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Abstract

A recently developed network perspective on tobacco withdrawal posits that withdrawal symptoms 

causally influence one another across time, rather than simply being indicators of a latent 

syndrome. Evidence supporting a network perspective would shift the focus of tobacco withdrawal 

research and intervention toward studying and treating individual withdrawal symptoms and inter-

symptom associations. Here we construct and examine temporal tobacco withdrawal networks that 

describe the interplay among withdrawal symptoms across time using experience-sampling data 

from 1210 participants (58.35% female, 86.24% white) undergoing smoking cessation treatment. 

We also construct person-specific withdrawal networks and capture individual differences in the 

extent to which withdrawal symptom networks promote the spread of symptom activity through 

the network across time using impulse response analysis. Results indicate substantial moment-to-
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moment associations among withdrawal symptoms, substantial between-person differences in 

withdrawal network structure, and reductions in the interplay among withdrawal symptoms during 

combination smoking cessation treatment. Overall, findings suggest the utility of a network 

perspective and also highlight challenges associated with the network approach stemming from 

vast between-person differences in symptom networks.

General Scientific Summary

This study uses a network approach to examine how symptoms of tobacco withdrawal may impact 

one another from one moment to the next during a smoking cessation attempt. We find substantial 

moment-to-moment associations among withdrawal symptoms. Participants undergoing 

combination treatment have networks in which symptom activity is less likely to linger across time 

due to moment-to-moment inter-symptom associations relative to participants in a placebo 

condition.
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Introduction

During efforts to quit smoking, aversive withdrawal symptoms appear that are prominent as 

primary motives for the resumption of smoking in many theories of addiction (Baker et al., 

2004; Piper, 2015; Solomon & Corbit, 1974). Withdrawal symptoms are often treated as 

interchangeable indicators of an underlying syndrome (Toll et al., 2007). During diagnosis 

(American Psychiatric Association, 2013), for example, criteria for tobacco withdrawal is 

met if a patient presents with four or more withdrawal symptoms (anger, anxiety, depressed 

mood, difficulty concentrating, increased appetite, insomnia, and restlessness). Yet, there is 

increasing evidence that individual withdrawal symptoms are not interchangeable; rather, 

they exhibit distinct time profiles during the course of cessation attempts (Hendricks et al., 

2006; Leventhal et al., 2010; Piasecki et al., 2000; West, Hajek, & Belcher, 1987) and 

unique responses to treatment (Foulds et al., 2013).

A network approach to tobacco withdrawal has recently been proposed to complement a 

syndrome perspective on withdrawal (Lydon-Staley et al., 2018). A network theory of 

psychopathology highlights symptoms of disorders as units that causally impact one another 

across time, forming networks of causally connected symptoms (Borsboom, 2017; 

Bringmann et al., 2013; Schmittman et al., 2013). From this perspective, the experience of 

tobacco withdrawal can be described as a network in which the nodes of the network 

represent symptoms and the edges (or lines between nodes) represent temporal associations 

among symptoms across time. Studies provide preliminary support for the network 

perspective’s proposal that individual tobacco withdrawal symptoms influence one another 

in a potentially causal fashion over time. For example, positive associations between 

anhedonia, negative affect, and craving have been observed over the course of a smoking 

cessation attempt (Cook et al., 2017) and strong positive associations have been observed 

between sleep problems and restlessness, as well as among affective symptoms (anger, 
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anxiety, and depressed mood), in smokers undergoing smoking cessation treatment (Lydon-

Staley et al., 2018). Recent work making use of experience sampling protocols has 

considered the dynamic associations among cessation fatigue, negative affect, nicotine 

craving, and self-efficacy in smokers undergoing cessation treatment (Bekiroglu et al., 

2017). This work, which makes use of the temporal precedence available in time series data 

to model how the reporting of symptoms at a previous time point (t-1) predicts symptom 

intensity at the current time point (t), found that these four constructs changed over time in 

response to each other during the course of smoking cessation.

Although there is empirical support for the notion that individual symptoms of withdrawal 

influence one another over time, key questions about a network approach to withdrawal 

remain to be addressed. We use experience-sampling data from participants providing 

momentary reports of withdrawal symptoms over 14 days to estimate a temporal network 

that describes the moment-to-moment interplay among withdrawal symptoms. The use of 

experience-sampling data to construct temporal networks (Holme & Saramäki, 2012) is an 

important complement to existing studies modeling cross-sectional withdrawal networks 

(Lydon-Staley et al., 2018). The edges in cross-sectional networks indicate between-person 

associations among symptoms, with positive edges indicating that if, for example, an 

individual experiences high levels of anxiety, then they are also likely to experience high 

levels of anger. This symptom co-occurrence, from a network perspective, is theorized to 

result from causal associations among symptoms. Yet, between-person associations (i.e., 

people high in anxiety experience high levels of anger) do not always translate to the within-

person associations (i.e., at times when a person is more anxious than usual, they are also 

angrier than usual; Bos et al., 2017; Hamaker, Dolan, & Molenaar, 2005). One of the 

strengths of experience-sampling data is that it can probe time-lagged, within-person 

associations between symptoms.

