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ABSTRACT: Background: Numerous studies indicate
an association between neurodegenerative and meta-
bolic diseases. Although still a matter of debate, growing
evidence from epidemiological and animal studies indi-
cate that preexisting diabetes increases the risk to
develop Parkinson’s disease. However, the mechanisms
of such an association are unknown.
Objectives: We investigated whether diabetes alters
striatal dopamine neurotransmission and assessed the
vulnerability of nigrostriatal neurons to neurodegeneration.
Methods: We used streptozotocin-treated and geneti-
cally diabetic db/db mice. Expression of oxidative
stress and nigrostriatal neuronal markers and levels of
dopamine and its metabolites were monitored. Dopa-
mine release and uptake were assessed using fast-
scan cyclic voltammetry. 6-Hydroxydopamine was uni-
laterally injected into the striatum using stereotaxic sur-
gery. Motor performance was scored using specific
tests.

Results: Diabetes resulted in oxidative stress and
decreased levels of dopamine and its metabolites in the
striatum. Levels of proteins regulating dopamine release
and uptake, including the dopamine transporter, the
Girk2 potassium channel, the vesicular monoamine
transporter 2, and the presynaptic vesicle protein syn-
aptobrevin-2, were decreased in diabetic mice. Electri-
cally evoked levels of extracellular dopamine in the
striatum were enhanced, and altered dopamine uptake
was observed. Striatal microinjections of a subthreshold
dose of the neurotoxin 6-hydroxydopamine in diabetic
mice, insufficient to cause motor alterations in
nondiabetic animals, resulted in motor impairment, higher
loss of striatal dopaminergic axons, and decreased neu-
ronal cell bodies in the substantia nigra.
Conclusions: Our results indicate that diabetes pro-
motes striatal oxidative stress, alters dopamine neuro-
transmission, and increases vulnerability to
neurodegenerative damage leading to motor impairment.
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Metabolic and neurodegenerative disorders have
increased their incidence worldwide for several decades.
Diabetes has reached epidemic proportions, and its inci-
dence is predicted to double by 2030 relative to figures
obtained in 2000.1 Alzheimer’s (AD) and Parkinson’s dis-
eases (PD) are becoming more prevalent in the elderly
population, and the number of individuals affected by
PD is predicted to increase in a similar proportion to that
of diabetes.2 Thus, determining whether the presence of
prevalent metabolic disorders increases the risk of neuro-
degenerative diseases is of great importance.
Evidence that diabetes constitutes a risk factor associated

with increased incidence of neurodegenerative diseases has
been accumulating in recent years. This association has
been more clearly observed in epidemiological and experi-
mental studies in the case of AD, in which the greater risk
of cognitive decline in diabetic patients is well docu-
mented.3,4 In the case of PD, a number of epidemiological
studies indicate the existence of increased incidence in asso-
ciation with preexisting diabetes.5-11 Insulin resistance in
parkinsonian patients is associated with accelerated disease
progression, increased severity of motor impairment, and
increased risk of PD dementia.12-14 Furthermore, a number
of patients with diabetes mellitus without PD exhibit
pathologies related to subclinical striatal dopaminergic dys-
function.15 Diabetes and PD share common etiopathogenic
mechanisms,16,17 and the finding of α-synuclein inclusions
in pancreatic β cells of diabetic patients further supports an
association between both diseases.18

Despite these findings, other studies have reported
that this association is weak or even nonexistent.19-22

These discrepancies have been attributed to heteroge-
neity in self-reporting or diagnostic criteria, differ-
ences in study size or design, genetic ancestry or
lifestyle habits of patients, or presence of other poorly
adjusted confounders. Therefore, from an epidemio-
logical point of view, whether the preexistence of dia-
betes increases the risk of developing PD remains a
matter of debate.
Although the most recent reports, including large

cohort studies, support an association between preced-
ing diabetes mellitus and PD, the possible mechanisms
by which diabetes favors the development of PD are
unknown. Animal and human studies indicate that
early impairment of synaptic function occurs before
neurodegeneration takes place.23-25 Therefore, we
investigated whether the presence of diabetes in mice
results in changes in dopaminergic neurotransmission
in the striatum that could correlate with increased sensi-
tization of nigrostriatal neurons to neurodegeneration.

