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Objective
To develop a model and methodology for predicting the risk of Gleason upgrading in patients with prostate cancer on
active surveillance (AS) and using the predicted risks to create risk-based personalised biopsy schedules as an alternative to
one-size-fits-all schedules (e.g. annually). Furthermore, to assist patients and doctors in making shared decisions on biopsy
schedules, by providing them quantitative estimates of the burden and benefit of opting for personalised vs any other
schedule in AS. Lastly, to externally validate our model and implement it along with personalised schedules in a ready to
use web-application.

Patients and Methods
Repeat prostate-specific antigen (PSA) measurements, timing and results of previous biopsies, and age at baseline from the
world’s largest AS study, Prostate Cancer Research International Active Surveillance (PRIAS; 7813 patients, 1134
experienced upgrading). We fitted a Bayesian joint model for time-to-event and longitudinal data to this dataset. We then
validated our model externally in the largest six AS cohorts of the Movember Foundation’s third Global Action Plan
(GAP3) database (>20 000 patients, 27 centres worldwide). Using the model predicted upgrading risks; we scheduled
biopsies whenever a patient’s upgrading risk was above a certain threshold. To assist patients/doctors in the choice of this
threshold, and to compare the resulting personalised schedule with currently practiced schedules, along with the timing and
the total number of biopsies (burden) planned, for each schedule we provided them with the time delay expected in
detecting upgrading (shorter is better).

Results
The cause-specific cumulative upgrading risk at the 5-year follow-up was 35% in PRIAS, and at most 50% in the GAP3
cohorts. In the PRIAS-based model, PSA velocity was a stronger predictor of upgrading (hazard ratio [HR] 2.47, 95%
confidence interval [CI] 1.93–2.99) than the PSA level (HR 0.99, 95% CI 0.89–1.11). Our model had a moderate area under
the receiver operating characteristic curve (0.6–0.7) in the validation cohorts. The prediction error was moderate (0.1–0.2)
in theGAP3 cohorts where the impact of the PSA level and velocity on upgrading risk was similar to PRIAS, but large (0.2–
0.3) otherwise. Our model required re-calibration of baseline upgrading risk in the validation cohorts. We implemented the
validated models and the methodology for personalised schedules in a web-application (http://tiny.cc/biopsy).

Conclusions
We successfully developed and validated a model for predicting upgrading risk, and providing risk-based personalised
biopsy decisions in AS of prostate cancer. Personalised prostate biopsies are a novel alternative to fixed one-size-fits-all
schedules, which may help to reduce unnecessary prostate biopsies, while maintaining cancer control. The model and
schedules made available via a web-application enable shared decision-making on biopsy schedules by comparing fixed and
personalised schedules on total biopsies and expected time delay in detecting upgrading.
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Introduction
Patients with low- and very-low-risk screening-detected
localised prostate cancer are usually recommended for active
surveillance (AS), instead of immediate radical treatment [1].
In AS, cancer progression is monitored routinely via PSA
measurement, DRE, repeat biopsies, and recently, MRI.
Among these, the strongest indicator of cancer-related
outcomes is the biopsy Gleason Grade Group (GGG) [2].
When it increases from GGG1 (Gleason 3 + 3) to GGG2
(Gleason 3 + 4) or higher, it is called ‘upgrading’ [3].
Upgrading is an important endpoint in AS upon which
patients’ are commonly advised curative treatments [4].

Biopsies in AS are always conducted with a time gap between
them. Consequently, upgrading is always detected with a time
delay (Fig. 1) that cannot be measured directly. In this regard,
to detect upgrading in a timely manner, many patients are
prescribed fixed and frequent biopsies, most often annually
[5]. However, such one-size-fits-all schedules lead to
unnecessary biopsies in slow/non-progressing patients.
Biopsies are invasive, may be painful, and are prone to
medical complications such as bleeding and septicaemia [6].
Thus, biopsy burden and patient non-compliance to frequent
biopsies [7] have raised concerns regarding the optimal
biopsy schedule [8,9] in AS.