Further, the use of temporal networks allows a test for the presence of a potential source of 

distress experienced during smoking cessation, unique to a network approach to withdrawal, 

that may undermine efforts to remain abstinent. In particular, individuals undergoing 

cessation may experience continued symptom activation long after the cause of symptom 

activity (i.e., deprivation) has disappeared due to symptom interplay across time (Borsboom, 

2017; Cramer et al., 2016). Network theory posits that this failure for symptoms to de-

activate arises in strongly connected symptom networks that facilitate the reverberation of 

symptom activity through the network across time as activity in one symptom is transferred 

to another symptom via causal associations. This spreading of symptom activity through 

networks is analogous to the behavior of two sets of domino tiles: one in which the tiles are 

far apart and a second in which the tiles are close together. In a densely connected symptom 

network, the set of domino tiles are close together, and when one tile falls it causes other 

tiles to topple and activity ripples through the system (Borsboom & Cramer, 2013). In a less 

densely connected symptom network, the set of domino tiles are far apart, and when one tile 

falls the other tiles are unaffected and remain standing. Such an explanation of spreading 

activity following symptom network perturbation would fit with empirical evidence of 

extended withdrawal symptom experiences among some smokers (Piasecki et al., 1998; 

2003) when other research suggests that withdrawal should peak after the first 14 days 

(Hughes, 2007).
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As yet, the phenomenon of self-perpetuating symptom networks in the context of tobacco 

withdrawal awaits empirical examination. Complicating this examination is the need to 

identify an appropriate statistical framework that can capture the complex theoretical notion 

of self-perpetuating symptom networks. Existing efforts to capture the reverberation of 

symptom activity through symptom networks have focused on node centrality and network 

density. Centrality indices have been hypothesized to identify the most important nodes in a 

network. Degree centrality, for example, is a common measure of node centrality and is 

defined as the number of edges emanating from a node (Newman, 2010). Network density is 

defined as a fraction of possible edges that exist in a network or, in networks with weighted 

edges, network strength. Both node centrality and network density have been identified as 

potential indices for identifying networks that would facilitate the spread of activity through 

the network, activating self-perpetuating sequences of symptom activity across time (Bello 

et al., 2017; Fried et al., 2016; Hasmi et al., 2017; Lydon-Staley et al., 2019a; Pe et al., 

2015). Yet, the use of both centrality and density are limited. Centrality and density focus on 

direct connections and contain little information about how symptoms might affect each 

other indirectly as activity flows through the entire network (Bringmann et al., 2019).

Impulse response analysis is a tool with the potential to capture the complex notion of the 

spread of symptom activity through a network (Lütkepohl, 2005). Once a temporal network 

indicating the predictive associations between symptoms across time has been constructed, 

impulse response analysis simulates an instantaneous, exogenous impulse (sometimes 

termed a shock) to certain network symptoms. Through simulation, the propagation of this 

impulse through the network, along the time-lagged symptom network edges, is charted. The 

impulse response function shows the hypothetical change in a symptom in response to a 

simulated increase in one of the other symptoms over a horizon of several time points. 

Importantly, activity in a symptom observed after the symptom network receives a shock 
contains system-level information. The impulse experienced by non-shocked symptoms is 

due to the flow of activity along the network’s edges emanating from the shocked node.

Impulse response analysis has recently been applied to networks of symptoms and behaviors 

to capture individual differences in the spread of activity through networks of time-lagged 

edges. In a sample of subclinically depressed individuals, impulse response analysis was 

used to quantify the extent to which stress impacted affect in participants with anhedonic 

symptoms relative to participants without anhedonic symptoms (Bos et al., 2018). A shock 
to stress was simulated and the spread of activity associated with this simulated increase in 

stress along time-lagged edges in a network of six variables (high-arousal positive affect, 

low-arousal positive affect, high-arousal positive affect, low-arousal negative affect, stress, 

and physical activity) was charted over a horizon of ten time points. When an increase in 

stress was simulated, affect in non-anhedonic individuals showed a stronger increase relative 

to affect in anhedonic individuals. By using impulse response analysis, the observed 

association between stress and affect consisted of the effect of a simulated increase in stress 

filtering through direct pathways to impact affect, but also via indirect pathways emerging 

from the complex interplay between stress and affect with other variables in the network, 

(e.g., physical activity) across time.
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In addition to capturing the spread of symptom activity through networks, impulse response 

analysis has been used to capture individual differences in the extent to which networks 

facilitate the persistence of activity through complex systems of temporally associated 

components, long after the initiating shock has ended. In 13-variable, person-specific, 

temporal networks indicating the moment-to-moment associations between a range of 

socioemotional processes (e.g., anger, sadness, ratings of interpersonal behaviors and 

perceptions), impulse response analysis was used to simulate a shock to sadness (Yang et al., 

2018). Changes in sadness intensity was charted over 150 time steps and the time step at 

which sadness intensity returned a level consistent with its pre-shock level was identified. 

This time step was taken as a measure of the recovery time of sadness following a 

perturbation and, importantly, consisted of activity related to the exogeneous shock, the 

autoregressive effect of sadness on itself from one timepoint to the next, but also indirect 

effects on sadness as activity spread to other nodes and returned via time-lagged edges to 

impact sadness. Participants with networks associated with longer recovery times of sadness 

exhibited higher levels of depressive symptoms, especially during periods of higher than 

usual stressful life events.

Impulse response analysis, then, is a framework capable of capturing the potential for 

symptom activity to spread through a network via time-lagged edges and for quantifying the 

time it takes for symptoms to return to baseline levels of intensity following hypothetical 

perturbations. Here, we extend this work to tobacco withdrawal. We estimate temporal 

networks of tobacco withdrawal, articulating the moment-to-moment associations between 

withdrawal symptoms across time. After constructing temporal networks, we quantify 

individual differences in networks by using impulse response analysis to simulate a shock to 

network symptoms and chart the spread of symptom activity along time-lagged edges 

through each network. To quantify the extent to which symptom networks facilitate 

persistent symptom activity, we identify the number of timesteps after the initial shock at 

which symptom activity returns to a baseline level of intensity comparable to the intensity of 

activity preceding the shock to the symptom network. We test whether participants 

undergoing smoking cessation treatment show a lower potential for symptom activity spread 

and reverberation through symptom networks across time relative to participants in a 

placebo condition. We hypothesize that treatment is associated with a quicker return to 

symptom intensity baseline (i.e., shorter recovery time) following a simulated shock.