Materials and Methods
Animals

We used C57BL/6J mice (n = 166) to generate
streptozotocin (STZ)-induced diabetes. Diabetic BKS-D-
Lepr db/db mice, in which hyperglycemia develops at 4
to 8 weeks of age,26 or nondiabetic heterozygote BKS-
D-Lepr db/+ mice (Janvier Labs, Le Genest-Saint-Isle,
France) were also used (n = 79; body weights at the
time of testing: db/db, 48.2 ± 0.82; db/+, 27.5 ± 0.75
g). All were 15- to 20-week-old males housed under a
12:12-hour dark/light cycle at 22 ± 2�C with food and
water ad libitum. The Consejo Superior de
Investigaciones Científicas (CSIC) Ethics Committee or
the University of Oxford Ethical Review Board
approved the experimental protocols following Euro-
pean Union (63/2010/EU) and Spanish legislation (RD
53/2013) or the United Kingdom Animals (Scientific
Procedures) Act (1986).

STZ-Dependent Diabetes
STZ (50 mg/kg, i.p.; Sigma-Aldrich, St. Louis, MO)

was administered for 5 consecutive days.27,28 Mice
were considered diabetic when glucose levels monitored
with a glucometer (Accu Chek Performa Nano; Roche,
Basel, Switzerland), using tail blood after a 4-hour fast,
were >250 mg/dL. Control mice were injected with
vehicle (10 mM of sodium citrate, 0.9% NaCl; pH
4.5). When indicated, sustained-release insulin pellets
(LinShin, Toronto, Ontario, Canada) were implanted
subcutaneously after STZ treatment, and stable recov-
ery of blood glucose levels was monitored weekly
(Supporting Information Figs. S1 and S2).

Brain Dissection
Dissections of caudate putamen (CPu) and substantia

nigra (SN) were performed as shown in Supporting
Information Figure S3.

Reverse Transcription Quantitative Polymerase
Chain Reaction

RNA was extracted using TRI Reagent Solution
(Ambion, Inc, Austin, TX) from freshly dissected small
blocks of mesencephalic tissue containing the SN.
SYBR Green detection (Applied Biosystems, Hercules,
CA) was used, and values were normalized to glyceral-
dehyde 3-phosphate dehydrogenase (Gapdh) mRNA
levels using the double delta threshold cycle (Ct)
method. Stability of Gapdh as a reference gene was
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confirmed using GeNorm29 (Supporting Information
Fig. S4) and is in agreement with previous studies
showing stable expression in diabetic mice.28,30 Primer
sequences were obtained from the MGH-Harvard
PrimerBank (https://pga.mgh.harvard.edu/primerbank).

Western Blot
Protein extracts were prepared from the SN or the

CPu freshly dissected on ice. Antibodies used are indi-
cated in Supporting Information Table S1. Bands were
visualized with ECL (GE Healthcare, Waukesha, WI),
and densitometry was performed using ImageJ (http://
rsbweb.nih.gov/ij/).

Catalase Activity, Glutathione, and 4-
Hydroxynonenal

The following kits were used: catalase activity and
glutathione (GSH) production, Cayman Chemical (Ann
Arbor, MI); 4-hydroxynonenal (4-HNE) content, Cell
Biolabs HNE Adduct Competitive ELISA Kit (Cell Bio-
labs, Inc., San Diego CA). Samples were processed from
freshly dissected CPu as specified by the manufacturers.

High-Performance Liquid Chromatography
The CPu was rapidly removed on ice and frozen at –

80�C. Monoamines and their metabolites were deter-
mined using an ESA Coulochem III detector.31

Fast-Scan Cyclic Voltammetry
Fast-scan cyclic voltammetry (FSCV) was performed

as described.32,33 Freshly prepared coronal slices (300
μm) were incubated in artificial cerebrospinal fluid
(aCSF; saturated with 95% O2/5% CO2) containing
10 mM glucose. A hemisphere containing both CPu
and nucleus accumbens core (NAc) from each of a dia-
betic and nondiabetic mouse were placed in the record-
ing chamber together and superfused with aCSF.
Extracellular concentrations of dopamine ([DA]o)
evoked by local electrical stimuli (200 μs, 0.6 mA) were
monitored at single-use carbon-fiber microelectrodes
(7–10 μm in diameter) fabricated in-house (tip length:
50–100 μm) using a Millar voltammeter (Julian Millar,
Barts, and the London School of Medicine and Den-
tistry). Evoked [DA]o was sampled at three recording
sites in the dorsolateral striatum (DLS) and two in the
NAc. The order of location and diabetic/nondiabetic
sampling was randomized for each pair of slices.