Except for the confirmatory biopsy at 1 year of AS [7],
opinions and practice regarding the timing of remaining
biopsies lack consensus [10]. Some AS programmes utilise
patients’ observed PSA level, DRE, previous biopsy Gleason
Grade, and lately, MRI results to decide whether to take
biopsies [4,10,11]. In contrast, others discourage schedules
based on clinical data and MRI results [5,12], and instead
support periodical one-size-fits-all biopsy schedules.
Furthermore, some suggest replacing frequent periodical
schedules with infrequent ones (e.g. biennially) [8,13]. Each of
these approaches has limitations. For example, one-size-fits-all
schedules can lead to many unnecessary biopsies because of
differences in baseline upgrading risk across cohorts [8].
Whereas, as observed clinical data have measurement error
(e.g. PSA fluctuations) a flaw in using it directly is that it
may lead to poor decisions. Also, decisions based on clinical
data typically rely only on the latest data point and ignore
previous repeated measurements. A novel alternative that
counters these drawbacks is first processing patient data via a
statistical model, and subsequently using model-predicted

upgrading risks to create personalised biopsy schedules [10]
(Fig. 2). While, upgrading-risk calculators are not new
[14,15–17], not all are personalised either. Besides, they do
not specify how risk predictions can be exploited to create a
schedule.

The present work was motivated by the problem of
scheduling biopsies in AS. We had two goals. First, we
wanted to assist practitioners in using clinical data in biopsy
decisions in a statistically sound manner. To this end, we
planned to develop a robust, generalisable statistical model
that provides reliable individual upgrading risk in AS.
Subsequently, we would employ these predictions to derive
risk-based personalised biopsy schedules. Our second goal
was to enable shared decision-making on biopsy schedules.
We intended to achieve this by allowing patients and doctors
to compare the burden and benefit (Fig. 1) of opting for
personalised schedules vs periodical schedules vs schedules
based on clinical data. Specifically, we proposed timing and
number of planned biopsies (more/frequent are burdensome),
and the expected time delay in detecting upgrading (shorter is
beneficial) for any given schedule. While fulfilling our goals,
we wanted to capture the maximum possible information
from the available data. Hence, we used all repeated PSA
measurements of patients, previous biopsy results, and
baseline characteristics. To fit this model, we utilised data of
the world’s largest AS study, Prostate Cancer Research
International Active Surveillance (PRIAS). To evaluate our
model, we externally validated it in the largest six AS cohorts
from the Movember Foundation’s third Global Action Plan
(GAP3) database [18]. Last, we aimed to implement the
validated model and methodology in a web-application.

Patients and Methods
Study Cohort

For developing a statistical model to predict upgrading risk,
we used the world’s largest AS dataset, PRIAS [4], dated
April 2019 (Table 1). In PRIAS, biopsies were scheduled at 1,
4, 7, and 10 years, and additional yearly biopsies were
scheduled when PSA doubling time was between zero and
10 years. We selected all 7813 patients who had GGG1 at
inclusion in AS. Our primary event of interest was an
increase in this GGG observed upon repeat biopsy, called
‘upgrading’ (1134 patients). Upgrading is a trigger for
treatment advice in PRIAS. Some examples of treatment
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options in AS are radical prostatectomy, brachytherapy,
definitive radiation therapy, and other alternative local
treatments such as cryosurgery, high-intensity focussed
ultrasound, and external beam radiation therapy.
Comprehensive details on treatment options and their side-
effects are available in European Association of Urology
(EAU)-European Society for Radiotherapy and Oncology
(ESTRO)-International Society of Geriatric Oncology (SIOG)
guidelines on prostate cancer [19]. In PRIAS, 2250 patients
were provided treatment based on their PSA level, the
number of biopsy cores with cancer, or anxiety/other reasons.
However, our reason for focussing solely on upgrading was
that upgrading is strongly associated with cancer-related
outcomes, and other treatment triggers vary between cohorts
[10].