Method

Participants

Participants were 1210 smokers (58.35% female, 86.24% white), previously reported on in 

an existing study (Piper et al., 2009; Bolt et al., 2012). Participants were recruited via TV, 

radio, and newspaper advertisements, community flyers, and earned media (e.g., radio and 

TV interviews, press releases) in the greater Madison and Milwaukee (Wisconsin) areas. The 

primary inclusion criteria were smoking at least 10 cigarettes per day for the past 6 months 

and being motivated to quit smoking. Exclusion criteria included: use of certain medications 

(including MAO inhibitors, bupropion); any history of psychosis, bipolar disorder, or an 

eating disorder; consuming six or more alcohol beverages daily 6 or 7 days a week; 
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pregnancy or breast-feeding; and a serious health condition that might prevent study 

completion. The study was approved by the University of Wisconsin Health Sciences 

Institutional Review Board, study title “A randomized placebo-controlled clinical trial of 5 

smoking cessation pharmacotherapies”.

Procedure

Participants passing a phone screen were invited to an information session at which a study 

description was provided and written informed consent was obtained. Participants then 

completed multiple baseline screenings, including a medical history screening, vital signs 

measurements, and a CO breath test. Participants also completed demographic, smoking 

history, and tobacco dependence questionnaires.

Eligible participants were randomized to one of six treatment conditions: bupropion 

sustained-release (SR) (n=215), nicotine lozenge (n=202), nicotine patch (n=210), nicotine 

patch + nicotine lozenge (n=228), buproprion SR + nicotine lozenge (n=214), or placebo 

(n=141). Five placebo conditions matched the five active conditions, with three monotherapy 

placebo conditions (n=80) and two combination therapy placebo conditions (n=61). All 

medications were provided for 8 weeks post-quit except the nicotine lozenge, which was 

provided for 12 weeks post-quit, consistent with prescribing instructions at the time (Fiore et 

al., 2008).

Measures

Participants completed ecological momentary assessments (EMA) four times a day (once 

just after waking, once prior to going to bed, and twice at randomly chosen times between 

waking and sleeping) for 1 week pre-quit and 2 weeks post-quit. We analyzed data from the 

2-week post-quit period. The EMA prompted participants to rate their withdrawal symptoms 

within the last 15 minutes using 11 items from the Wisconsin Smoking Withdrawal Scale 

(Welsch et al., 1999) and 1 item adapted from the Questionnaire of Smoking Urges 

(Sweeney et al., 1996) to asses 6 symptoms: anxiety (tense or anxious, impatient), craving 

(bothered by desire to smoke, urge to smoke), sadness (sad or depressed, hopeless or 

discouraged), irritability (irritable or easily angered, bothered by negative moods such as 

anger, frustration, and irritability), hunger (hungry, thinking about food a lot), and difficulty 

concentrating (hard to pay attention, difficult to think clearly). The mean of the 2-items 

making up each symptom scale was computed. Participants also reported the number of 

cigarettes smoked since the last report at each prompt. Prior to the EMA protocol, 

participants completed the Fagerström Test for Nicotine Dependence (Heatherton et al., 

1991). Carbon monoxide (CO) confirmed 7-day point-prevalence abstinence data was 

collected at 8 weeks and 6 months post-quit. Alveolar CO was assessed using a Bedfont 

Smokerlyzer and smokers with a CO < 10ppm were considered abstinent.

Data Preparation

Temporal network models assume stationarity of symptoms such that symptoms do not 

exhibit a trend in the mean or variance of their intensity across time (Lütkepohl, 2005). We 

removed linear trends from each symptom by regressing each participants’ ratings of 

symptom intensity on time in the study to remove the linear trend, and then by taking the 
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residuals forward, which is a common practice to handle violations of stationarity in the 

means. A second assumption of the models used is that there are equal time lags between 

consecutive measurements (de Haan-Rietdijk et al., 2017). To accommodate this 

assumption, we did not regress the first measurement of each day on the last measurement of 

the previous day.

Data Analysis

We used the R package mlVAR (Epskamp et al., 2018) to estimate the dynamic associations 

among withdrawal symptoms at the group level (Epskamp et al., 2016). Each symptom was 

regressed on the values of all other symptoms at the previous time point. To accommodate 

the nested nature of the data, with participants providing multiple reports, a multilevel 

extension of VAR was used (Bringmann et al., 2013; Lydon-Staley et al., 2019a). The 

resulting coefficients represent the degree to which changes in one symptom at time t predict 

changes in another symptom at time t+1 for the average individual in the sample. 

Importantly, data are person-mean centered by default, allowing a consideration of within-

person associations between variables that are disentangled from between-person differences 

in levels of symptom intensity (Curran & Bauer, 2011). From this within-person perspective, 

edges may be interpreted as how deviations in symptom intensity from one’s average level 

of symptom intensity is associated with change in another symptom’s intensity. In addition 

to producing a temporal network, the mlVAR approach also estimates a contemporaneous 

network. Edges in the temporal network encode information regarding how symptoms at one 

measurement occasion predict symptoms at the next measurement occasion. This network 

has the potential to provide information about the directionality of effects (Epskamp et al., 

2018), and thus estimates of influence are depicted as directed edges with arrows indicating 

the direction of effects across time. Edges in the contemporaneous network show 

associations between symptoms occurring within consecutive measurements and indicate 

partial correlations between nodes at the same time, controlling for both temporal effects and 

all other variables within the same measurement occasion. Edges in the contemporaneous 

network are computed by correlating the residuals of the temporal effects (Dahlhaus & 

Eichler, 2003). The contemporaneous network provides insight into the co-occurrence of 

symptoms, and may also indicate the presence of causal associations occurring on a shorter 

timescale than the timescale of measurement (Epskamp et al., 2018). One of the advantages 

of multilevel models is their tolerance to heterogeneity of time points across participants. As 

such, data from all participants were included in the model.

