selection model vs using all
221 features. Of these 42 features 20 were associated

FIGURE 1 The Environmental Determinants of the Diabetes in the Young (TEDDY) data processing and machine learning workflow

for a single time point first separated the data into a training and validation set. The training data is used to perform prefiltering and

ensemble-based feature selection. The final repeated optimization for feature interpretation (ROFI) generated model was created from the

full training set and applied to the validation set to benchmark performance. MET-LIP, metabolite and lipid measurements; RF-SNP, risk

factors-single nucleotide polymorphisms
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with the risk factors and genetic markers, and the
remaining 22 were from the metabolome (11 metabolites
and 11 lipids). Figure 3 displays the importance, defined
as the percentage of solutions including the feature, of
each these 42 candidates identified by ROFI. Figure 2
also demonstrates that the prediction of imminent
development can roughly be predicted with the same
accuracy 3 and 6 months prior to the time point when
the autoantibodies are observed.

3.2 | Development of IA: Machine
learning

Gestational age is one of potential risk factors for T1D
reported previously.32 For the training set, the average
gestational age of cases was 0.48 weeks longer than that

of the controls (P � 0.008) that decreases to a statistically
insignificant difference of 0.09 weeks in the validation set
(P � 0.811), Figure 4A. It is not clear whether the result
in the validation set is due to low statistical power or ran-
dom fluctuation in the training/validation process. Fig-
ures 4B-D show the other three important risk factors -
prebiotic exposure, HLA-DR3/4, and HLA-DR3/3 geno-
types -follow expected patterns4,33 and are more strongly
correlated between the training and validation sets. The
metabolite with the strong feature importance score
(adipic acid) and one of the top lipids (PC[40:5]) separate
patterns across time for the full cohort, training, and vali-
dation sets for the T1D case-control matched pairs
(Figure 4E, Figure 4F). These markers have been associ-
ated with diabetes34-36 and patterns of increased abun-
dance of these metabolites appear to predict the

FIGURE 2 Overall accuracy

and variability of the training data

(boxplots) based on cross-validation

and the associated accuracy of the

model when applied to the validation

set (large dots) for both all features

and the 42 selected features. The

boxes of the training data results

represent the 25th and 75th

percentiles and the line indicates the

median accuracy with extreme values

represented by the small dots. AUC,

area under the curve

FIGURE 3 Bar graphs showing

the feature importance of each of the

selected 42 candidates where time-

invariant markers are on the left

with single nucleotide

polymorphisms (SNPs) in white and

other risk factors in gray and

metabolomics data on the right

where lipids are in black and

metabolites in gray. The underlined

SNPs are those highlighted in

Figure 5. MET-LIP, metabolite and

lipid measurements; RF-SNP, risk

factors-single nucleotide

polymorphisms

148 WEBB-ROBERTSON ET AL.



development of persistent autoantibodies in the TEDDY
population.

There were 16 SNPs that were identified by the
machine learning approach that were able to distin-
guish the cases from controls for the development of
autoantibodies. Because DAISY is a distinct cohort
with similar goals to TEDDY as well as having genetic
data on a subset of participants, we evaluated
wheather the SNPs identified in this analysis from
TEDDY have a similar pattern in DAISY. In particular,
DAISY is a longitudinal, observational birth cohort
study of 2547 high-risk children followed to develop-
ment of autoimmunity and T1D.37-39 For DAISY,
genetic information was collected on 25 children that
either ended the study disease free or with confirmed
persistent autoantibodies. There were four SNPs that
overlapped the two studies (underlined in Figure 3),
for which Figure 5 shows that the minor allele fre-
quency (MAF) of the SNPs is similar between TEDDY

and DAISY (eg, rs246601 MAF in DAISY is 0.12 and
MAF in TEDDY is 0.19). We estimated the correlation
within each group (“case” or control) within each SNP
and demonstrated that the control samples had an
average Pearson correlation of 0.921 and the case sam-
ples of 0.802 (average 0.862), a confirmation that these
core T1D-associated SNPs appear to be robustly associ-
ated with outcome across studies.

To investigate the mechanistic indicators of the fea-
ture selection, we evaluated the SNP-defined putative
T1D target genes and metabolic pathways.40 Twelve out
of the 16 SNPs (75%) had putative target genes related to
the immune system (Figure 6A). Metabolites were mainly
grouped in three pathways: lipid oxidation, phospholi-
pase signaling, and pentose phosphate. Triacylglycerol
TG(60:11), 1-monopalmitin, C8-acylcarnitine,
C12-acylcarnitine, adipic acid, and azelaic acid are
metabolites of the lipid storage and oxidation pathway
(Figure 6B). The degradation of triacylglycerols have