For externally validating our model’s predictions, we
selected the following largest (by the number of repeated
measurements) six cohorts from Movember Foundation’s
GAP3 database [18], version 3.1, covering nearly 73% of

the GAP3 patients: the University of Toronto AS
(Toronto), Johns Hopkins AS (Hopkins), Memorial Sloan
Kettering Cancer Center AS (MSKCC), King’s College
London AS (KCL), Michigan Urological Surgery
Improvement Collaborative AS (MUSIC), and University of
California San Francisco AS (UCSF, version 3.2). Only
patients with a GGG1 at the time of inclusion in these
cohorts were selected. Summary statistics are presented in
Appendix S1.2.

Choice of Predictors

In our model, we used all repeated PSA measurements, the
timing of the previous biopsy and Gleason Grade, and age at
inclusion in AS. Other predictors, e.g. prostate volume and
MRI results, can also be important. MRI is utilised already
for targeting biopsies, but regarding its use in deciding the
time of biopsies, there are arguments both for and against it
[11,12,20]. MRI is still a recent addition in most AS
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Fig. 1 Trade-off between the timing and number of biopsies (burden) and time delay in detecting Gleason upgrading (shorter is better): the true time

of Gleason upgrading (increase in GGG1 to GGG≥2) for the patient in this figure is July 2008. When biopsies are scheduled annually (Panel A),
upgrading is detected in January 2009 with a time delay of 6 months, and a total of four biopsies are scheduled. When biopsies are scheduled

biennially (Panel B), upgrading is detected in January 2010 with a time delay of 18 months, and a total of three biopsies are scheduled. As biopsies

are conducted periodically, the time of upgrading is observed as an interval. For example, between January 2008 and January 2009 in Panel A and

between January 2008 and January 2010 in Panel B. The phrase ‘Gleason Grade Group’ is shortened to ‘Gleason grade’ for brevity.
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protocols. Consequently, repeated MRI data were very
sparsely available in both PRIAS and GAP3 databases to
make a stable prediction model. Prostate volume data was
also sparsely available, especially in the validation cohorts.
Based on these reasons, we did not include them in our
model.

Statistical Model

Modelling an AS dataset such as PRIAS, posed certain
challenges. First, PSA level was measured longitudinally, and
over follow-up time it did not always increase linearly.
Consequently, we expect that PSA measurements of a patient
are more similar to each other than of another patient. In
other words, we needed to accommodate the within-patient
correlation for PSA level. Second, the PSA level was available
only until a patient observed upgrading. Thus, we also needed
to model the association between the Gleason Grades and
PSA profiles of a patient, and handle missing PSA
measurements after a patient had upgrading. Third, as the
PRIAS biopsy schedule uses PSA, a patient’s observed time of
upgrading was also dependent on their PSA. Thus, the effect
of PSA on the upgrading risk needed to be adjusted for the
effect of PSA on the biopsy schedule. Fourth, many patients
obtained treatment and watchful waiting before observing
upgrading. As we considered events other than upgrading as
censoring, the model needed to account for patients’ reasons
for treatment or watchful waiting (e.g. age, treatment based
on observed data). A model that handles these challenges in a
statistically sound manner is the joint model for time-to-
event and longitudinal data [14,21,22].
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Fig. 2 Motivation for upgrading risk based personalised biopsy decisions: to utilise patients’ complete longitudinal data and results from previous

biopsies in making biopsy decisions. For this purpose, we first process data using a statistical model and then utilise the patient-specific predictions for

risk of Gleason upgrading to schedule biopsies. For example, Patient A (Panel A) and B (Panel B) had their latest biopsy at 1 year of follow-up (green

vertical line). Patient A’s PSA profile remained stable until his current visit at 2 years, whereas patient B’s profile has shown a rise. Consequently, patient

B’s upgrading risk at the current visit (2 years) is higher than that of patient A. This makes patient B a more suitable candidate for biopsy than patient

A. Risk estimates in this figure are only illustrative.

Table 1 Summary of the PRIAS dataset as of April 2019.

