
De Cock et al. BMC Med Genomics (2021) 14:23
https://doi.org/10.1186/s12920-020-00869-9

TECHNICAL ADVANCE

High performance logistic regression
for privacy‑preserving genome analysis
Martine De Cock1*  , Rafael Dowsley2, Anderson C. A. Nascimento1, Davis Railsback1, Jianwei Shen1
and Ariel Todoki1

Abstract 

Background:  In biomedical applications, valuable data is often split between owners who cannot openly share the
data because of privacy regulations and concerns. Training machine learning models on the joint data without violat-
ing privacy is a major technology challenge that can be addressed by combining techniques from machine learning
and cryptography. When collaboratively training machine learning models with the cryptographic technique named
secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computa-
tional cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimiza-
tions are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be
tailored to the kind of data and Machine Learning problem at hand.

Methods:  Our setup involves secure two-party computation protocols, along with a trusted initializer that distrib-
utes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a
logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corre-
sponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function
that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering
optimizations to improve the performance.

Results:  For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications;
the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized
version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis
competition.

Conclusions:  In this paper, we present a secure logistic regression training protocol and its implementation, with a
new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest
existing secure multi-party computation implementation for training logistic regression models on high dimensional
genome data distributed across a local area network.

Keywords:  Logistic regression, Gradient descent, Machine learning, Secure multi-party computation, Gene
expression data

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Introduction
Machine learning (ML) has many applications in the
biomedical domain, such as medical diagnosis and per-
sonalized medicine. Biomedical data sets are typically
characterized by high dimensionality, i.e. a high num-
ber of features such as lab test results or gene expression

Open Access

*Correspondence: mdecock@uw.edu
1 School of Engineering and Technology, University of Washington
Tacoma, Tacoma, WA 98402, USA
Full list of author information is available at the end of the article
Martine De Cock: Guest Professor at Ghent University.

http://orcid.org/0000-0001-7917-0771
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-00869-9&domain=pdf

Page 2 of 18De Cock et al. BMC Med Genomics (2021) 14:23

values, and low sample size, i.e. a small number of train-
ing examples corresponding to e.g. patients or tissue
samples. Adding to these challenges, valuable training
data is often split between parties (data owners) who can-
not openly share the data because of privacy regulations
and concerns. Due to these concerns, privacy-preserving
solutions, using techniques such as secure multi-party
computation (MPC), become important so that this data
can still be used to train ML models, perform a diagnosis,
and in some cases even derive genomic diagnoses [1].

We tackle the problem of training a binary classifier
on high dimensional gene expression data held by differ-
ent data owners, while keeping the training data private.
This work is directly inspired by Track 4 of the iDASH
2019 secure genome analysis competition.1 The iDASH
competition is a yearly international competition for
participants to create and implement privacy-preserving
protocols for applications with genomic data. The goal
is in evaluating the best-known secure methods and
advancing new techniques to solve real-world problems
in handling genomic data. In the 2019 edition there were
a total of four different tracks, where Track 4 invited par-
ticipants to design MPC solutions for collaborative train-
ing of ML models originating from multiple data owners.

One of the Track 4 competition data sets consists of 470
training examples (records) with 17,814 numeric fea-
tures, while the other consists of 225 training examples
with 12,634 numeric features. An initial fivefold cross-
validation analysis in the clear, i.e. without any encryp-
tion, indicated that in both cases logistic regression (LR)
models are capable of yielding the level of prediction
accuracy expected in the competition, prompting us to
investigate MPC-based protocols for secure LR training.

The competition requirements implied the exist-
ence of multiple data owners who each send their train-
ing example(s) in an encrypted or secret shared form
to data processors (computing nodes), as illustrated in
Fig. 1. The honest-but-curious data processors are not to
learn anything about the data as they engage in computa-
tions and communications with each other. At the end,
they disclose the trained classifier—in our case, the coef-
ficients of the LR model—to the data owners. Since the
data processors cannot learn anything about the values in
the data set, this implies that our protocol is applicable
in a wide range of scenarios, independently of how the
original data is split by ownership. Our protocol works in
scenarios where the data is horizontally partitioned, i.e.
when each data owner has different records of the data,
such as data belonging to different patients. It also works
in scenarios where the data is vertically partitioned, i.e.
when each data owner has different features of the data,
such as the expression values for different genes.

Fig. 1  Overview of MPC based secure logistic regression (LR) training. Each of n data owners secret shares their own training data between two
data processors. The data processors engage in computations and communications to train a ML model, which is at the end revealed to the data
owners

1  http://www.human​genom​epriv​acy.org/2019/compe​titio​n-tasks​.html,
accessed on Jan 19, 2020.

http://www.humangenomeprivacy.org/2019/competition-tasks.html

Page 3 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

Real-world applications of privacy-preserving ML, as
reflected in the iDASH2019 competition requirements,
call for a careful and purposefully balanced trade-off
between privacy, accuracy, and efficiency. In the solution
presented in this paper, no information is leaked, i.e. pri-
vacy is fully preserved. The price paid for such high secu-
rity is an increase in computational cost (runtime), which
can be alleviated by a careful choice of “MPC-friendly”
functions in the ML algorithm. As we explain in the
description of our methods, in our case we achieve this
by approximating the sigmoid activation function that is
traditionally used in logistic regression, by a piecewise
linear function that is computationally cheaper to evalu-
ate securely. Such so-called ReLu-like activation func-
tions have been used before in MPC protocols, and the
resulting trained ML models are still referred to as logis-
tic regression models (see e.g. [2, 3]) even though they
are strictly speaking slightly different because of a differ-
ent choice of activation function and corresponding loss
function. In the “Results” section, we report details about
the effect that using the alternative activation function
has on the accuracy of the trained LR like classifiers.

Contributions
The main novelty points of our solution for private LR
training over a distributed data set are: (1) a new proto-
col for securely computing the activation function that
avoids the use of full-fledged secure comparison pro-
tocols; (2) a novel method for bit decomposing secret
shared integers and bundling their instantiations; and
(3) several cryptographic engineering enhancements
that together with the novel protocol for the activation
function gave us the fastest privacy-preserving LR imple-
mentation in the world when run in local area networks
(LANs). In summary, we designed a concrete solution for
fast secure training of a binary classifier over gene expres-
sion data that meets the strict security requirements of
the iDASH 2019 competition. For our largest data set, we
train a model that requires over 7 billion secure multi-
plications and the training completes in about 26.9 s in
a LAN.

This paper significantly expands over a preliminary
version of this result [4], presented at a workshop with-
out formal proceedings. In this version we have a formal
description of all protocols, security proofs and improved
running times.

Related work
A variety of efforts have previously been made to train LR
classifiers in a privacy-preserving way.

One scenario that was considered in previous works
[5–7] is the setting in which a data owner holds the data
while another party (the data processor), such as a cloud

service, is responsible for the model training. These solu-
tions usually rely on homomorphic encryption, with the
data owner encrypting and sending their data to the data
processor who performs computations on the encrypted
data without having to decrypt it.

When the data is held by multiple data owners, they
can either execute an MPC protocol among themselves
to train the model, or delegate the computation to a set of
data processors that run a MPC protocol. It is the latter
setting that we follow in this paper.