After estimating a group level dynamic withdrawal network, we used the same participants 

and measures to estimate person-specific dynamic networks of withdrawal. The raw time 

series data for the 6 withdrawal symptoms were regressed on time in order to remove trends 

and meet the assumption of stationarity. These data were then within-person standardized so 

that each symptom for each person had a mean of 0 and a standard deviation of 1. This 

standardization was performed to render the coefficients representing different edges in the 

network comparable to one another (Bulteel et al., 2016). Within-person standardization also 

allows us to focus on within-person associations among the various symptoms when 

comparing networks between participants. The edges in the network represent how 

fluctuations in one symptom beyond a participant’s typical level (captured by 0 due to the 

Lydon-Staley et al. Page 7

J Abnorm Psychol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within-person standardization) are associated with fluctuations in a different symptom 

(Curran & Bauer, 2011). We then modeled each participant’s 6-symptom time series as a 6-

node network using a unified Structural Equation Model (uSEM) (Gates et al., 2010).

In this approach, the observed multivariate time series γ(t)is modeled as the output of a 

latent variable time series η(t) ,

y t = Λη t + ε t , (1)

where Λ is a factor loading matrix and ε(t) is a time series of residuals given by a matrix Θ, 

that is assumed diagonal. We then model the temporal associations among the set of latent 

withdrawal symptoms represented in η(t) as,

η t = Aη t + Φ1η t − 1 + ζ t , (2)

Where η(t-1) is a vector of the lag-1 version of the multivariate latent withdrawal symptom 

time series, A is a matrix of regression parameters describing the contemporaneous 

associations among the latent withdrawal symptom variables, Φ1 is a matrix of regression 

parameters describing the lag-1 associations (auto- and cross-regressions) among the latent 

withdrawal symptom variables, and ζ(t) contains the errors in prediction. Both the 

contemporaneous associations in A and the auto- and cross-regressive associations in Φ1 

indicate directed temporal associations among the withdrawal symptoms through which 

exogenous input can diffuse. Note that although the contemporaneous networks estimated in 

mlVAR are undirected, in the uSEM approach, directed edges are estimated in the 

contemporaneous networks (e.g., Wright et al., 2019; Yang et al., 2018; Yang et al., 2019). 

Directed contemporaneous edges in structural equation models provide insight into the co-

occurrence of symptoms and may also indicate the presence of causal associations occurring 

on a faster timescale than the timescale of measurement (Granger, 1969), especially when 

autoregressive influences are simultaneously estimated (Gates et al., 2010), as in the current 

case.

The uSEM model is estimated using an iterative search process. A series of models is 

constructed and improvements to model fit are determined. With each iteration, Lagrange 

Multiplier tests (Sörbom, 1989) are used to select the edge which, if free to be estimated, 

would have the maximum improvement on model fit. We constrained the iteration process 

such that only A and Φ1 blocks of the parameter matrix may be freed. This choice serves to 

maintain the time-series structure of the model. We avoided bidirectional edges in the 

contemporaneous associations by including all potential autoregressive associations in the 

initial model and deeming the reverse association between two nodes unavailable when any 

edge in A was freed (see also Yang et al., 2018). By specifying unidirectional edges in the 

contemporaneous network, only one causal edge between two variables is allowed. This 

restriction still allows reciprocal edges in withdrawal networks given that the reverse 

association can be observed in the lagged network. We configured the factor loading matrix 

Λ as an identity matrix I and we fixed all elements of Θ, the variance-covariance matrix of 

εt1 and εt , to 0. Model fit is determined according to a predetermined α level on a χ-square 

distribution with one degree of freedom. Here, as elsewhere (Beltz et al., 2013), we set α to 
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0.05. This edge is freed, the model is re-estimated, and a new set of modification indices are 

calculated. Edges are freed or added until further addition does not significantly improve 

model fit.

To quantify individual differences in symptom activity spread across symptom network 

edges, we used impulse response analysis (Lütkepohl, 2005) to provide insight into how the 

experience of one symptom propagates through the withdrawal symptom network by 

predicting other, connected symptoms. In this approach, an impulse is given to an individual 

node and the behavior of the symptom network is observed, through simulation, over many 

time steps. This dynamical process simulates how a symptom’s activity moves through the 

symptom network along edges when it becomes transiently increased due to an external 

perturbation. Formally, the impulse response simulation is derived from Equation 2 as a one 

step ahead forecasting process through conversion into a vector auto-regression model 

(Amisano & Giannini, 2012). The system is set in motion with an initial impulse vector, 

ζ(0), and latent states are calculated for t=0 as:

η 0 = I − A −1ζ 0 , (3)

to accommodate the contemporaneous associations among latent states and for each 

subsequent t as:

η t = I − A −1Φ1 η t − 1 = I − A −1Φ1
t I − A −1ζ 0 , (4)

and the system evolution over 100 time steps is simulated. The time profile, showing how 

symptom intensity changes over the time steps following the initial impulse, is examined. 

Specifically, the recovery time of symptom intensity, defined as the time taken to return to 

within +/−0.01 of equilibrium, is derived via a backward search. We searched backward 

from the end of the time profile to identify the time step k where the intensity of a symptom 

is first outside the +/−0.01 boundary. Recovery time is then quantified as the number of time 

steps from perturbation to equilibrium. Implementation of person-specific uSEM and 

impulse response analysis was done using the R package pompom (Yang, Ram, & Molenaar, 

2018).