Characteristic Value

Total patients, n 7813
Upgrading (primary event), n 1134
Treatment, n 2250
Watchful waiting, n 334
Loss to follow-up, n 249
Death (unrelated to prostate cancer), n 95
Death (related to prostate cancer), n 2
Age at diagnosis, years, median (IQR) 66 (61–71)
Maximum follow-up per patient, years, median (IQR) 1.8 (0.9–4.0)
Total PSA measurements, n 67 578
Number of PSA measurements per patient, median (IQR) 6 (4–12)
PSA level, ng/mL, median (IQR) 5.7 (4.1–7.7)
Total biopsies, n 15 686
Number of biopsies per patient, median (IQR) 2 (1–2)

IQR, interquartile range. The primary event of interest is upgrading, that is, increase
from GGG1 to GGG≥2 [2]. Study protocol URL: https://www.prias-project.org.
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Our joint model consisted of two sub-models; namely, a
linear mixed-effects sub-model [23] for longitudinally
measured PSA (log-transformed) and a relative-risk sub-
model (similar to the Cox model) for the interval-censored
time of upgrading. Patient age was used in both sub-models.
Results and timing of the previous negative biopsies were
used only in the risk sub-model. To account for PSA
fluctuations [24], we assumed t-distributed PSA measurement
errors. The correlation between PSA measurements of the
same patient was established using patient-specific random-
effects. We fitted a unique curve to the PSA measurements of
each patient (Panel A, Fig. 3 [2]). Subsequently, we calculated
the mathematical derivative of the patient’s fitted PSA profile

(Appendix S1, Equation 2), to obtain his follow-up time-
specific instantaneous PSA velocity (Panel B, Fig. 3). This
instantaneous velocity is a stronger predictor of upgrading
than the widely used average PSA velocity [25].

We modelled the impact of PSA on upgrading risk by
employing fitted PSA level and instantaneous velocity as
predictors in the risk sub-model (Panel C, Fig. 3). We
adjusted the effect of PSA on upgrading risk for the PSA-
dependent PRIAS biopsy schedule by estimating parameters
using a full likelihood method (proof in Appendix S1). This
approach also accommodates watchful waiting and treatment
protocols that are also based on patient data. Specifically, the
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parameters of our two sub-models were estimated jointly
under the Bayesian paradigm (Appendix S1) using the R
package JMbayes [26].

Risk Prediction and Model Validation

Our model provides predictions for upgrading risk over the
entire future follow-up period of a patient (Panel C, Fig. 3).
However, we recommend using predictions only after 1 year.
This is because most AS programmes recommend a
confirmatory biopsy at 1 year, especially to detect patients
who may be misdiagnosed as low grade at inclusion in AS.
The risk predictions for a patient are not calculated only
once. Rather, as illustrated in Fig. S5 of Appendix S2, risk-
predictions update over the follow-up, to account for
additional patient data (e.g. new biopsy results, PSA
measurements) that become available. We validated our
model internally in the PRIAS cohort, and externally in the
largest six GAP3 database cohorts. We employed calibration
plots [27,28] and follow-up time-dependent mean absolute
risk prediction error (MAPE) [29] to graphically and
quantitatively evaluate our model’s risk prediction accuracy,
respectively. We assessed our model’s ability to discriminate
between patients who experience/do not experience upgrading
via the time-dependent area under the receiver operating
characteristic curve (AUC) [29].

The aforementioned time-dependent AUC and MAPE [29]
are temporal extensions of their standard versions [28] in a
longitudinal setting. Specifically, at every 6 months of
follow-up, we calculated a unique AUC and MAPE for
predicting upgrading risk in the subsequent 1 year
(Appendix S2.1). For emulating a realistic situation, we
calculated the AUC and MAPE at each follow-up using only
the validation data available until that follow-up. For
example, calculations for AUC and MAPE for the time
interval 2–3 years do not utilise data of patients who
progressed before 2 years. Last, to resolve any potential
model miscalibration in the validation cohorts, we aimed to
re-calibrate our model’s baseline hazard of upgrading
(Appendix S2.1), individually for each cohort.