Existing MPC approaches to secure LR differ in the
numerical optimization algorithms used for LR training
and in the cryptographic primitives leveraged [2, 8–10].
The SPARK protocol [8] uses additive homomorphic
encryption (Paillier cryptosystem) and uses Newton–
Raphson as the numerical optimization algorithm to find
the values of the weights that maximize the log-likeli-
hood. The SPARK protocol can use the actual logistic
function without approximating it at the cost of the plain-
text data being horizontally partitioned and seen by the
data processors. The two protocols from [9] rely on the
Newton-Raphson method, both approximate the logis-
tic function, and both use additive secret sharing. The
first protocol includes the use of Yao’s garbled circuits
to compute the approximation of the logistic function,
while the second protocol uses a Taylor approximation
and Euler’s method. The PrivLogit method [10] uses Yao’s
garbled circuits and Paillier encryption; their protocol
uses the Newton-Raphson method and a constant Hes-
sian approximation to speed up computation. However,
this protocol relies on the plaintext data being horizon-
tally partitioned and seen by the data processors, which,
like the work in [8], would not align with the iDASH 2019
competition requirements. We also point out a protocol
secure against active adversaries from SecureNN [11] for
computing a ReLu. While we compute a different func-
tion (clipped ReLu), we share a similar idea that using the
most significant bit of an input can tell us the output of
the function.

The work closest to ours is SecureML [2], which was
the fastest protocol for privately training LR models
based on secure MPC prior to our work. SecureML
separates the data owners from the data processors,
and uses mini-batch gradient descent. The main nov-
elty points of SecureML are a clipped ReLu activation
function, a novel truncation protocol, and a combina-
tion of garbled circuits and secret sharing based MPC
in order to obtain a good trade-off between commu-
nication, computation and round complexities. The
SecureML protocol is evaluated on a data set with up
to 5000 features, while—to the best of our knowledge—
the existing runtime evaluation of all other approaches
for MPC based LR training is limited to 400 features

Page 4 of 18De Cock et al. BMC Med Genomics (2021) 14:23

or less [8–10]. Like our solution, the SecureML proto-
col is split into an offline and online phase (the offline
phase can be executed before the inputs are known
and is responsible for generating multiplication tri-
ples). The SecureML solution is based on two servers,
while our solution is based on three servers, namely a
party who pre-computes so-called multiplication tri-
ples in the offline stage, and two parties who actively
compute the final result. If we exclude the preprocess-
ing/offline stage from SecureML and exclude the pre-
distribution of triples in our solution, we are left with
protocols that work in exactly the same setting. We
compare the runtime of both solutions in the “Results”
section, showing that our implementation is substan-
tially faster.

A preliminary version of this work appeared in a
workshop without formal proceedings [4]. This paper
is a substantially longer and detailed description that
includes security proofs, detailed comparison with the
state-of-the-art, and improved running times.

Paper organization
We first discuss below our work as compared to others.
In the “Methods” section, we present preliminary infor-
mation on MPC, describe the secure subprotocols that
are building blocks for our secure LR training protocol,
and finally describe the protocol itself. In the “Results”
section we describe details of our implementation and
runtime results for the overall protocol and micro-
benchmarks for our secure activation function proto-
col. We experimentally compare our solution with the
state-of-the-art SecureML approach [2], demonstrating

substantial runtime improvements. In the “Discussion”
section, we note possible future work to improve and
extend our results, and finally in the “Conclusions” sec-
tion we present our summary remarks.

Methods
Logistic regression
Logistic regression is a common Machine Learning
algorithm for binary classification. The training data
D consists of training examples d = (xd , td) in which
xd = �xd,1, xd,2, . . . , xd,m� is an m-dimensional numeri-
cal vector, containing the values of m input attributes
for example d, and td ∈ {0, 1} is the ground truth class
label. Each xd,i for i ∈ {1, 2, . . . ,m} is a real number
value.

As illustrated in Fig. 2a, we train a neuron to map
the xd ’s to the corresponding td’s, correctly classify-
ing the examples. The neuron computes a weighted
sum of the inputs (the values of the weights are
learned during training) and subsequently applies
an activation function to it, to arrive at the output
od = f (w0 · xd,0 + w1 · xd,1 + · · · + wn · xd,n) , which is
interpreted as the probability that the class label is 1.
Note that, as is common in neural network training,
we extend the input attribute vector with a dummy fea-
ture xd,0 which has value 1 for all xd’s. The traditionally
used activation function for LR is the sigmoid function
σ(z) = 1

1+e−z  . Since the sigmoid function σ requires
division and evaluation of an exponential function,
which are expensive operations to perform in MPC, we
approximate it with the activation function ρ from [2],
which is shown in Fig. 2b.

Fig. 2  Architecture. a Neuron; b approximation of sigmoid activation function σ by clipped ReLu ρ

Page 5 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

For training, we use the full gradient descent based
algorithm shown in Algorithm 1 to learn the weights for
the LR model. On line 3, we choose not to use early stop-
ping2 because in that case the number of iterations would
depend on the values in the training data, hence leaking
information [9]. Instead, we use a fixed number of itera-
tions during training.

Our scenario
In the scenario considered in this work the data is not
held by a single party that performs all the computation,
but distributed by the data owners to the data processors
in such way that each data processor does not have any
information about the data in the clear. Nevertheless, the
data processors would still like to compute a LR model
without leaking any other information about the data
used for the training. To achieve this goal, we will use
techniques from MPC.

Our setup is illustrated in Fig. 1. We have multiple data
owners who each hold disjoint parts of the data that is
going to be used for the training. This is the most gen-
eral approach and covers the cases in which the data is
horizontally partitioned (i.e. for each training sample
d = (xd , td) , all the data for d is held by one of the data
owners), vertically partitioned (for each feature, the val-
ues of that feature for all training samples are held by
one of the data owners), and even arbitrary partitions.
There are two data processors who collaborate to train
a LR model using secure MPC protocols, and a trusted

initializer (TI) that predistributes correlated randomness
to the data processors in order to make the MPC compu-
tation more efficient. The TI is not involved in any other
part of the execution, and does not learn any data from
the data owners or data processors.

We next present the security model that is used and
several secure building blocks, so that afterwards we can
combine them in order to obtain a secure LR training
protocol.

Security model
The security model in which we analyze our protocol
is the universal composability (UC) framework [12] as
it provides the strongest security and composability
guarantees and is the gold standard for analyzing cryp-
tographic protocols nowadays. Here we will only give a
short overview of the UC framework (for the specific case
of two-party protocols), and refer interested readers to
the book of Cramer et al. [13] for a detailed explanation.

The main advantage of the UC framework is that the
UC composition theorem guarantees that any protocol
proven UC-secure can also be securely composed with
other copies of itself and of other protocols (even with
arbitrarily concurrent executions) while preserving its
security. Such guarantee is very useful since it allows the
modular design of complex protocols, and is a necessity
for protocols executing in complex environments such as
the Internet.

The UC framework first considers a real world scenario
in which the two protocol participants (the data pro-
cessors from Fig. 1, henceforth denoted Alice and Bob)
interact between themselves and with an adversary A and
an environment Z (that captures all activity external to
the single execution of the protocol that is under consid-
eration). The environment Z gives the inputs and gets the
outputs from Alice and Bob. The adversary A delivers the
messages exchanged between Alice and Bob (thus mod-
eling an adversarial network scheduling) and can corrupt
one of the participants, in which case he gains the control
over it. In order to define security, an ideal world is also
considered. In this ideal world, an idealized version of the
functionality that the protocol is supposed to perform
is defined. The ideal functionality F receives the inputs
directly from Alice and Bob, performs the computations
locally following the primitive specification and delivers
the outputs directly to Alice and Bob. A protocol π exe-
cuting in the real world is said to UC-realize functional-
ity F if for every adversary A there exists a simulator S
such that no environment Z can distinguish between: (1)
an execution of the protocol π in the real world with par-
ticipants Alice and Bob, and adversary A ; (2) and an ideal
execution with dummy parties (that only forward inputs/
outputs), F and S.