We next quantified individual differences in the extent to which withdrawal symptom 

networks facilitate self-perpetuating symptom activity across time by estimating system 

recovery time. Impulses were given to all 6 symptoms, each time tracking changes in all 6 

symptoms. The result is a 6×6 matrix of symptom activity trajectories. We took the mean 

value of the column means in the 6×6 matrix as an indication of system recovery time, 

indicating the average time taken for a symptom to return to equilibrium after a hypothetical 

perturbation.

To explore the extent to which system recovery time may be impacted by treatment, we 

compared the system recovery time of participants receiving combination therapy during the 

quit attempt (nicotine patch + nicotine lozenge and buproprion SR + nicotine lozenge 

conditions) to participants in combination therapy placebo conditions using independent 

samples t-tests. A second independent samples t-test was used to determine whether system 
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recovery time differed between participants in the monotherapy conditions (buproprion SR, 

nicotine lozenge, and nicotine patch) and the associated placebo conditions.

Results

We provide descriptive statistics of the study sample before presenting the results for the 

group and person-specific withdrawal networks.

Descriptive statistics

The average intensity of withdrawal symptoms across the EMA period are shown in Table 1. 

Smoking lapses were common with only 400 participants (33.06%) reporting not smoking 

since the previous EMA report. On average, smoking since the previous prompt was 

reported at 18.00% of prompts (SD=27.00). The mean number of EMA reports available per 

participant was 27.91 (SD=21.51). Participants completing a greater number of EMA reports 

exhibited lower intensity of withdrawal symptoms (all rs<0.20 indicating weak associations) 

during the EMA protocol (see Table 1).

Group-level withdrawal networks

Results from the multilevel vector autoregressive model are in Table S1. The edges of the 

temporal network (Fig. 1A) represent the prediction of symptoms at one measurement 

occasion by symptoms at the previous measurement occasion for the prototypical individual 

in the sample. We find that all estimated edges are positive, such that withdrawal symptoms 

at one moment predict increases (rather than decreases) in the experience of other 

withdrawal symptoms (including themselves) at the next moment. Craving has many 

outgoing edges, indicating that increased craving at one moment has a relatively strong 

prediction of other withdrawal symptoms from moment to moment. Both sadness and 

irritability have the largest number of ingoing edges, indicating that increases in sadness and 

irritability are predicted by increases in the experience of other withdrawal symptoms. The 

majority of symptoms show positive self-loops (edges pointing towards themselves), which 

indicate that current symptom experiences are predictive of subsequent experiences. Notable 

is the presence of reciprocal edges between sadness and irritability, and between anxiety and 

irritability. These reciprocal edges represent positive feedback loops whereby the experience 

of one symptom (e.g., irritability) predicts increases in the experience of another symptom 

(e.g., anxiety), which in turn predicts the experience of the original symptom (i.e., 

irritability). Also notable is hunger, which is disconnected from the other withdrawal 

symptoms; the lack of incoming or outgoing edges to and from hunger indicates that 

fluctuations in the experience of hunger over time do not play a large role in predicting other 

withdrawal symptoms.

The edges of the contemporaneous network (Fig. 1B) represent the co-occurrence of 

symptoms, controlling for both temporal effects and the effects of all other variables at the 

same measurement occasion. Edges are unidirectional (without arrows) but they may 

indicate causal associations playing out at timescales shorter than the timescale of symptom 

measurement (Epskamp et al., 2018). Similar to the temporal network, all edges are positive, 
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indicating that when an increase in one symptom is experienced (e.g., sadness) an increase 

in a second symptom is experienced (e.g., irritability).

Person-specific withdrawal networks

We next moved from a group model indicating the temporal associations between symptoms 

across time for the prototypical individual in the sample to the estimation of person-specific 

temporal networks. The estimation of person-specific networks requires substantially more 

data than the estimation of a group model that pools data across individuals. A person-

specific model of the associations among the 6 withdrawal symptoms fit the data of 290 

individual participants well; the goodness of fit is indicated by at least three of four 

following criteria: RMSEA ≤ 0.08, SRMRs ≤ 0.08, CFIs ≥ 0.95, NNFI ≥ 0.95 (Beltz et al., 

2013; Yang et al., 2018). Comparing the number of days available for participants for whom 

a person-specific model fit well relative to those for whom a person-specific model could not 

be fit well indicate that, in line with previous work (Yang et al., 2018), the length of the time 

series impacted model fit, with a significantly greater amount of time series data available 

for participants with good (M=37.21, n=290) versus poor (M=23.16, n=998) model fit 

(t(745.72)=21.692, p<0.001, d=1.14).

Substantial heterogeneity in symptom network structure is evident (Figure 2A; see Figures 

S1–S7 for distributions of edge estimates). We quantify individual differences in 

participants’ withdrawal symptom networks and their implications for the extent to which 

symptom activity persists across time due to the predictive associations among network 

symptoms by using impulse response analysis (Lütkepohl, 2005; Yang et al., 2018). The 

average system recovery time (Fig. 2B) for the sample is 3.18 (SD=2.55) time steps and 

exhibits substantial positive skew (min=0.89, max=26.86, skew=4.23). We used the common 

logarithm to reduce the positive skew and remove three outliers (all greater than 3 SDs 

above the mean). In the sample of 287 participants, there were no differences across the 

treatment conditions in the average number of EMA data points available, in self-reported 

cigarettes smoked per day reported at baseline, in FTND total score reported at baseline, or 

in the average intensity of the different withdrawal symptoms across the EMA period (all p-

values > 0.05). There was a difference in the proportion of prompts during the EMA period 

for which participants across the different treatment groups reported smoking since the 

previous report such that participants in the monotherapy placebo group reported the most 

smoking occasions (Mean=0.33, SD=0.34), followed by the combination placebo group 

(Mean=0.14, SD=0.19), then the monotherapy group (Mean=0.13, SD=0.22), and finally the 

combination therapy group (M=0.10, SD=0.17). Only the difference between the 

combination therapy and the monotherapy placebo group, however, was statistically 

significant, t(12.45)=−2.43, p=0.03, d=1.25.