Results
The cause-specific cumulative upgrading risk at the 5-year
follow-up was 35% in PRIAS and at most 50% in the
validation cohorts (Panel B, Fig. 4). In the fitted PRIAS
model, the adjusted hazard ratio (aHR) of upgrading for an
increase in patient age from 61 to 71 years (25th to 75th
percentile) was 1.45 (95% CI 1.30–1.63). For an increase in
fitted PSA level from 2.36 to 3.07 ng/mL (25th to 75th
percentile, log scale), the aHR was 0.99 (95% CI 0.89–1.11).
The strongest predictor of upgrading risk was instantaneous
PSA velocity, with an increase from �0.09 to 0.31 (25th to
75th percentile), giving an aHR of 2.47 (95% CI 1.93–2.99).

The aHR for PSA level and velocity was different in each
GAP3 cohort (Appendix S1.3: Table S8).

The time-dependent AUC, calibration plot, and time-
dependent MAPE of our model are shown in Fig. 4, and
Appendix S2.1: Fig. S8. In all cohorts, time-dependent AUC
was moderate (0.6–0.7) over the whole follow-up period.
Time-dependent MAPE was moderate (0.1–0.2) in those
cohorts where the impact of PSA on upgrading risk was
similar to PRIAS (e.g. Hopkins cohort, Appendix S1.3:
Table S8), and large (0.2–0.3) otherwise. Our model was
miscalibrated for the validation cohorts (Panel B, Fig. 4)
because cohorts had differences in inclusion criteria (e.g. PSA
density) and follow-up protocols [18], which were not
accounted for in our model. Consequently, the PRIAS-based
model’s fitted baseline hazard did not correspond to the
baseline hazard in the validation cohorts. To solve this
problem, we re-calibrated the baseline hazard of upgrading in
the validation cohorts (Appendix S2.1: Fig. S6). We compared
risk predictions from the re-calibrated models, with
predictions from separately fitted cohort-specific joint models
(Appendix S2.1: Fig. S7). The difference in predictions was
lowest in the Hopkins cohort (impact of PSA on upgrading
risk similar to PRIAS). Comprehensive results are in
Appendix S1.3 and Appendix S2.

Personalised Biopsy Schedules

We used the PRIAS-based fitted model to create personalised
biopsy schedules for real PRIAS patients. Particularly, first
using the model and patient’s observed data; we predicted his
cumulative upgrading risk (Fig. 5) on all of his future follow-
up visits (biannually in PRIAS). Subsequently, we planned
biopsies on those future visits where his conditional
cumulative upgrading risk was more than a certain threshold
(see Appendix S3 for mathematical details). The choice of
this threshold dictates the timing of biopsies in a risk-based
personalised schedule. For example, personalised schedules
based on 5% and 10% risk thresholds are shown in Fig. 5,
and in Appendix S3.1: Figs S10–S12.

To facilitate the choice of a risk threshold, and for comparing
the consequences of opting for a risk-based schedule vs any
other schedule (e.g. annual, PRIAS), we predict expected time
delay in detecting upgrading for following a schedule. We
were able to predict this delay for any schedule. For example,
in Panel C of Fig. 5, the annual schedule has the least
expected delay. In contrast, a personalised schedule based on
a 10% risk threshold has a slightly larger expected delay, but
it also schedules much fewer biopsies. An important aspect of
this delay is that it is personalised as well. That is, even if two
different patients are prescribed the same biopsy schedule,
their expected delays will be different. This is because delay is
estimated using all available clinical data of the patient
(Appendix S3). While the timing and the total number of
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planned biopsies denote the burden of a schedule, a shorter
expected time delay in detecting upgrading can be a benefit.
These two, along with other measures such as a patient’s
comorbidities, anxiety, etc., can help to make an informed
biopsy decision.