2  This is a technique that uses a metric, such as the accuracy on a held-out
validation data set, to check when a model starts to overfit and will then stop
training at that point.

Page 6 of 18De Cock et al. BMC Med Genomics (2021) 14:23

This work like the vast majority of the privacy-preserv-
ing machine learning protocols in the literature consid-
ers honest-but-curious, static adversaries. In more detail,
the adversary chooses the party that he wants to cor-
rupt before the protocol execution and he also follows
the protocol instructions (but tries to learn additional
information).

Setup assumptions and the trusted initializer model
Secure-two party computations are impossible to achieve
without further assumptions. We consider the trusted
initializer model, in which a trusted initializer function-
ality FD

TI pre-distributes correlated randomness to Alice
and Bob. A trusted initializer has been often used to
enable highly efficient solutions both in the context of
privacy-preserving machine learning [14–18] as well as
in other applications, e.g., [19–24].

If a trusted initializer is not desirable, the comput-
ing parties can “emulate” such a trusted party by using
computational assumptions in an offline phase in asso-
ciation with a suitable setup assumption, as done e.g. in
SecureML [2].3 Even with such a different technique to
realize the offline phase, the online phase of our proto-
cols would remain the same. The novelties of our work
are in the online phase, and can be used in combination
with any standard technique for the offline phase, such
as the TI assumption (as we do in our implementation),
or the computational assumptions made in SecureML.
Our solution for the online phase leads to substantially
better runtimes than SecureML, as we document in the
“Results” section.

Simplifications In our proofs the simulation strategy
is simple and will be described briefly: all the messages
look uniformly random from the recipient’s point of view,
except for the messages that open a secret shared value
to a party, but these ones can be easily simulated using
the output of the respective functionalities. Therefore a

simulator S , having the leverage of being able to simu-
late the trusted initializer functionality FD

TI in the ideal
world, can easily perform a perfect simulation of a real
protocol execution; therefore making the real and ideal
worlds indistinguishable for any environment Z . In the
ideal functionalities the messages are public delayed out-
puts, meaning that the simulator is first asked whether
they should be delivered or not (this is due to the mod-
eling that the adversary controls the network scheduling).
This fact as well as the session identifications are omit-
ted from our functionalities’ descriptions for the sake of
readability.

Secret sharing based secure multi‑party computation
Our MPC solution is based on additive secret sharing
over a ring Zq = {0, 1, . . . , q − 1} . When secret sharing
a value x ∈ Zq , Alice and Bob receive shares xA and xB ,
respectively, that are chosen uniformly at random in Zq
with the constraint that xA + xB = x mod q . We denote
the pair of shares by �x�q . All computations are modulo q
and the modular notation is henceforth omitted for con-
ciseness. Note that no information of the secret value x
is revealed to either party holding only one share. The
secret shared value can be revealed/opened to each party
by combining both shares. Some operations on secret
shared values can be computed locally with no commu-
nication. Let �x�q , �y�q be secret shared values and c be a
constant. Alice and Bob can perform the following opera-
tions locally:

•	 Addition ( z = x + y ): Each party locally adds its local
shares of x and y in order to obtain a share of z. This
will be denoted by �z�q ← �x�q + �y�q.

•	 Subtraction ( z = x − y ): Each party locally subtracts
its local share of y from that of x in order to obtain a
share of z. This will be denoted by �z�q ← �x�q − �y�q
.

•	 Multiplication by a constant ( z = cx ): Each party
multiplies its local share of x by c to obtain a share of
z. This will be denoted by �z�q ← c�x�q

•	 Addition of a constant ( z = x + c ): Alice adds c to
her share xA of x to obtain zA , while Bob sets zB = xB .
This will be denoted by �z�q ← �x�q + c.

The secure multiplication of secret shared values (i.e.,
z = xy ) cannot be done locally and involves communi-
cation between Alice and Bob. To obtain an efficient
secure multiplication solution, we use the multiplica-
tion triples technique that was originally proposed by
Beaver [35]. We use a trusted initializer to pre-dis-
tribute the multiplication triples (which are a form of
correlated randomness) to Alice and Bob. We use the
same protocol πDMM for secure (matrix) multiplication

3  Using a setup assumption, like the trusted initializer, in two-party secure
computation protocols is a necessity in order to get UC-security [25, 26].
Other possible setup assumption to achieve UC-security include: a common
reference string [25–27], the availability of a public-key infrastructure [28],
the random oracle model [29, 30], the existence of noisy channels between the
parties [31, 32], and the availability of tamper-proof hardware [33, 34].

Page 7 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

of secret shared values as in [17, 36] and denote by πDM
the protocol for the special case of multiplication of
scalars and πIP for the inner product. As shown in [17]
the protocol πDMM (described in Protocol 2) UC-real-
izes the distributed matrix multiplication functionality
FDMM in the trusted initializer model.

Converting to fixed‑point representation
Each data owner initially needs to convert their train-
ing data to integers modulo q so that they can be secret
shared. As illustrated in Fig. 3, each feature value x ∈ R
is converted into a fixed point approximation of x using
a two’s complement representation for negative num-
bers. We define this new value as Q(x) ∈ Zq . This con-
version is shown in Eq. (1):

Specifically, when we convert Q(x) into its bit representa-
tion, we define the first a bits from the right to hold the
fractional part of x, and the next b bits to represent the
non-negative integer part of x, and the most significant
bit (MSB) to represent the sign (positive or negative). We
define � to represent the total number of bits such that
the ring size q is defined as q = 2� . It is important to
choose a � that is large enough to represent the largest
number x that can be produced during the LR protocol,
and therefore � should be chosen to be at least 2(a+ b)
(see Truncation). It is also important to choose a b that is
large enough to represent the maximum possible value of
the integer part of all x’s (this is dependent on the data).
This conversion and bit representation is shown in Fig. 3.

Truncation
When multiplying numbers that were converted into
a fixed point representation with a fractional bits, the
resulting product will end up with a more bits repre-
senting the fractional part. For example, a fixed point
representation of x and y, for x, y > 0 , is x · 2a and y · 2a ,
respectively. The multiplication of both these terms
results in xy · 22a , showing that now 2a bits are repre-
senting the fractional part, which we must scale back
down to xy · 2a to do any further computations. In our
solution, we use the two-party local truncation pro-
tocol for fixed point representations of real numbers
proposed in [2] that we will refer to as πtrunc . It does
not involve any messages between the two parties, each
party simply performs an operation on its own local
share. This protocol almost always incurs an error of at
most a bit flip in the least-significant bit. However, with
probability 2a+1−� , where a is the number of fractional
bits, the resulting value is completely random.