Using independent samples t-tests we found that participants undergoing combination 

treatment have faster recovery times relative to participants in a matched placebo condition, 

t(26.76)=−2.23, p=0.03, d=0.43, a small effect size (Cohen, 1988; Fig. 2C). There was no 

significant difference between participants in monotherapy treatment and a matched placebo 

condition, t(21.04)=1.00, p=0.33, d=0.24. Beyond these planned contrasts, we also observed 

that participants in the monotherapy condition had shorter recovery time relative to 
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participants in the combination placebo group, t(34.60)=−2.29, p=0.03, d=0.52, and that 

participants in the monotherapy placebo group had shorter recovery time relative to 

participants in the combination placebo group, t(28.67)=−2.69, p=0.01, d=0.92. There was 

no significant difference in recovery time between the combination therapy and 

monotherapy groups, t(155.39)=0.34, p=0.74, d=0.04 or between the combination therapy 

and monotherapy placebo group, t(16.40)=1.29, p=0.21, d=0.26.

Average system recovery time was not associated with CO-verified smoking abstinence at 

end of treatment (8 weeks post quit; t(277.31)=1.05, p=0.30, d=0.12) or at 6-months post 

quit, t(228.19)=0.87, p=0.38, d=0.11. Correlations revealed that participants with longer 

system recovery time experience more intense anxiety, r(285)=0.12, p=0.04, sadness, 

r(285)=0.12, p=0.04, irritability, r(285)=0.14, p=0.03, and difficulty concentrating, 

r(285)=0.15, p=0.01, but did not report more intense craving, r(285)=0.05, p=0.37, or 

hunger, r(285)=−0.01, p=0.83, during the EMA protocol.

Discussion

Smoking cessation is notoriously difficult, with the vast majority of quit attempts ending in 

relapse (Alterman, Gariti, & Mulvaney, 2001; Fiore, Bailey, & Cohen, 2000). Withdrawal 

symptoms emerge following reductions in smoking that are associated with decreased quit 

intentions as well as increased smoking relapse (Orleans et al., 1991; Allen et al., 2008; 

West et al., 1987). The present study examined the potential utility of a network perspective 

on tobacco withdrawal, particularly in providing insight into smokers’ withdrawal 

experiences.

A key contribution of the present paper was to extend cross-sectional network findings of 

associations among symptoms of tobacco withdrawal (Lydon-Staley et al., 2018) to model 

the interplay among withdrawal symptoms using experience-sampling data containing 

temporal information on the moment-to-moment activity of withdrawal symptoms. The 

edges in cross-sectional networks indicate between-person associations, with strong edges 

indicating that if an individual experiences high levels of anxiety, for example, they are 

likely to also experience high levels of anger. This symptom co-occurrence, from a network 

perspective, is theorized to result from causal associations among symptoms. Yet, between-

person associations (i.e., people high in anxiety experience high anger) do not always 

translate to the within-person associations (i.e., at times when a person is more anxious than 

usual, they are also angrier than usual; Bos et al., 2017; Hamaker et al., 2005).

To address this open challenge in the field, we estimated networks in which the edges 

indicated the within-person association between symptom activity at one time point and 

symptom activity at the next time point. The group-level networks of withdrawal exhibited 

substantial interplay among symptoms from moment to moment. Comparison of temporal 

networks to cross-sectional withdrawal networks estimated in previous work (Lydon-Staley 

et al., 2018) is difficult due to the minimal overlap between symptoms examined across 

studies. However, the positive associations among anxiety, sadness, and difficulty 

concentrating observed in the group-level contemporaneous network in the current study 

were also observed in cross-sectional withdrawal networks that also included these three 
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constructs (Lydon-Staley et al., 2018), suggesting that some findings from cross-sectional 

networks may translate to within-person associations. However, no associations were 

observed between sadness and anxiety and difficulty concentrating and anxiety in the 

present study in the group-level temporal network wherein edges represented the extent to 

which symptom intensity at the current timepoint predicted symptom intensity at the next 

timepoint. Thus, although some edges present in cross-sectional networks may be observed 

in temporal networks, the limited overlap suggests that, like previous work in the context of 

depression (Bos et al., 2017), cross-sectional networks do not reflect how symptoms are 

associated with one another across time. This limited overlap between cross-sectional and 

temporal networks limits the extent to which cross-sectional networks, which require data 

that are more easily obtained than repeated measures data, provide information relevant for 

clinical applications aimed at identifying potentially causal associations between symptoms 

that exacerbate illness (Kroeze, 2017; Fisher & Boswell, 2016).

Additional considerations raised by examining the group-level networks are the insights 

gained from the group-level temporal network. The temporal network contained many 

positive edges, such that if symptom activity was high at one time point, it was more likely 

to increase, rather than decrease, in activity at the next time point. Indeed, the group 

temporal network contained numerous potential positive feedback loops that might render 

symptom activity vulnerable to exhibiting self-perpetuation of symptom activity due to the 

reverberation of symptom activity through the network. For example, anxiety at one time 

point was associated with increased irritability and anger at the next time point and, in turn, 

irritability and anger at one time point was associated with increased anxiety at the next time 

point. The capacity for one’s current emotions to give rise to other emotions has long been 

emphasized in emotion theory (e.g., Gross & Muñoz, 1995) and there is empirical support 

for the moment-to-moment transfer of emotions across time and states (Anand et al., 2016; 

Lydon-Staley et al., 2019a; Pe & Kuppens, 2012).