Web-application

We implemented the PRIAS-based model, re-calibrated
models for GAP3 cohorts, and personalised schedules in a
user-friendly web-application https://emcbiostatistics.shinya
pps.io/prias_biopsy_recommender/. This application works on
both desktop and mobile devices. Users must first choose the
cohort to which the patient belongs (left panel), and then
upload patient data in Microsoft Excel format. Internally, the
web-application loads the appropriate validated and re-
calibrated model for that cohort. The maximum follow-up
time up to which predictions can be obtained depends on
each cohort (Appendix S2.1: Table S9). The web-application
supports personalised, annual, and PRIAS schedules. For
personalised schedules, users can control the choice of risk
threshold. The web-application also compares the resulting
risk-based schedule’s timing of biopsies, and expected time
delay in detecting upgrading, with annual and PRIAS
schedules, to enable sharing biopsy decision-making.

Discussion
We successfully developed and externally validated a
statistical model for predicting upgrading risk [3] in prostate
cancer AS, and providing risk-based personalised biopsy
decisions. Our present work has four novel features over
earlier risk calculators [14,15]. First, our model was fitted to
the world’s largest AS dataset, PRIAS, and externally
validated in the largest six cohorts of the Movember
Foundation’s GAP3 database [18]. Second, the model predicts
a patient’s current and future upgrading risk in a personalised
manner. Third, using the predicted risks, we created
personalised biopsy schedules. We also calculated the
expected time delay in detecting upgrading (less is beneficial)
for following any schedule. Thus, patients/doctors can
compare schedules before making a choice. Fourth, we
implemented our methodology in a user-friendly web-
application (https://emcbiostatistics.shinyapps.io/prias_biopsy_
recommender/) for both PRIAS and the validated cohorts.

Our present model and methods can be useful for numerous
patients from PRIAS and the validated GAP3 cohorts (nearly
73% of all GAP3 patients). The model utilises all repeated
PSA measurements, results of previous biopsies, and baseline
characteristics of a patient. We could not include MRI and
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PSA density because of sparsely available data in both the
PRIAS and GAP3 databases. But, our present model is
extendable to include them in the near future. A benefit of
our present model is that it allows the biopsy schedule,
schedule of longitudinal measurements, and loss to follow-up
in each cohort to depend on patient age and PSA
characteristics. Consequently, in future, when MRI data is
included in the model, our model will also accommodate
biopsy schedules dependent on MRI data or MRI schedules
dependent on previous biopsy results, PSA characteristics,
and age of the patient (mathematical proof in
Appendix S1.2). An additional advantage of our present
model and resulting personalised schedules is that they
update as more patient data becomes available over