Microinjections of 6-OHDA
A subthreshold dose (2.5 μg/μL in two deposits of 2

μL each) of 6-OHDA (10 mM solution in 0.9% NaCl/
0.2% ascorbic acid; Sigma-Aldrich, Madrid, Spain),
defined as a dose that does not induce motor impair-
ment in nondiabetic mice, corresponding to half the

dose required to induce overt neurodegeneration of
nigrostriatal axons,34 was injected unilaterally under
2% isoflurane anesthesia into the dorsal striatum using
a Hamilton syringe. Stereotaxic coordinates were:
AP = 0.65, L = 2.0, DV1 = –4 and DV2 = –3.5.35 In
STZ-treated mice, 6-OHDA was injected either 2 or
4 weeks after the onset of hyperglycemia. The mortality
rate was 8% in nondiabetic mice and 30% in diabetic
animals, in consonance with previously reported fig-
ures.36 Mice were tested 10 days after 6-OHDA
administration.

Motor Function
Mice were tested at 24-hour intervals and killed 24

hours after the last test (15 days after 6-OHDA admin-
istration). The following tests were used:

Challenging Traversal Beam Test

Mice were trained for 2 consecutive days to walk
across the length of a 1-m-long beam with a grid sur-
face becoming gradually narrower (from 3.5 to 0.5
cm). On the test day, mice were videotaped and the
time to traverse the beam and the number of paw mis-
ses when stepping were scored.37

Cylinder Test

Mice were individually placed in a transparent cylin-
der to assess the asymmetry in the spontaneous use of
forelimbs. The number of wall contacts made with the
ipsilateral and the contralateral forepaws (relative to
the 6-OHDA injection side) during 3 minutes were
videotaped and scored.38

Rota-Rod Test

We used an accelerating rota-rod apparatus (Hugo
Basile, Gemonio, Italy) as described.31 Rotation acceler-
ated from 4 to 40 rpm (or 4–20 rpm for db/db mice)
within 5 minutes, and the time to fall was determined.

Amphetamine-Induced Rotation Test

Rotational behavior was assessed only with db/db
mice because their obesity prevented the use of the cyl-
inder and challenging traversal beam tests. Following
administration of D-amphetamine sulfate (5 mg/kg, i.p.;
Sigma-Aldrich), full-body turns toward the ipsilateral 6-
OHDA injection side were scored using rotometer
bowls.39

Immunohistochemistry and Lesion
Quantification

All animals used for histological assessment had been
tested for motor performance. Coronal free-floating sec-
tions (30 μm) from a slicing vibratome were incubated
overnight with tyrosine hydroxylase (TH) or dopamine
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transporter (DAT) antibodies (Supporting Information
Table S1) for diaminobenzidine-immunoperoxidase
staining. Staining intensity was quantified by digital
image analysis (Imaging Research Inc, Linton, UK).40

Stereological Quantification of TH-Positive
Neurons

The number of TH-positive neurons in the SN pars
compacta (SNc) was determined on coronal mesence-
phalic sections using stereology on an optical
fractionator.40

Statistical Analyses
Data were analyzed by one- or two-way analysis of

variance (ANOVA), followed by Dunnett’s or
Bonferroni’s tests, respectively, or by two-tailed Stu-
dent’s t test, using GraphPad Prism software (GraphPad
Software Inc., La Jolla, CA). Data are expressed as
mean ± SEM.

Results

To investigate whether hyperglycemia and insulin
depletion are sufficient to generate oxidative stress in
nigrostriatal neurons, we used STZ-treated diabetic
mice. Expression of mRNAs encoding the oxidative
stress-related transcription factors, nuclear factor ery-
throid 2–related factor 2 (Nrf2) or forkhead box O1
(FoxO1),41,42 in the SN were higher than in controls,
whereas expression of the mRNA encoding the Nrf2
inhibitor Keap1 was decreased (Fig. 1A). Consistently,
we detected elevated expression of mRNAs encoding
the oxidative stress-scavenging enzymes, catalase and
superoxide dismutase (SOD) 2, but not of those
encoding SOD1 or aldehyde dehydrogenase 1a1
(Fig. 1B), suggesting the presence of a defense response
against oxidative stress. Changes in SOD2 mRNA did
not translate into significant differences in protein levels
between STZ-diabetic and control mice in either the SN
or CPu (Fig. 1C–E). Remarkably, catalase protein levels
were similar in the SN in both groups, but were signifi-
cantly decreased in the CPu of 4-week STZ-diabetic
mice (Fig. 1C–E), suggesting impaired axonal transport
or enhanced degradation in striatal fibers. Consistently,
STZ-diabetic mice showed decreased catalase activity in
the CPu (Fig. 1F).
Glutathione peroxidase 1 mRNA was transiently

decreased in the SN in 2-week STZ-diabetic mice, but
became elevated relative to controls after 4 weeks
(Fig. 1G). The mRNA of the antioxidant gene gluta-
mate-cysteine ligase, catalytic subunit (GCLc), encoding
the rate-limiting enzyme for the synthesis of glutathi-
one,43 was transiently elevated in diabetic mice, an
effect not observed with the modifier subunit (GCLm;