When this truncation protocol is performed on
increasingly large data sets (in our case we run over 7
billion secure multiplications), the probability of an
erroneous truncation becomes a real issue—an issue
not significant in previous implementations. There
are two phases in which truncation is performed: (1)

(1)Q(x) =

{

2� −
⌊

2a · |x|
⌋

if x < 0
⌊

2a · x
⌋

if x ≥ 0

Page 8 of 18De Cock et al. BMC Med Genomics (2021) 14:23

when computing the dot product (inner product) of
the current weights vector with a training example in
line 7 of Algorithm 1, and (2) when the weight differ-
entials ( �wi ) are adjusted in line 9 of Algorithm 1. If a
truncation error occurs during (1), the resulting erro-
neous value will be pushed into a reasonable range by
the activation function and incur only a minor error for
that round. If the error occurs during (2), an element
of the weights vector will be updated to a completely
random ring element and recovery from this error
will be impossible. To mitigate this in experiments,
we make use of 10–12 bits of fractional precision with
a ring size of 64 bits, making the probability of failure
1
253

< p < 1
251

 . The number of truncations that need to
be performed is also reduced in our implementation
by waiting to perform truncation until it is absolutely
required. For instance, instead of truncating each result
of multiplication between an attribute and its corre-
sponding weight, a single truncation can be performed
at the end of the entire dot product.

Additional error is incurred on the accuracy by
the fixed point representation itself. Through cross-
validation with an in-the-clear implementation, we
determined that 12 bits of fractional precision provide
enough accuracy to make the output accuracy indistin-
guishable between the secure version and the plaintext
version.

Conversion of sharings
For efficiency reasons, in some of the steps for securely
computing the activation function we use secret shar-
ings over Z2 , while in others we use secret sharings over
Z2� . Therefore we need to be able to convert between
the two types of secret sharings.

We use the two-party protocol from [17] for perform-
ing the bit-decomposition of a secret-shared value �x�2�
to shares �xi�2 , where x� · · · x1 is the binary representa-
tion of x. It works like the ripple carry adder arithmetic
circuit based on the insight that the difference between
the sum of the two additive shares held by the parties
and an “XOR-sharing” of that sum is the carry vec-
tor. As proven in [17], the bit-decomposition protocol

Fig. 3  Fixed-point representation. Register map of fixed-point representation of numbers shared over Z2� with examples

Page 9 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

πdecomp (described in Protocol 3) UC-realizes the bit-
decomposition functionality Fdecomp.

In our implementation we use a highly parallelized
and optimized version of the bit-decomposition pro-
tocol πdecomp in order to improve the communication

efficiency of the overall solution. The optimizations are
described in the Appendix.

The opposite of a secure bit-decomposition is con-
verting from bit sharing to an additive sharing over a
larger ring. In our secure activation function protocol,
we require securely converting a bit sharing to an addi-
tive sharing in 2� . This is done using the protocol π2to2�
from [18] (described in Protocol 4) that UC-realizes the
secret sharing conversion functionality F2to2�.

Page 10 of 18De Cock et al. BMC Med Genomics (2021) 14:23

Secure activation function
We propose a new protocol that evaluates ρ from Fig. 2b
directly over additive shares and does not require full
secure comparisons, which would have been more expen-
sive. Instead of doing straightforward comparisons
between z, 0.5 and −0.5 , we derive the result through
checking two things: (i) whether z′ = z + 1/2 is positive or
negative; (ii) whether z′ ≥ 1 . Both checks can be performed
without using a full comparison protocol.

When z′ is bit decomposed, the most significant bit is 0 if
z′ is non-negative and 1 if z′ is negative. In fact, if out of the
� bits, the a lowest bits are used to represent the fractional
component and the b next bits are used to represent the
integer component, then the remaining �− a− b bits all
have the same value as the most significant bit. We will use
this fact in order to optimize the protocol by only perform-
ing a partial bit-decomposition and deducting whether z′ is
positive or negative from the (a+ b+ 1)-th bit.

In the case that z′ is negative, the output of ρ is 0. But, if
z′ is positive, we need to determine whether z′ ≥ 1 in order
to know if the output of ρ should be fixed to 1 or to z′ . A
positive z′ is such that z′ ≥ 1 if and only if at least one of the
b bits corresponding to the integer component of z′ repre-
sentation is equal to 1, therefore we only need to analyze
those b bits to determine if z′ ≥ 1.

Our secure protocol πρ is described in Protocol 5. The
AND operation corresponds to multiplications in Z2 . By
the application of De Morgan’s law, the OR operation is
performed using the AND and negation operations. The
successive multiplications can be optimized to only take
a logarithmic number of rounds by using well-known
techniques.

The activation function protocol πρ UC-realizes the
activation function functionality Fρ . The correctness can
be checked by inspecting the three possible cases: (i) if
z > 1/2 , then pos = 1 and geq1 = 1 (since at least one of
the bits representing the integer component of z + 1/2 will
have a value 1). The output is thus �2a�2� (the fixed-point
representation of 1); if −1/2 ≤ z < 1/2 , then pos = 1 and
geq1 = 0 , and therefore the output will be �z′�2� , which
is the fixed-point representation of z + 1/2 ; if z < −1/2 ,
then pos = 0 and the output will be a secret sharing repre-
senting zero as expected. The security follows trivially from
the UC-security of the building blocks used and the fact
that no secret sharing is opened.

Secure logistic regression training
We now present our secure LR training protocol that
uses a combination of the previously mentioned building
blocks.

Notice that in the full gradient descent technique
described in Algorithm 1, the only operations that cannot
be performed fully locally by the data processors, i.e. on
their own local shares, are:

Page 11 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

•	 The computation of the inner product in line 7
•	 The activation function ρ in line 7
•	 The multiplication of td − od with dd,i in line 9

Our secure LR training protocol πLR−Training (described
in Protocol 6) shows how the secure building blocks
described before can be used to securely compute
these operations. The inner product is securely com-
puted using πIP on line 5, and since this involves mul-
tiplication on numbers that are scaled to a fixed-point
representation, we truncate the result using πtrunc . The
activation function is securely computed using πρ on
line 6. The multiplication of td − od with xd,i is done
using secure multiplication with batching on line 11.
Since this also involves multiplication on numbers that
are scaled, the result is truncated using πtrunc in line 14.
A slight difference between the full gradient descent
technique described in Algorithm 1 and our protocol
πLR−Training , is that instead of updating �wi after every
evaluation of the activation function, we batch together
all activation function evaluations before computing
the �wi . Since the activation function requires a bit-
decomposition of the input, we can now make use of
the efficient batch bit-decomposition protocol batch-
πdecompOPT (see Appendix) within the activation func-
tion protocol πρ.

The LR training protocol πLR−Training UC-realizes the
logistic regression training functionality FLR−Training .
The correctness is trivial and the security follows
straightforwardly from the UC-security of the building
blocks used in πLR−Training.

The following steps describe end-to-end how to
securely train a LR classifier:

1	 The TI sends the correlated randomness needed for
efficient secure multiplication to the data processors.
Note that while our current implementation has the
TI continuously sending the correlated randomness,
it is possible for the TI to send all correlated random-
ness as the first step, and therefore can leave and not
be involved during the rest of the protocol.

2	 Each data owner converts the values in the set of
training examples D that it holds to a fixed-point rep-
resentation as described in Eq. 1. Each value is then
split into two shares, which are then sent to the data
processor 1 and data processor 2 respectively.

3	 Each data processor receives the shares of data from
the data owners. They now have secret sharings
(�xd�, �td�) of the set of training examples D. The
learning rate η and number of iterations niter are pre-
determined and public to both data processors.

4	 The data processors collaborate to train the LR
model. They both follow the secure LR training pro-
tocol πLR−Training.