follow-up. The current discrimination ability of our model,
exhibited by the time-dependent AUC, was between 0.6 and
0.7 over-follow. While this is moderate, it is also so because
unlike the standard AUC [28] the time-dependent AUC is
more conservative, as it utilises only the validation data
available until the time at which it is calculated. The same
holds for the time-dependent MAPE, although MAPE varied
much more between cohorts than the AUC. In cohorts where
the effect size for the impact of PSA level and velocity on
upgrading risk was similar to that for PRIAS (e.g. Hopkins
cohort), the MAPE was moderate. Otherwise, the MAPE was
large (e.g. KCL and MUSIC cohorts). We required re-
calibration of our model’s baseline hazard of upgrading for all
the validation cohorts.
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The clinical implications of our present work are as follows.
First, the cause-specific cumulative upgrading risk at the 5-
year follow-up was at most 50% in all cohorts (Panel B,
Fig. 4). That is, many patients may not require some of the
biopsies planned in the first 5 years of AS. Given the non-
compliance and burden of frequent biopsies [7], the
availability of our methodology as a web-application may
encourage patients/doctors to consider upgrading risk-based
personalised schedules instead. Despite the moderate
predictive performance, we expect the overall impact of our
model to be positive. There are two reasons for this. First, the
risk of adverse outcomes because of personalised schedules is
quite low because of the low rate of metastases and prostate
cancer specific mortality in AS patients (Table 1). Second,
studies [8,31] have suggested that after the confirmatory
biopsy at 1 year of follow-up, biopsies may be done as
infrequently as every 2–3 years, with limited adverse
consequences. In other words, longer delays in detecting
upgrading may be acceptable after the first negative biopsy.
To evaluate the potential harm of personalised schedules, we
compared them with fixed schedules in a realistic and
extensive simulation study [32]. We concluded that
personalised schedules plan, on average, six fewer biopsies
compared to annual schedule and two fewer biopsies than the
PRIAS schedule in slow/non-progressing AS patients, while
maintaining almost the same time delay in detecting
upgrading as the PRIAS schedule. Personalised schedules with
different risk thresholds indeed have different performances
across cohorts. Thus, to assist patients/doctors in choosing
between fixed schedules and personalised schedules based on
different risk thresholds, the web-application provides a
patient-specific estimate of the expected time delay in
detecting upgrading, for both personalised and fixed
schedules. We hope that access to these estimates will
objectively address patient apprehensions regarding adverse
outcomes in AS. Last, we note that our web-application
should only be used to decide biopsies after the compulsory
confirmatory biopsy at 1 year of follow-up.

This work has certain limitations. Predictions for upgrading
risk and personalised schedules are available only for a
currently limited, cohort-specific, follow-up period
(Appendix S2.1: Table S9). This problem can be mitigated by
re-fitting the model with new follow-up data in the future.
Recently, some cohorts started utilising MRI to explore the
possibility of targeting visible lesions by biopsy. Presently, the
GAP3 database has limited PSA density and MRI follow-up
data available. As PSA density is used as an entry criterion in
some AS studies, including it as a predictor can improve the
model. In this regard, the present model can be extended to
include both MRI and PSA density data as predictors when
they become available in the future. Our model schedules
biopsies in a personalised manner, but the patient burden can
be decreased even more if we also personalise the schedule of

PSA measurements. A caveat of doing so is that reduction in
the number of PSA measurements can also lead to an
increase in the variance of risk estimates, and also affect the
performance of personalised schedules. Although we have
done a simulation study to conclude that personalised
schedules may not be any more harmful than PRIAS or an
annual schedule [32], with an infrequent PSA schedule, these
conclusions may not hold. Hence, we do not recommend any
changes in the schedule of PSA measurements from the
current protocol of PSA measurements every 6 months. At
the same time, personalising the schedule of both biopsies
and PSA measurements together is a research problem we
intend to tackle in the near future. We scheduled biopsies
using cause-specific cumulative upgrading risk, which ignores
competing events such as treatment based on the number of
positive biopsy cores. Employing a competing-risk model may
lead to improved personalised schedules. Upgrading is
susceptible to inter-observer variation too. Models that
account for this variation [14,33] will be interesting to
investigate further. Even with an enhanced risk-prediction
model, the methodology for personalised scheduling and
calculation of expected time delay (Appendix S3) need not
change. Last, our web application only allows uploading
patient data in Microsoft Excel format. Connecting it with
patient databases can increase usability.

Conclusions
We successfully developed a statistical model and
methodology for predicting upgrading risk, and providing
risk-based personalised biopsy decisions, in prostate cancer
AS. We externally validated our model, covering nearly 73%
patients from the Movember Foundations’ GAP3 database.
The model, made available via a user-friendly web-application
(https://emcbiostatistics.shinyapps.io/prias_biopsy_recomme
nder/), enables shared decision-making of biopsy schedules by
comparing fixed and personalised schedules on total biopsies
and expected time delay in detecting upgrading. Novel
biomarkers and MRI data can be added as predictors in the
model to improve predictions in the future. Re-calibration of
baseline upgrading risk is advised for cohorts not validated in
this work.
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