Fig. 1G). In the CPu, no significant changes in the levels
of GSH were detected (Fig. 1H).
Inducible nitric oxide synthase (NOS) mRNA was

also markedly increased in STZ-diabetic mice after
4 weeks, whereas the mRNA encoding neuronal NOS
showed a transient and relatively small increase
(Fig. 1I). Together, these changes indicated the occur-
rence of oxidative stress in the brain associated with
diabetes. This was further confirmed with the observa-
tion of higher levels of the oxidative stress marker 4-
HNE in the CPu of 4-week STZ-diabetic mice relative
to nondiabetic controls (Fig. 1J), reflecting the presence
of cellular damage.
Given that altered dopamine metabolism can contrib-

ute to increased vulnerability of nigrostriatal neurons
by oxidative stress,44,45 we investigated whether diabe-
tes is accompanied by alterations in the content of
dopamine and its metabolites in striatal axons. In STZ-
diabetic mice, we found decreased levels of dopamine,
3,4-dihydroxyphenylacetic acid (DOPAC), and 3-meth-
oxytyramine (3-MT) in the CPu relative to nondiabetic
controls (Fig. 1K–M). Levels of noradrenaline, seroto-
nin (5-HT), or its metabolite, 5-hydroxyindoleacetic
acid (5-HIAA), were similar in both groups (Supporting
Information Fig. S5). Furthermore, DOPAC/dopamine
and 3-MT/dopamine ratios were decreased in STZ-dia-
betic mice (Fig. 1N,O), indicating altered dopamine
turnover. In db/db mice (blood glucose in db/+ and db/
db mice before experiments were 109 ± 3.1 and 515
± 19.7 mg/dL, respectively), dopamine levels were simi-
lar, but DOPAC, 3-MT, and their ratios to dopamine
were decreased (Fig. 1P–T). These data indicate that
striatal dopamine metabolism is affected in mouse
models of both type 1 and type 2 diabetes.
To investigate the possible damage to nigrostriatal

neurons induced by diabetes, we determined the expres-
sion of dopaminergic neuron markers in the SN of
STZ-treated or db/db diabetic mice. We found no sig-
nificant changes in levels of mRNAs encoding TH, the
transcription factors nuclear receptor-related 1 protein
(Nurr1) and LIM homeobox transcription factor 1 beta
(Lmxb1), or the dopamine D2 autoreceptors, indicating
that diabetes per se did not affect the integrity of these
neurons (Fig. 2A,B). Notably, levels of the mRNAs
encoding DAT and the G-protein-activated inward rec-
tifier potassium channel 2 (Girk2), two proteins
expressed in dopaminergic neurons, were decreased in
STZ-treated mice (Fig. 2A). Western blots confirmed
similar striatal levels of TH, suggesting the absence of a
significant loss of dopaminergic fibers from nigrostriatal
neurons, and decreased striatal levels of DAT and
Girk2 in both models of diabetic mice, indicating the
presence of specific changes in expression of key pro-
teins regulating dopamine neurotransmission (Fig. 2C,
D). Additional evidence for a possible dysfunction in
striatal dopaminergic axons in both types of diabetic
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FIG. 1. Oxidative stress in the SN and CPu. (A,B) Levels of mRNAs encoding oxidative stress-related transcription factors (A) or oxidative stress-scav-
enging enzymes (B) in the SN (n = 4–8 in [A] and 6–8 in [B]). (C,D) Western blots with lysates from the SN (C) or the CPu (D) of nondiabetic or STZ-
treated 4-week diabetic mice. The numbers on top of each lane indicate individual mice from which samples were obtained. (E) Densitometric quantifi-
cation of the intensities of the catalase (CAT) and SOD2 bands from panels (C) and (D). (F) Catalase activity in CPu homogenates (n = 3 per group). (G)
Expression of mRNAs encoding glutathione-related enzymes in the SN (n = 5–8 per group). (H) GSH production in CPu homogenates (n = 8 per group).
(I) Expression of mRNAs encoding iNOS or nNOS in the SN (n = 6–7 per group). (J) Levels of the ROS indicator product 4-HNE in CPu homogenates
(n = 11 for ND and 9 for SD). (K–T) Levels of dopamine and its metabolites, DOPAC and 3-MT, in CPu homogenates from nondiabetic and STZ-treated
diabetic mice (K–O, n = 6 per group) or from db/+ control and db/db diabetic mice (P–T, n = 4 per group). *P < 0.05; **P < 0.01; ***P < 0.001 versus
nondiabetic controls, one-way ANOVA followed by Dunnett’s post-hoc test (A,B,G,I,K–O) or Student’s t test (E,F,J,Q–T). ND, nondiabetic; SD, STZ-
treated diabetic (4-week, unless otherwise indicated in [K–O]); GPX1, glutathione peroxidase 1; GCL, glutamate-cysteine ligase, catalytic (c) or modula-
tory (m) subunits
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mice was the observation of decreased levels of the
vesicular monoamine transporter 2 (VMAT2), and the
vesicle-associated protein, synaptobrevin-2 (Syb2;
Fig. 2E,F), without significant changes in expression of
mRNAs encoding these proteins in the SN (Supporting
Information Fig. S6).
The decreased levels of proteins present in striatal