Page 12 of 18De Cock et al. BMC Med Genomics (2021) 14:23

5	 At the end of the protocol, each data processor will
hold shares of the model’s weights �wi� . Each data
processor sends their shares to all of the data own-
ers, who can then combine the shares to learn the
weights of the LR model.

Cryptographic engineering optimizations
Sockets and threading
A single iteration of the LR protocol is highly paralleliz-
able in three distinct segments: (1) computing the dot
products between the current weights and the data set,
(2) computing the activation of each dot product result,
and (3) computing the gradient and updating the weights.
In each of these phases, a large number of computations
are required, but none have dependencies on others. We
take advantage of this by completing each of these phases
with thread pools that can be configured for the machine
running the protocol. We implemented the proposed
protocols in Rust; with Rust’s ownership concept, it is
possible to yield results from threads without message
passing or reallocation. Hence, the code is constructed
to transfer ownership of results at each phase back to the
main thread to avoid as much inter-process communica-
tion as possible. Additionally, all threads complete socket
communications by computing all intermediate results
directly in the socket buffer by implementing the buffer
as a union of byte array and unsigned 64-bit integer array.
This buffer is allocated on the stack by each thread which
circumvents the need for a shared memory block while
also avoiding slower heap memory. The implementation
of this configuration reduced running times significantly
based on our trials.

Further, all modular arithmetic operations are handled
implicitly with the Rust API’s Wrapping struct which tells
the ALU to ignore integer overflow. As long as the size
of the ring over which the MPC protocols are performed
is selected to align with a provided primitive bit width
(i.e. 8, 16, 32, 64, 128) it is possible to omit computing the
remainder of arithmetic with this construction.

Results
We implemented the protocols from the “Methods” sec-
tion in Rust4 and experimentally evaluated them on the
BC-TCGA and GSE2034 data sets of the iDASH 2019
competition. Both data sets contain gene expression data
from breast cancer patients which are normal tissue/non-
recurrence samples (negative) or breast cancer tissue/
recurrence tumor samples (positive) [37].

Table 1 contains accuracy results obtained with LR
with sigmoid activation function, using the implemen-
tation in the sklearn library [38], and default parameter
settings. These models were not trained in a privacy-pre-
serving manner, and the results in Table 1 are included
merely for comparison purposes. As Table 1 shows, reg-
ularization with ridge or lasso regression did not have a
significant impact on the accuracies, which is the reason
why we did not include regularization in our privacy-pre-
serving training protocols for the iDASH competition. In
the “Discussion” section we provide information on how
Protocol 6 can be expanded to include regularization as
well.

The results obtained with our privacy-preserving pro-
tocols are given in Table 2. Using Protocol 6, we trained
LR models with a clipped ReLu activation function on
both data sets with a learning rate η = 0.001 . We use
a fixed number of iterations for each data set: 10 itera-
tions for the BC-TCGA data set and 223 iterations for
the GSE2034 data set. The accuracy of the resulting mod-
els, evaluated with fivefold cross-validation, is presented
in Table 2, along with the average runtime for training
those models. It is important to note that these are the
same accuracies that are obtained when training LR with
a clipped ReLu activation function in the clear, i.e. there
is no accuracy loss in the secure version. Comparing the
accuracies in Table 1 and 2, one observes that for the BC-
TCGA data set there is no significant difference between
the use of a sigmoid activation function (Table 1)and the
clipped ReLu activation function (Table 2). While the dif-
ference in accuracy on the second data set is significant,
we decided to proceed with clipped ReLu anyway for
the iDASH competition as the rules stipulated that “this
competition does not require for the best performance
model”. Instead, the criteria were privacy (no informa-
tion leakage permitted), efficiency (short runtimes), and
reasonable accuracy. This is a reflection of real-world
applications of privacy-preserving machine learning,
where an acceptable balance among privacy, accuracy,
and efficiency is obtained by choosing primitives (such as
clipped ReLu) that are MPC-friendly.

Table 1  Accuracy results obtained with fivefold cross-
validation with LR, using the traditional sigmoid
activation function and cross-entropy loss

Models were trained for 100 iterations. All computations are done in-the-clear,
i.e. without use of the privacy-preserving protocols proposed in this paper

no regularization
(%)

Ridge
regression (%)

Lasso
regression
(%)

BC-TCGA​ 99.57 99.57 99.57

GSE2034 68.83 68.84 68.83

4  https​://bitbu​cket.org/uwtpp​ml/idash​2019.

https://bitbucket.org/uwtppml/idash2019

Page 13 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

We used integer precision b = 15 , fractional preci-
sion a = 12 and ring size � = 64 (these choices were
made based on experiments in the clear as mentioned in
the previous section). We ran the experiments on AWS
c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory.
Each of the parties ran on separate machines (connected
with a Gigabit Ethernet network), which means that the
results in Table 2 cover communication time in addition
to computation time. The results show that our imple-
mentation allows to securely train models with state-of-
the-art accuracy [37] on the BC-TCGA and GSE2034
data sets within about 2.52 s and 26.90 s respectively.

A previous version of this implementation was submit-
ted to the iDASH 2019 Track 4 competition. 9 of the 67
teams who entered Track 4 completed the challenge. Our
solution was one of the 3 solutions who tied for the first
place. Our implementation trained on all of the features
for both data sets (no feature engineering is done), and
generated a model that gave the highest accuracy, with
runtimes that were well within the competition’s limit of
24 h. The implementation presented in the current work
is further optimized in relation to the iDASH version and
achieves far better runtimes.

We note that while SecureML differs from our work in
their setup and cryptographic primitives, it shares many
similarities to ours and reports a fast runtime such that
we find it valuable as a standard to compare to. While
SecureML does not originally use a TI to predistribute
the multiplication triples, it would be easy to adapt their
result to use a TI for that purpose. Therefore, in order to
have a fair comparison, we compare our protocol runt-
ime against only their online runtime (thus excluding
their offline runtime). We evaluated our implementation’s
runtime against SecureML’s implementation by running
their implementation on the same AWS machines using

the same data sets (see Table 3 for runtime comparisons).
For both data sets, our online phase runs faster than
SecureML’s online phase which trains BC-TCGA in 12.73
seconds and GSE2034 in 49.95 s.

We then compare online microbenchmark computa-
tion times. For the computation of the activation func-
tion, our run of the SecureML code reported around
0.057–0.059 ms for 1 activation, while our implemen-
tation completes 1024 evaluations in around 30 ms
(0.029 ms per activation function). This makes our secure
activation function implementation nearly twice as fast
as SecureML’s. Additionally, it eliminates the overhead
of switching between Yao gates and additive secret shar-
ing. Furthermore, our activation function runs more effi-
ciently (per evaluation) the more evaluations of it need to
be computed, due to the design of the batch bit-decom-
position protocol. This is illustrated in Table 4 where the
calculated runtime per evaluation (runtime divided by
number of evaluations) decreases as the number of eval-
uations increase.