FIGURE 4 Data graphs

showing the directional changes of

(A) gestational age, (B) exposure to

prebiotic formula, (C) DR3/4 and

(D) DR3/3, as well as the temporal

changes for (E) adipic acid and

(F) phosphotidycholine PC(40:5) for

the IA and associated control

samples (CTRL)
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been shown to occur in inflammation, fueling the high
energy demands required for this process.41 The second
pathway with many metabolic features predictive of
autoimmunity was the phospholipase A2 signaling
pathway, including phosphotidycholine PC(40:5),
lysophosphatidycholines LPC(18:2) and LPC(18:3), and
ceramide cer(d42:0) (Figure 6C). It has been reported that
a phospholipase A2 from human islets is activated by
cytokines and endoplasmic reticulum (ER) stress, leading
to beta-cell death.35 Phospholipase activation leads to
the degradation of phosphatidylcholines (PC) into
lysophosphatidylcholines (LPC) and free fatty acids,
which in turn activates a neutral sphingomyelinase that
cleaves sphingomyelins (SM) into phosphocholines and
ceramides (Cer(d42:0)) (Figure 6C). The accumulation of
ceramides triggers the apoptotic cascade resulting in the
death of beta cells.34,35 The last pathway containing sev-
eral metabolic features predictive of autoimmunity is the
pentose metabolism (Figure 6D). Recently, the pentose
phosphate pathway was shown to be regulated in periph-
eral blood mononuclear cells in children IA.42 The pen-
tose phosphate pathway is usually repressed in immune
cells to prevent damage by toxic reactive oxygen species,
but it is upregulated during autoimmune responses to
supply the high metabolic demands of active leuko-
cytes.43 Overall, the identified metabolic features reflect
processes that are regulated during an autoimmune
response.

4 | DISCUSSION

To date, the most common approaches to predicting out-
comes of diabetes have focused on regression or small
variable subsets selected via expert knowledge. For exam-
ple, one recent study determined the likelihood that a
child will progress to T1D by the age of 6 years if they
have presented with persistent autoantibodies at the age
of 3 years.27 The logistic regression model to make this
prediction utilized five predictors that were selected
based on known associations, such as IA-2 antibody posi-
tivity status and hemoglobin A1c (HbA1c) level, achiev-
ing a sensitivity of 0.91 at a specificity of 0.59, yielding a
ROC curve with an AUC of 0.80. The conclusion of this
work was that continued developments of such models
are necessary to better understand the complexity of the
disease and address long-term goals of precision diabe-
tes.44,45 Biomarkers hold vast potential for clinical utility
both in terms of diagnosis and prognosis of disease but
also in drug discovery.46,47

An alternate strategy to regression modeling is to take
a data-driven approach to allow a large collections of
potential risk factors and molecular markers to be inte-
grated into the predictive modeling. These machine learn-
ing models are amenable to the extraction of features that
can provide improved prediction.30,48,49 Frohnert et al
used a machine learning approach to mine large multi-
omic predictors (genomics, proteomics, metabolomics,
and demographics) of seroconversion and T1D and ret-
urned high accuracy, an AUC of 0.91 for the prediction of
seroconversion based on cross-validation of 25 case and
control subjects.10 In this study we also undertook the
evaluation of seroconversion with several core differences.
The population from TEDDY is a much larger and more
heterogenous. The point of seroconversion is more tightly
controlled to approximately 3 and 6 months prior. Finally,
the size of TEDDY allowed for independent training and
validation data to evaluate the robustness of the machine
learning model. One caveat to this current analysis is the
predefined state of cases and controls based on matching
criteria exclude potentially important factors, such as gen-
der, clinical site, and family history, from being included
in the prediction model.

In this report, we identified 42 feature candidates
(SNPs, traditional risk factors, metabolites, and lipids)
that, in combination, predict development of autoimmu-
nity in increased genetic risk TEDDY participants. When
interrogated, these features are associated with three bio-
logical pathways: lipid oxidation, phospholipase A2 sig-
naling, and pentose phosphate pathway - suggesting that
these processes might serve as key predictive processes
during development of IA. These pathways reflect pro-
cesses that are regulated during an autoimmune

FIGURE 5 Scatter plot of percentage of children in each

genotype for four of the top single nucleotide polymorphisms

(SNPs) in terms of feature importance that overlap with SNPs

currently being studied in the DAISY cohort. DAISY, Diabetes Auto

Immunity Study in the Young; TEDDY, The Environmental

Determinants of the Diabetes in the Young; T1D, type 1 diabetes
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response. These markers were identified via a data-driven
predictive model of imminent development of IA, evalu-
ating time-invariant risk factors in combination with
time-varying metabolic features. Models such as these
may lead the field closer to the goals of precision medi-
cine and improved understanding of the underlying bio-
logical mechanisms driving T1D.27 Improved
understanding of the interactions between genetic factors
and diet or metabolism, on the development of autoim-
munity could inform new interventions to prevent or
delay the onset of T1D.
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