axons led us to hypothesize that diabetes could alter
dopamine neurotransmission in the CPu. To test this,
we used FSCV to characterize dopamine release and
uptake evoked in ex vivo slices of DLS and for compar-
ison in NAc. In both STZ-treated and db/db diabetic
mice compared to their controls, we found a modest
increase in the mean peak [DA]o evoked by single elec-
trical pulses in the DLS (to 113%, STZ; and 125%, db/
db) and significant changes in the shape of mean

extracellular dopamine transients (Fig. 3A–C). These
effects were not observed in the NAc, where there was
no significant change in mean peak or shape of [DA]o
profiles (Fig. 3D,E). To investigate whether in DLS
there was an underlying decrease in dopamine uptake
kinetics, we used two methods to analyze the falling
phases of [DA]o profiles—approximations to exponen-
tial decay and to a Michaelis-Menten–like relation-
ship—as described.33 In STZ-diabetic, but not in db/db,
mice, analyses of [DA]o profiles revealed significantly
lower values for mean uptake constant (Fig. 3F–I) and
Vmax (Fig. 3J–L) than in control mice.
The observed changes in diabetic mice did not trans-

late into appreciable alterations in motor function
(Fig. 4). Therefore, we investigated whether these
changes could be associated with increased sensitization

FIG. 2. Diabetes decreases the striatal levels of axonal proteins in dopaminergic terminals. (A,B) Expression of mRNA encoding markers of dopamine
neurons in the SN of nondiabetic or STZ-diabetic mice (A; n = 6–7 per group) or of db/+ control and db/db diabetic mice (B; n = 8 per group). (C–F)
Western blots with CPu lysates from nondiabetic or STZ-diabetic (4 weeks) mice (C,E) or from db/+ control and db/db diabetic mice (D,F). Numbers on
top of each lane indicate individual mice from which samples were obtained. The arrow in (E) indicates the band from which densitometric measure-
ments were performed. Densitometric quantification of the bands is represented by histograms on the right side of each panel. *P < 0.05; **P < 0.01;
***P < 0.001 versus nondiabetic controls, one-way ANOVA followed by Dunnett’s post-hoc test (A) or Student’s t test (C–F). D2R, dopamine D2
autoreceptor
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to nigrostriatal neurodegeneration. As expected,
nondiabetic animals did not develop motor impairment
after unilateral striatal microinjections of a subthresh-
old dose of 6-OHDA (Fig. 4). In contrast, STZ-treated
animals showed decreased use of the paws contralateral
to the injection side on the cylinder test (Fig. 4A),
decreased latency to fall on the rotarod (Fig. 4B), and
increased time to cross the beam on the challenging tra-
versal test (Fig. 4C), the latter being correlated with an

increased number of errors of the contralateral paws
(Fig. 4D; Videos 1 and 2). Mice that were implanted
with insulin pellets after STZ treatment did not develop
motor impairments (Fig. 4A–C), indicating that these
were not attributed to STZ toxicity. Furthermore,
microinjection of 6-OHDA into the striatum of db/db
mice resulted in decreased latency to fall on the rotarod
(Fig. 4E) and increased ipsilateral rotations after
amphetamine injections relative to db/+ controls

FIG. 3. Dopamine release and uptake kinetics in the striatum. (A) Schematic depiction showing DLS and NAc regions sampled with FSCV. (B,D) Left:
mean profiles of [DA]o ± SEM evoked by a single electrical pulse in DLS (B; n = 61 recordings; P = 0.06, paired Student’s t test) or NAc (D; n = 40
recordings) in vehicle-treated nondiabetic controls (blue) or STZ-treated 4-week diabetic mice (red); **P < 0.01, two-way ANOVA between dotted lines,
treatment × time interaction, F8,960 = 2.682. Right: population data and mean ± SEM for peak [DA]o;