Discussion
Our runtime experiments on securely training a LR
model show that it is feasible to train on data that
includes a large number of attributes, as is common
with genomic data. Given the high dimensionality of the
genomic data, an interesting direction for future work
would be the design of MPC protocols for privacy-pre-
serving feature reduction. If any kind of feature reduction
is used, it would result in a decrease in secure training
runtime with a possibility for a slight decrease in the
accuracy. We demonstrate this by choosing (in the clear)
54 features of the BC-TCGA data set that were part of the
76-gene signature described in [39]. Training on these 54

Table 2  Accuracy and training runtime for LR like models with clipped ReLu activation function, and trained in a privacy-
preserving manner using the protocols proposed in this paper

features # pos. samples # neg. samples # of iterations Fivefold CV
accuracy (%)

Avg. runtime (s)

BC-TCGA​ 17,814 422 48 10 99.58 2.52

GSE2034 12,634 142 83 223 64.82 26.90

Table 3  Runtime comparisons between SecureML and our
work

BC-TCGA
training
(online) (s)

GSE2034
training
(online) (s)

Activation function
(one evaluation)
(ms)

Our work 2.52 26.90 0.030

SecureML 12.73 49.95 0.057

Table 4  Activation function runtimes

evaluations Avg. runtime (ms) Runtime per activation
(runtime/#eval) (ms)

256 9 0.035

512 16 0.031

1024 30 0.029

2048 59 0.028

Page 14 of 18De Cock et al. BMC Med Genomics (2021) 14:23

features, we get a fivefold cross-validation accuracy of
98.93% (training on all features produced 99.58%), and
the average secure training time (of three runs) is 0.51 s,
which is about a 2 s decrease from training on all 17,814
features. The genes in the GSE2034 data set are not
labeled in a way where we can map them to the 76-gene
signature to test the accuracy for a reduced number of
features, but we test the runtime of training on 76 attrib-
utes and we get an average of 6.71 s, which is about a 20 s
decrease from training on all 12,634 features. This shows
that if feature reduction can be performed, runtimes can
be improved while still being able to produce an accurate
trained model.

While regularization did not appear to have a signifi-
cant effect on the data sets of the iDASH2019 Track 4
competition (see Table 1), the question of how to perform
regularization in a privacy-preserving manner with MPC
is still relevant and interesting. Protocol 6 for secure LR
training can be adapted to include ridge regression by
changing the weight update rules (Line 12 of Protocol 6)
to include a term that depends linearly on the value of
the weights. This means that only secure additions and
secure multiplications with a constant are needed, which
are relatively inexpensive to perform in MPC and would
not significantly change the runtimes. On the other hand,
the penalty introduced in lasso regression depends on the
absolute value of the weights. Established techniques for
learning the parameters of a lasso model, such as coordi-
nate descent, require a secure comparison—an expensive
operation—per weight per iteration. This would drasti-
cally affect the runtime of our protocols. Therefore, for
the specific case of our protocols, we would suggest the
use of the much MPC-friendlier ridge regression.

Our main contribution is the proposal of the fast-
est implementation and protocol for privacy-preserving
training of LR models. Our novelty points are the new
protocol for privately evaluating the activation function
ρ which can be computed using only additive shares and
MPC protocols, without using a protocol for secure com-
parison. We use ρ as an approximation of the sigmoid
function σ since that is what is traditionally used in LR
training, but σ is also used as an activation function in
neural networks. Therefore, our fast secure protocol for
computing ρ can also result in faster neural network
training. While training neural networks are out of the
scope of this paper, we note that our results can be appli-
cable to those types of ML models as well.

Conclusions
In this paper, we have described a novel protocol for
implementing secure training of LR over distributed
parties using MPC. Our protocol and implementa-
tion present several novel points and optimizations

compared to existing work, including: (1) a novel pro-
tocol for computing the activation function that avoids
the use of full-fledged secure comparison protocols; (2)
a series of cryptographic engineering optimizations to
improve the performance.

With our implementation, we can train on the BC-
TCGA data set with 17,814 features and 375 samples
with 10 iterations in 2.52 s, and we can train on the
GSE2034 data set with 12,634 features and 179 samples
with 223 iterations in 26.90 s. A less optimized version
of this implementation won first place at the iDASH
2019 Track 4 competition when considering accuracy
and efficiency. Our solution is particularly efficient for
LANs where we can perform 1024 secure computa-
tions of the activation function in about 30 ms. To the
best of our knowledge, ours is the fastest protocol for
privately training logistic regression models over local
area networks.

While the scenario where computing parties com-
municate over a local area network is a relevant one, it
is also important to develop tailored solutions for the
case where the parties are potentially connected over the
internet and across different countries. The solutions for
each of these cases will be substantially different depend-
ing on what kind of delay is more important in the net-
work: propagation, transmission, processing, or queuing
delays. We expect that round and communication com-
plexities would need to be traded, depending on the com-
munication settings’ specifics. We leave it as a future
extension of our work to optimize it for more general
communication scenarios.

Abbreviations
ML: Machine learning; MPC: Multi-party computation; LR: Logistic regression;
UC: Universal composability; MSB: Most significant bit; TI: Trusted initializer;
LAN: Local area network.

Acknowledgements
The authors want to thank P. Mohassel for making the SecureML code avail-
able that was used for the experimental comparison in the “Results” section.

Authors’ contributions
All authors worked together on the overall design of the solution in the clear
and in private. MDC proposed the use of LR and derived the gradient descent
algorithm for minimizing the sum of squared errors with a neuron with a
clipped ReLu activation function. DR designed the new cryptographic proto-
cols for secure batch bit-decomposition and secure activation function. DR
implemented the entire solution in the RUST programming language. DR was
responsible for running the experiments of our work, and AT was responsible
for running the experiments on SecureML. RD verified and wrote the func-
tionality and security proofs of our protocols. JS provided in-the-clear model
testing, and worked on the submission details to the iDASH competition. All
authors discussed results and wrote the manuscript together. All authors read
and approved the final manuscript.

Funding
Rafael Dowsley was supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office.

Page 15 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

Availability of data and materials
The genomic data set was available upon request during the iDASH 2019
competition. https​://iu.app.box.com/s/6pbyn​xgscy​xl7fa​cstig​b8w6j​c17o9​9z

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Engineering and Technology, University of Washington Tacoma,
Tacoma, WA 98402, USA. 2 Faculty of Information Technology, Monash Univer-
sity, Clayton 3800, Australia.

Appendix
Optimization of πdecomp

Overview and previous work
The functionality Fdecomp (described in “Methods” sec-
tion) is easily realized as an adder circuit that takes as
inputs each bit of the additive shares of a secret sharing
�x�2� in a large ring Z2� and outputs an “XOR-sharing”
of the secret �x1�2, . . . , �x��2 . First, each party regards
its share of �x�2� , denoted xi , as an XOR-shared secret
�xi,1�2, . . . , �xi,��2 and passes it to the adder circuit. The
adder circuit then computes the carry vector which
accounts for the rollover of binary addition. Adding this
vector to all bitwise shares �x1,j�2, �x2,j�2 resolves the dif-
ference between �x1,1� · · · �x1,��⊕ �x2,1� · · · �x2,�� and the
bit-decomposed secret x.

Naively, this carry vector can be obtained with lin-
ear communication complexity by means of ripple carry
addition, as is described in Protocol 3. But, it is possible
to achieve logarithmic communication complexity and
even constant complexity [40] (though with worse per-
formance than the logarithmic version for all reasonable
bit lengths).

The highest performing realization of Fdecomp for real-
istic bit lengths is based on a speculative adder circuit
[17] in which at each layer the next set of carry bits are
computed twice; once for each case that the previous
carry bit had been 0 and 1. This protocol has ⌈log(�)⌉ + 2
rounds of communication and requires a total data trans-
fer of 4�⌈log(�)⌉ + 6� bits.

We propose a new, highly optimised protocol based on
a matrix composition network that reduces the number
of communication rounds by 1 (or 2, in special cases)
and requires a small fraction of the aforementioned data
transfer cost.