Additional findings of interest include the many out-going edges from craving to other 

withdrawal symptoms. Although the association between negative affect and craving is 

prominent in models of withdrawal, the greatest emphasis is placed on the effect of affect to 

craving rather than the reverse direction (Baker et al., 2004; Conklin & Perkins, 2005; 

Delfino et al., 2001; Otto et al., 2007). The current findings suggest that the experience of 

craving at one moment predict the emergence of aversive states (e.g., anxiety, irritability) at 

the next moment. Thus, craving may be a useful treatment target, not simply to avoid drug 

use in response to craving, but also to ameliorate aversive states resulting from its experience 

(Tiffany & Wray, 2012). We also note that the current findings do not preclude the 

possibility that negative affect predicts craving given the edges between affect and craving in 

the contemporaneous group network.

Estimation of person-specific networks revealed that the group model masks substantial 

individual differences. The most striking difference includes observing negative edges in the 

networks of individual participants (red edges in Figure 2A) when the networks estimated at 

the group level contained only positive edges. The extensive heterogeneity in withdrawal 

symptom structure echoes heterogeneity in temporal symptom networks observed in 

disorders beyond tobacco withdrawal (e.g., Fisher et al., 2017; Reeves & Fisher, 2020) as 
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well as long-standing calls for the need for an idiographic science to inform psychological 

processes (Molenaar, 2004). The heterogeneous experience of tobacco withdrawal is 

increasingly appreciated (Piper, 2015). There are individual differences in the extent to 

which smokers endorse the experience of various withdrawal symptoms during periods of 

smoking abstinence (Pang et al., 2019; Weinberger et al., 2017) and tracking withdrawal 

symptoms across pre-quit and post-quit periods reveals substantial individual differences in 

the trajectories of craving and negative affect intensity (McCarthy et al., 2006; see also 

Robinson et al., 2007). The heterogeneity in withdrawal experiences, observed in this study 

and in others, may impact the extent to which treatments can successfully target withdrawal 

in the service of facilitating smoking cessation. Developing the type of data and 

methodologies that capture person-specific withdrawal experiences provides a pathway to 

precision medicine, in which treatments are tailored to individuals (Allenby et al., 2016).

In addition to allowing an appreciation for the vast heterogeneity of tobacco withdrawal, 

constructing person-specific, temporal networks of withdrawal symptoms enabled us to 

probe the notion of self-perpetuating symptom networks and its implications for the 

experience and treatment of withdrawal. At the core of network theory in psychology are 

notions of individual differences in the extent to which symptom networks are vulnerable to 

the reverberation of symptom activity across time as symptoms influence one another. We 

quantified the extent to which withdrawal symptom networks were vulnerable to self-

perpetuation by capturing the time it took for symptom activity to recover after a simulated 

increase in activity that spread along the estimated directed paths of the symptom network. 

Findings showed that combination nicotine replacement smoking cessation treatment was 

associated with reduced symptom network recovery time relative to a placebo condition. 

While combination nicotine replacement has been shown to work by reducing craving (Bolt 

et al., 2012), this research suggests that this treatment may also reduce the time it takes for a 

smoker to recover and return to baseline levels of withdrawal (i.e., negative affect, cognitive 

disturbance, craving) after an acute increase in withdrawal symptom activity. Further 

evidence for the validity of symptom recovery time are observations that longer system 

recovery time are associated with more intense experiences of anxiety, sadness, irritability, 

and difficulty concentrating during the EMA protocol.

Perhaps surprisingly, the monotherapy placebo group showed faster recovery time relative to 

the combination placebo group. One potential explanation for this observation is that the 

monotherapy placebo group exhibited the most smoking lapses during the quit period. As 

such, the short network recovery time observed in the monotherapy group may stem less 

from treatment effects (or lack thereof in this case) and more from continued smoking which 

alleviated the monotherapy placebo group’s withdrawal experiences to a greater extent than 

the other groups showing fewer smoking lapses.

In considering differences between the group-level and person-specific networks, it is 

important to highlight a number of methodological differences. The group temporal 

networks incorporate data from all individuals in estimating edges and, thus, estimates 

represent the prototypical individual in the sample. In contrast, the person-specific networks 

are estimated in an approach that models only data from the individual. Additionally, 

estimates from six different models are combined to create the group temporal networks. 

Lydon-Staley et al. Page 14

J Abnorm Psychol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The person-specific approach, in contrast, leverages structural equation modeling to estimate 

all potential edges in the network simultaneously. Advantages of the person-specific 

approach are not, however, without limitations. Estimating a well-fitting person-specific 

model requires substantially more data than approaches that aggregate data across groups of 

people. Indeed, in the present case, person-specific networks could not be constructed for 

each individual due to the length of the time series required for estimation.

Going forward, it will be important to identify the mechanisms underlying the network 

edges. In the context of the cross-talk observed between emotions across time, for example, 

emerging work suggests the relevance of individual differences in the neural correlates of 

cognitive control as well individual differences in the use of emotion regulation strategies 

involving the adoption of an accepting and open attitude to one’s current experience for 

understanding the spread of emotions to other emotions across time (Drake et al., 2019; 

Lydon-Staley et al., 2019a; Lydon-Staley et al., 2019b).