*P < 0.05, paired Student’s t test. (C and E) Left:
mean profiles of [DA]o ± SEM evoked by a single electrical pulse in DLS (C; n = 48 recordings) or NAc (E; n = 33 recordings) in db/+ nondiabetic con-
trols (blue) and db/db diabetic mice (red); ***P < 0.0001, two-way ANOVA between dotted lines, treatment x time interaction, F8,752 = 4.422. Right, popu-
lation data and mean ± SEM for peak [DA]o;

**P < 0.01, paired Student’s t test. Population data sets in (B–E) were checked for outliers with Grubb’s
test (α = 0.05). (F) Schematic depiction showing DLS regions assessed for uptake kinetics. (G) Representative fit (orange dashed) of a one-phase expo-
nential decay curve approximation to the falling phase of a typical extracellular dopamine profile (black; R2 = 0.99). (H,I) Population data and mean ±
SEM for exponential decay constants (k) from approximation to one-phase exponential decay fit calculated for each DA transient in STZ-diabetic versus
controls (H; n = 188; mean R2 > 0.98) or in db/db versus db/+ (I; n = 142; mean R2 > 0.99). ***P<0.0001, Student’s t test. (J) A typical [DA]o profile show-
ing points of sampling the maximum [DA]o decay rate (dashed orange line), and mean [DA]o observed at this rate, for construction of a Michaelis-
Menten plot in (K,L). (K,L) Plot of maximum decay rate for each transient versus mean [DA]o at that rate with Michaelis-Menten curve fits for STZ-dia-
betics (Vmax = 20.1 ± 2.3 μM/s; R2 = 0.88) versus nondiabetic controls (Vmax = 22.0 ± 2.6 μM/s; R2 = 0.83; Km constrained to an equal value of 7.23 μM
[K]; ***P < 0.0001) and for db/db (Vmax = 11.97 ± 1.23 μM/s; R2 = 0.67) versus db/+ (Vmax = 12.3 ± 1.3 μM/s; R2 = 0.83) mice (Km constrained to an equal
value of 3.9 μM for both genotypes; L). STZ-diabetics versus controls, n = 10 pairs; db/db mice versus db/+ controls, n = 8 pairs. [Color figure can be
viewed at wileyonlinelibrary.com]

1642 Movement Disorders, Vol. 35, No. 9, 2020

P É R E Z - T A B O A D A E T A L

http://wileyonlinelibrary.com


(Fig. 4F). These results indicate that diabetes increases
the susceptibility of mice to develop motor impairment
attributable to dopaminergic damage.
To confirm that motor impairment correlated with loss

of nigrostriatal dopaminergic fibers, we performed immu-
nohistochemical analyses. Unilateral microinjections of a
subthreshold dose of 6-OHDA induced a significantly
greater loss of TH- and DAT-immunopositive fibers in
the striatum of STZ-diabetic or db/db mice than in
nondiabetic controls (Fig. 5A–D).
To determine whether loss of TH and DAT in the

striatum of 6-OHDA-treated diabetic mice correlated
with loss of mesencephalic dopamine neurons, we
determined the number of TH-immunoreactive neuro-
nal cell bodies in the SNc by stereology (Fig. 5E). 6-
OHDA decreased the number of TH-positive neurons
in 4-week STZ-diabetic and db/db mice, whereas no
significant neuronal loss was found in nondiabetic con-
trols (Fig. 5F–K and Supporting Information Fig. S7),
suggesting that nigral cell loss may be a component of
motor deficits.
Furthermore, levels of striatal dopamine, DOPAC,

and 3-MT were lower in diabetic than in nondiabetic

animals, both in the contra- and ipsilateral sides of 6-
OHDA injection (Supporting Information Fig. S8A–C).
Such changes were not observed for other monoamines:
Noradrenaline, 5-HT, and 5-HIAA were similar in both
groups (Supporting Information Fig. S8D–F). Motor
impairment was observed when dopamine loss, on
average, exceeded 68% depletion (Supporting Informa-
tion Fig. S9).
Together, these results indicate that the changes

observed at the biochemical, molecular, and functional
levels correlate with higher susceptibility of nigrostriatal
dopaminergic neurons to neurodegeneration in diabetic
mice than in nondiabetic controls.