Matrix composition network
To sum the binary numbers a and b, the i-th bit is given
by si = ai ⊕ bi ⊕ ci−1 , where ci = aibi ⊕ aici−1 ⊕ bici−1.
In an alternate view, the carry can be seen to depend on
two signals which in turn depend on a and b. Generate
( gi = aibi ) creates a new carry bit at the i-th position,
and Propogate ( pi = ai ⊕ bi ) perpetuates the previous
carry bit, if it exists. In this representation, si = pi ⊕ ci−1
and ci = gi + pici−1 . This sum-of-products form of the
expression for ci lends itself to a matrix representation

When matrices in the form of Mi are composed, the
lower entries remain unchanged. This implies that

Therefore, to compute all ci , it is sufficient to compute the
set of all matrix compositions

Note that it is not necessary to compute the �-th carry
bit because s� depends on c�−1 . Treating the carry-in to
the 1st bit as the vector (0, 1), all ci can be derived implic-
itly from the upper right-hand entry of M1.i (here, M1,i
denotes the matrix composed of all matrices M1 through
Mi , consecutively).

From the MPC perspective, this matrix composition
requires two Z2 multiplications: pi+1pi and pi+1gi as seen
in the equation below. The OR operation (+), which usu-
ally requires multiplication in MPC, is reduced to XOR
based on the observation that pi+1 and gi+1 cannot both
be true for a given i.

The entire set of matrix compositions can be realized in
a logarithmic depth network by, at the i-th layer, com-
puting all compositions M1.j that require fewer than 2i−1
compositions. To set up conditions to allow us to mini-
mize the total data transfer, the constraint is added that
each M1.j should be the composition of the “largest”
matrix from the previous layer, M1.2i−2 , with the remain-
der M2i−2+1.j . If M2i−2+1.j doesn’t exist in the network, it
is added recursively following the same set of constraints.

Figure 4 shows an example with � = 17 . This network
is hereafter referred to as ComposeNetp where p is the
highest order bit to decompose. The protocol description

[

ci
1

]

=

[

pi gi
0 1

][

ci−1

1

]

= Mi

[

ci−1

1

]

.

[

ci
1

]

=

[

pi gi
0 1

][

pi−1 gi−1

0 1

][

ci−2

1

]

= MiMi−1

[

ci−2

1

]

.







i
�

j=1

Mj

�

�

�

�

1 ≤ i < �







.

[

pi+1 gi+1

0 1

][

pi gi
0 1

]

=

[

pi+1pi pi+1gi + gi+1

0 1

]

https://iu.app.box.com/s/6pbynxgscyxl7facstigb8w6jc17o99z

Page 16 of 18De Cock et al. BMC Med Genomics (2021) 14:23

that follows considers only the case where p = � , though
the protocol functions the same for any p ≤ � . For
instance, in Protocol 3, when using πdecomp to find the
MSB of a secret, it is sufficient to set p = a+ b+ 1.

Efficiency discussion
The setup phase prior to the call to ComposeNet�
requires � multiplications over Z2 to compute all �gj� . This
corresponds to one communication round and 2� bits of
data transfer.

A call to ComposeNet� has communication com-
plexity corresponding to the depth of the network,
⌈log(�− 1)⌉ , and �2 multiplications over Z2 per layer, with

fewer on the final layer when �− 1 is not a power of 2.
However, due to the fact that the matrices at each node of
ComposeNet� are reused extensively and known to not
change value, the Beaver Triples used to mask the matri-
ces can be desgined to contain redundancies to minimise
the data transfer at each layer [2]. By re-using correlated
randomness where information leakage is not possible,
only �2 − (2i−i − 1) masks need to be transferred at depth
i, for i > 0 . At depth 0, there are � masks; one for each
matrix. Each matrix mask is 2 bits (one for each of the
Propogate and Generate bits), so the total data transfer
is 2�+ 2

∑⌈log(�−1)⌉−1
i=1 (�2 + 1− 2i−1).

The recombination phase after ComposeNet� is com-
puted has only local computations and thus contributes
nothing to the complexity.

Combining all phases, we see that πdecompOPT has a
communication cost of ⌈log(�− 1)⌉ + 1 and a total data
transfer cost of 4�+ 2

∑⌈log(�−1)⌉−1
i=1 (�2 + 1− 2i−1) bits.

Comparing with the speculative adder’s performance, the
number of communication rounds is decreased by 1 in all
cases and 2 in the case that �− 1 is a power of 2. The total
data transfer cost has roughly 13 the data transfer rate of
the previous work at � = 8, 16 . For higher all bit lengths,
the ratio quickly converges near 14.

Implementation and batching
ComposeNet� can be implemented efficiently as a set
of index pairs that correspond to the positions of the
Propogate and Generate bits that need to be combined
at each layer. Once per layer, all products pi+1pi , pi+1gi
can be computed in a single call to πDM by taking the

Fig. 4  ComposeNet� for � = 17 . Computes the set of all matrix compositions M1,M1.2,M1.3, . . . ,M1.(�−1) . The notation Mi.j means “the composition
of all matrices i through j.” The greyed nodes are only used for intermediate computations and the white nodes are part of the solution set

Page 17 of 18De Cock et al. BMC Med Genomics (2021) 14:23 	

bitwise product between the concatenations pi+1||pi+1 ,
pi||gi and splitting the result.

Extending to the case that many values need to be bit
decomposed at the same time (as in Protocol 6), a vector
of inputs can be decomposed “in parallel” by taking verti-
cal slices over the Generate and Propogate bits of each
element and re-packing them into a transposed form. In
this way, each layer of ComposeNet� can operate on a
vector of matrices (represented as two lists of bit slices)
to produce a vector of matrix compositions. This method
has no effect on the number of rounds of communication
and the total data transfer scales linearly with the length
of the input vector.

Received: 2 March 2020 Accepted: 30 December 2020

References
	1.	 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving

genomic diagnoses without revealing patient genomes. Science.
2017;357(6352):692–5.

	2.	 Mohassel P, Zhang Y. SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE symposium on security and privacy (SP);
2017; p. 19–38.

	3.	 Schoppmann P, Gascón A, Raykova M, Pinkas B. Make some room for the
zeros: data sparsity in secure distributed machine learning. In: Proceed-
ings of the 2019 ACM SIGSAC conference on computer and communica-
tions security; 2019; p. 1335–50.

	4.	 De Cock M, Dowsley R, Nascimento A, Railsback D, Shen J, Todoki A. Fast
secure logistic regression for high dimensional gene data. In: Privacy in
machine learning (PriML2019). Workshop at NeurIPS; 2019; p. 1–7.

	5.	 Bonte C, Vercauteren F. Privacy-preserving logistic regression training.
BMC Med Genomics. 2018;11(4):86.

	6.	 Chen H, Gilad-Bachrach R, Han K, Huang Z, Jalali A, Laine K, et al. Logistic
regression over encrypted data from fully homomorphic encryption.
BMC Med Genomics. 2018;11(4):81.

	7.	 Kim A, Song Y, Kim M, Lee K, Cheon JH. Logistic regression model training
based on the approximate homomorphic encryption. BMC Med Genom-
ics. 2018;11(4):83.

	8.	 El Emam K, Samet S, Arbuckle L, Tamblyn R, Earle C, Kantarcioglu M. A
secure distributed logistic regression protocol for the detection of rare
adverse drug events. J Am Med Inform Assoc. 2012;20(3):453–61.