Limitations and future outlook

Despite observing associations between symptom recovery time and treatment, we observe 

no association between symptom recovery time and biochemically-confirmed smoking 

abstinence at end of treatment (8 weeks post-quit) or at 6 months post-quit. The lack of 

association between symptom network recovery time and smoking cessation abstinence may 

be interpreted in a number of ways. We emphasize that recovery time provides information 

on how individual differences in tobacco withdrawal symptom network structure might 

promote symptom spread across time following a hypothetical, simulated perturbation. As 

such, recovery time represents a potential risk factor through which events external to the 

withdrawal network may act to promote persistent symptom activity. Indeed, in a study 

using impulse response analysis to examine the recovery time of sadness to a simulated 

perturbation, longer recovery time was associated with overall higher levels of depression 

symptoms in participants experiencing high exposure to stressful life events but not in 

participants experiencing low exposure to stressful life events. In examining the association 

between withdrawal network recovery time and smoking cessation outcomes going forward, 

it will be important to concurrently measure the occurrence of events outside of the 

withdrawal network that could plausible lead to increases in symptom activity in ways that 

mirror the simulated shock of the current study.

The person-specific approach allowed an appreciation for the heterogeneous experience of 

withdrawal as well as the computation of system recovery time, allowing us to capture 

theoretical notions of self-perpetuating symptom networks. However, estimating good-fitting 

person-specific models required substantially more data than approaches that aggregate data 

across groups of people. In the present case, person-specific networks could not be 

constructed for each individual in the sample due to the length of the time series required for 

estimation, a difficulty observed in applications beyond tobacco withdrawal (Yang et al., 

2018). We hope that highlighting the difficulties of estimating person-specific networks 

using the type of time series data that has provided substantial insights into withdrawal 

dynamics to date, as well as the important insights associated with the heterogeneous 

experience of withdrawal, encourages future collection efforts of denser time series data of 
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tobacco withdrawal. An additional potential limitation is the use of random assessments 

twice per day between waking and sleeping. The use of random assessments minimizes 

potential problems with participant anticipation of measurement occasions but also 

complicates the assumption of equal intervals between pairs of EMA observations.

Smoking lapses are very common during smoking quit attempts (Ashare et al., 2014; 

Shiffman et al., 2006) and the prototypical participant in the present study reported smoking 

since the last EMA report at approximately 18% of their EMA prompts. As such, the 

symptom networks should be interpreted as withdrawal networks estimated during a quit 

attempt marked by occasional lapses. With denser withdrawal symptom time series data, 

extensions of the unified structural equation modeling approach used here to examine 

person-specific networks could incorporate information on lapses into the modeling 

approach, treating smoking lapses as events that may moderate network edges (Gates et al., 

2011).

Conclusions

The present study examined the temporal network structure of tobacco withdrawal. In doing 

so, we find that that there are substantial associations between individual withdrawal 

symptoms across time, and that smoking cessation treatments may impact the extent to 

which withdrawal symptom activity lingers across time due to moment-to-moment inter-

symptom associations. These findings suggest that a network perspective of tobacco 

withdrawal is a promising approach to understanding withdrawal and its treatment to help all 

smokers succeed in quitting smoking. The study highlights the challenges associated with 

using cross-sectional networks to inform within-person associations between symptoms 

across time (Bos et al., 2017), reinforcing the need to collect intensive repeated measures 

data to articulate theories of within-person variation in withdrawal symptoms. The vast 

heterogeneity observed in withdrawal symptom experiences also provide challenges for 

generalizability, necessitating consideration of methodological approaches capable of 

capturing both idiographic experiences as well as experiences that may be common to most 

smokers (Beltz et al., 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamic networks of tobacco withdrawal. A. A temporal network in which the nodes 

(circles) represent symptoms and the edges represent the association between symptoms 

from one measurement occasion to the next. B. A contemporaneous network in which the 

edges represent the co-occurrence of symptoms at the same measurement occasion while 

controlling for temporal effects and the effects of other symptoms. Only green edges are 

observed in the networks indicating that the experience of increases in withdrawal symptoms 

tend to be associated with increases in the experience of other symptoms (e.g., when sadness 

is higher than usual, anxiety is higher than usual). Both temporal and contemporaneous 

networks are estimated by pooling data across all participants in the sample and, thus, edges 

represent the prototypical associations among symptoms.
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Figure 2. 
Person-specific networks of tobacco withdrawal. A. Two graphs estimated using a unified 

Structural Equation Model on experience-sampling data show the temporal associations 

(edges) among individual withdrawal symptoms (nodes) across time for two different 

participants. Red edges show negative associations; green edges show positive associations; 

dashed edges are lagged associations; and continuous edges are contemporaneous 

associations. Notable is the heterogeneity in network structure across the two participants. B. 

A sample matrix of recovery times associated with the network on the left in panel A, and 

estimated using impulse response analysis, indicates the time it takes for a symptom to 

return to equilibrium after being perturbed. For example, when an increase in anxiety is 

simulated, it takes 4.92 time steps for anxiety to return to baseline (as indicated by the Anx. 

-> Anx label). A subsample of three symptoms (anxiety, irritability, and sadness) of the full 

six symptom matrix is shown to enhance readability. C. Independent samples t-tests show 

higher log system recovery times in the symptom networks of participants in the 

combination therapy placebo condition (non-log mean value = 3.55) relative to participants 

in the active combination therapy condition (non-log mean value = 3.05). No differences in 

system recovery time emerges for participants in the active (non-log mean value = 2.88) or 

placebo monotherapy (non-log mean value = 2.39) groups. Notes: Anx.=anxiety; Irr. = 

irritablility; Sad. = sadness; *p=0.03; NS = non-significant.
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