Discussion

STZ-diabetic and db/db mice are two widely used
models of type 1 and type 2 diabetes, respectively.27

STZ selectively destroys pancreatic islets, leading to
lack of insulin and hyperglycemia, whereas in db/db
mice diabetes follows obesity and insulin resistance gen-
erated by a recessive mutation in the leptin receptor

FIG. 4. Motor performance before or after unilateral injection of a sub-threshold dose of 6-OHDA in the striatum. (A–D) Data from non-diabetic or STZ-
diabetic mice (n = 8–14 per condition) evaluated on the cylinder (A), rotarod (B), or challenging traversal beam (C,D) tests. (E,F) Data from db/+ control
or db/db diabetic mice (n = 8–11 per condition) on the rotarod test (E) or after induction of ipsilateral turns in response to administration of amphet-
amine (F). *P < 0.05; **P < 0.01; ***P < 0.001 versus animals of the same group not injected with 6-OHDA; #P < 0.05; ##P < 0.01; ###P < 0.001 versus 6-
OHDA-injected nondiabetic mice; two-way ANOVA followed by Bonferroni’s post-hoc test (A–E) or Student’s t test (F).
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FIG. 5. Increased nigrostriatal neurodegenerative damage in diabetic mice after 6-OHDA administration. (A–D) Representative photomicrographs of cor-
onal sections of the striatum of nondiabetic or STZ-diabetic mice (A,C: n = 9–11 mice per group) or from db/+ control and db/db diabetic mice (B,D:
n = 6–9 mice per group) immunostained for TH (A,B) or DAT (C,D). Sections of from the contralateral (–6-OHDA) or ipsilateral (+6-OHDA) side of 6-
OHDA injections are shown. Histograms represent the proportional stained area of TH or DAT immunoreactivity. (E) Representative images showing
the region corresponding to the SNc used for stereological quantification of TH-positive neurons. (F,G) Representative photomicrographs of coronal
mesencephalic sections showing TH-immunostained neurons in the SN (n = 5 mice per group). (H,I) High-magnification images corresponding to the
selected areas indicated by a rectangle in (F) and (G), respectively. (J,K) Quantification of the number of TH-immunopositive neurons determined by
stereology in the entire area corresponding to the SNc in each section. Scale bars represent 500 μm except in panels H and I (100 μm). In (A) to (D), at
least four sections per animal were scored and averaged into a single point per animal. In (F) and (G), 10 sections per animal were scored to quantify
the total number of TH-positive cells in the SNc. *P = 0.05; **P < 0.01; ***P < 0.001 relative to –6-OHDA. ##P < 0.01; ###P < 0.001 versus +6-OHDA-
injected nondiabetic mice (two-way ANOVA followed by Bonferroni’s post-hoc test). [Color figure can be viewed at wileyonlinelibrary.com]
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gene. In agreement with previous studies,46,47 both
STZ-treated and db/db mice exhibited increased vulner-
ability to nigrostriatal neurodegeneration. We now
show that increased vulnerability in both types of dia-
betic animals is associated with decreased levels of pro-
teins regulating dopamine neurotransmission and with
altered stimulus-dependent striatal dopamine release.
Whether PD is associated specifically with the more

prevalent type 2 diabetes remains an open question.48

Both type 1 and type 2 diabetes have in common hyper-
glycemia and deficient insulin-dependent signaling
because of low insulin levels (type 1) or insulin resis-
tance commonly associated with obesity (type 2). Both
hyperglycemia and impaired insulin signaling are asso-
ciated with PD.14,49,50 Regarding obesity, in high-fat-
diet–induced rodent models showing increased suscepti-
bility to nigrostriatal neurodegeneration, fasting hyper-
glycemia does not always reach levels of overt
diabetes.51-53 Therefore, the relative contribution of
hyperglycemia versus obesity remains unclear. Further-
more, some of these studies report decreased striatal
dopamine release,54 whereas others show an increase.55

We found increased evoked [DA]o in both STZ-treated
and db/db mice, consistent with the observed decrease
in Girk2 and DAT. Notably, STZ-treated mice are lean
and db/db mice are obese, but both are diabetics.
Therefore, our results indicate that obesity itself did not
significantly contribute to striatal dysfunction in dia-
betic animals, and that hyperglycemia and decreased
insulin-dependent signaling are sufficient to generate
dysfunctional dopamine neurotransmission. Impor-
tantly, a recent large-scale study shows that under-
weight diabetic patients had higher risk for PD than
overweight or obese patients.56 Therefore, whether obe-
sity itself is a risk factor for PD remains an open
question.57

We found that diabetes in lean STZ-treated mice
promotes oxidative stress-related changes in the SN
and CPu, in agreement with the well-documented asso-
ciation between hyperglycemia and oxidative
stress.28,58,59 Because of the relatively high-energy
demands that they require for function,44,60

nigrostriatal dopaminergic neurons are particularly
vulnerable to oxidative stress,61-63 which, in turn, is
thought to play an important role in PD.44,64,65 Nota-
bly, 6-OHDA used at a subthreshold dose did not pro-
duce detectable motor impairment in nondiabetic
animals despite significant decreases in TH (�42%)
and DAT (�36%) in the striatum, in line with previous
studies.66-69 In contrast, motor deficits were present
2 weeks after the onset of diabetes in STZ-treated mice
showing a loss of �50% (TH) and �47% (DAT).
Given that neurotransmission by the remaining striatal
dopaminergic axons in diabetic mice was altered, these
experiments provide the basis for a mechanistic link
between diabetes and impaired motor function related

with increased vulnerability to neurodegeneration. Fur-
thermore, motor deficits appeared to reflect dopamine
neuron loss in the SN more closely than TH or dopa-
mine loss in the striatum.
We found alterations in striatal proteins involved in

the homeostasis of dopamine neurotransmission. Nor-
mally, released dopamine inhibits the activity of dopa-
minergic SN neurons and axons by negative feedback
stimulation of dopamine D2 autoreceptors70 and
striatal heteroreceptors,71 which can activate inwardly
rectifying potassium Girk2 channels to hyperpolarize
the membrane potential.72 Additionally, GABAB recep-
tors couple to Girks and inhibit striatal dopamine
release directly.73 Girk2 (KCN6J) is relatively enriched
in vulnerable SNc rather than spared ventral tegmental
area dopamine neurons.74 If the reduction of Girk2 in
diabetic mice impairs either of these feedback mecha-
nisms, stimulus-dependent dopamine release might be
enhanced, particularly in the dorsal striatum, consistent
with the higher evoked [DA]o observed in the dorsal,
but not ventral, striatum. Notably, decreased levels of
Girk2 per se may contribute to neuronal vulnerability
in diabetic animals even though its expression is not
necessarily restricted to axons, consistent with the
observation of nigrostriatal neurodegeneration in
weaver mice carrying a mutation in the Girk2 gene.75

Importantly, that overall levels of dopamine content
in striatal samples are lower in STZ-diabetic mice and
not altered in db/db mice is not necessarily in conflict
with the increased evoked [DA]o detected by FSCV.
Only 30% of dopamine-containing vesicle clusters in
striatal axons are associated with active secretory sites,
and only �17% of VMAT2-positive vesicles in those
clusters release dopamine in response to depolariza-
tion.76,77 Thus, most of the content of total striatal
dopamine is likely contained within functionally silent
VMAT2-positive vesicles not immediately available for
stimulus-dependent release. Mobilization of the reserve
vesicle pool provides a mechanism for increased dopa-
mine release.25,78,79 Therefore, a redistribution in dia-
betic mice favoring mobilization of vesicles to
releasable sites would be consistent with increased
evoked [DA]o even with reduced overall levels of
VMAT2 and dopamine. Furthermore, a lack of compo-
nents of the exocytosis machinery, such as synapsins,
paradoxically increases dopamine release without alter-
ing the overall amount of dopamine.80

The decreased striatal DAT is consistent with reduced
dopamine uptake and altered kinetic profile of [DA]o
transients, but reduced uptake was only observed in
STZ-diabetic mice. This suggests that db/db mice acti-
vate compensatory mechanisms to deliver DAT to the
plasmalemmal membrane, possibly related to differ-
ences between both mouse models in insulin levels
known to impact dopaminergic neurotransmission.81-84

Consistent with our data, decreased DAT binding sites
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have been observed in diabetic patients with or with-
out PD.15

Decreased VMAT2 levels may reflect decreased num-
ber or size of synaptic vesicles, in consonance with par-
allel low levels of Syb2, and suggest that the
sequestration of axonal dopamine into vesicles is com-
promised in diabetic mice, favoring its accumulation in
the cytosol, as indicated previously.85-87 Cytosolic
dopamine contributes to neurodegeneration associated
with oxidative stress.85,88-90 Consistently, decreased
expression of VMAT2 is sufficient to cause dopamine-
mediated toxicity and neurodegeneration of
nigrostriatal neurons,85,91 providing further mechanistic
support for the association between diabetes and
increased vulnerability to nigrostriatal neu-
rodegeneration. Notably, our results agree with human
studies showing decreased VMAT2 in early-stage PD
and with the observation that gain-of-function muta-
tions are neuroprotective.92

Substantial axonal loss occurs in parkinsonian
patients by the time of first diagnosis.93,94 Our data
show that diabetes in mice promotes striatal oxidative
stress, dysfunctional dopamine neurotransmission asso-
ciated with lower levels of key regulatory proteins, and
increased susceptibility to damage of nigrostriatal neu-
rons. Thus, our studies support the existence of an
association between preexisting diabetes and PD at the
molecular level and identify possible pathophysiological
mechanisms affecting dopamine neurotransmission
linking both diseases.
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