	9.	 Nardi Y, Fienberg SE, Hall RJ. Achieving both valid and secure logistic
regression analysis on aggregated data from different private sources. J
Priv Confid. 2012; 4(1).

	10.	 Xie W, Wang Y, Boker SM, Brown DE. Privlogit: efficient privacy-preserving
logistic regression by tailoring numerical optimizers. arXiv preprint arXiv​
:16110​1170. 2016; p. 1–25.

	11.	 Wagh S, Gupta D, Chandran N. SecureNN: 3-party secure computation for
neural network training. Proc Priv Enhanc Technol. 2019;1:24.

	12.	 Canetti R. Universally composable security: a new paradigm for cryp-
tographic protocols. In: 42nd Annual symposium on foundations of
computer science, FOCS 2001, 14–17 Oct 2001, Las Vegas, Nevada, USA.
IEEE Computer Society; 2001; p. 136–45.

	13.	 Cramer R, Damgård I, Nielsen JB. Secure multiparty computation and
secret sharing. Cambridge: Cambridge University Press; 2015.

	14.	 De Cock M, Dowsley R, Nascimento ACA, Newman SC. Fast, privacy pre-
serving linear regression over distributed datasets based on pre-distrib-
uted data. In: 8th ACM workshop on artificial intelligence and security
(AISec); 2015. p. 3–14.

	15.	 David B, Dowsley R, Katti R, Nascimento AC. Efficient uncondition-
ally secure comparison and privacy preserving machine learning

classification protocols. In: International conference on provable security.
Springer; 2015. p. 354–67.

	16.	 Fritchman K, Saminathan K, Dowsley R, Hughes T, De Cock M, Nascimento
A, et al. Privacy-Preserving scoring of tree ensembles: a novel framework
for AI in healthcare. In: Proceedings of 2018 IEEE international conference
on big data; 2018. p. 2412–21.

	17.	 De Cock M, Dowsley R, Horst C, Katti R, Nascimento A, Poon WS, et al. Effi-
cient and private scoring of decision trees, support vector machines and
logistic regression models based on pre-computation. IEEE Trans Depend
Secure Comput. 2019;16(2):217–30.

	18.	 Reich D, Todoki A, Dowsley R, De Cock M, Nascimento ACA. Privacy-Pre-
serving Classification of Personal Text Messages with Secure Multi-Party
Computation. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc
F, Fox EA, Garnett R, editors. Advances in Neural Information Processing
Systems 32 (NeurIPS); 2019. p. 3752–64.

	19.	 Rivest RL. Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer. 1999. http://
peopl​e.csail​.mit.edu/rives​t/Rives​t-commi​tment​.pdf.

	20.	 Dowsley R, Van De Graaf J, Marques D, Nascimento AC. A two-party
protocol with trusted initializer for computing the inner product. In:
International workshop on information security applications. Springer;
2010. p. 337–50.

	21.	 Dowsley R, Müller-Quade J, Otsuka A, Hanaoka G, Imai H, Nasci-
mento ACA. Universally composable and statistically secure verifiable
secret sharing scheme based on pre-distributed data. IEICE Trans.
2011;94–A(2):725–34.

	22.	 Ishai Y, Kushilevitz E, Meldgaard S, Orlandi C, Paskin-Cherniavsky A. On
the power of correlated randomness in secure computation. In: Theory of
cryptography. Springer; 2013; p. 600–20.

	23.	 Tonicelli R, Nascimento ACA, Dowsley R, Müller-Quade J, Imai H, Hanaoka
G, et al. Information-theoretically secure oblivious polynomial evaluation
in the commodity-based model. Int J Inf Secur. 2015;14(1):73–84.

	24.	 David B, Dowsley R, van de Graaf J, Marques D, Nascimento ACA, Pinto
ACB. Unconditionally secure, universally composable privacy preserving
linear algebra. IEEE Trans Inf Forensics Secur. 2016;11(1):59–73.

	25.	 Canetti R, Fischlin M. Universally composable commitments. In: Kilian J,
editor. Advances in cryptology—CRYPTO 2001, 21st annual international
cryptology conference, Santa Barbara, CA, USA, 19–23 August 2001, Pro-
ceedings. vol. 2139 of Lecture notes in computer science. Springer; 2001.
p. 19–40.

	26.	 Canetti R, Lindell Y, Ostrovsky R, Sahai A. Universally composable two-
party and multi-party secure computation. In: Reif JH, editor. Proceedings
on 34th annual ACM symposium on theory of computing, 19–21 May
2002, Montréal, Québec, Canada; 2002. p. 494–503.

	27.	 Peikert C, Vaikuntanathan V, Waters B. A framework for efficient and
composable oblivious transfer. In: Wagner DA, editor. Advances in
cryptology—CRYPTO 2008, 28th annual international cryptology confer-
ence, Santa Barbara, CA, USA, 17–21 Aug 2008. Proceedings. vol. 5157 of
Lecture notes in computer science. Springer; 2008. p. 554–71.

	28.	 Barak B, Canetti R, Nielsen JB, Pass R. Universally composable protocols
with relaxed set-up assumptions. In: 45th Symposium on foundations of
computer science (FOCS 2004), 17–19 Oct 2004, Rome, Italy, Proceedings.
IEEE Computer Society; 2004. p. 186–195.

	29.	 Hofheinz D, Müller-Quade J. Universally composable commitments using
random oracles. In: Naor M, editor. Theory of cryptography, first theory of
cryptography conference, TCC 2004, Cambridge, MA, USA, 19–21 Febru-
ary 2004, proceedings. vol. 2951 of Lecture notes in computer science.
Springer; 2004. p. 58–76.

	30.	 Barreto PSLM, David B, Dowsley R, Morozov K, Nascimento ACA. A frame-
work for efficient adaptively secure composable oblivious transfer in the
ROM. IACR Cryptol ePrint Arch. 2017;2017:993.

	31.	 Dowsley R, Müller-Quade J, Nascimento ACA. On the possibility of univer-
sally composable commitments based on noisy channels. In: SBSEG 2008.
Gramado, Brazil; 2008. p. 103–14.

	32.	 Dowsley R, van de Graaf J, Müller-Quade J, Nascimento ACA. On the
composability of statistically secure bit commitments. J Internet Technol.
2013;14(3):509–16.

	33.	 Katz J. Universally composable multi-party computation using tamper-
proof hardware. In: Naor M, editor. Advances in cryptology—EUROCRYPT

http://arxiv.org/abs/161101170
http://arxiv.org/abs/161101170
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf

Page 18 of 18De Cock et al. BMC Med Genomics (2021) 14:23

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

2007, 26th annual international conference on the theory and applica-
tions of cryptographic techniques, Barcelona, Spain, 20–24 May 2007,
Proceedings. vol. 4515 of Lecture notes in computer science. Springer;
2007. p. 115–28.

	34.	 Dowsley R, Müller-Quade J, Nilges T. Weakening the isolation assumption
of tamper-proof hardware tokens. In: Lehmann A, Wolf S, editors. ICITS
15: 8th international conference on information theoretic security. vol.
9063 of Lecture notes in computer science. Springer, Heidelberg; 2015. p.
197–213.

	35.	 Beaver D. Commodity-based cryptography. STOC. 1997;97:446–55.
	36.	 Dowsley R. Cryptography based on correlated data: foundations and

practice. Germany: Karlsruhe Institute of Technology; 2016.
	37.	 Xie H, Li J, Zhang Q, Wang Y. Comparison among dimensionality reduc-

tion techniques based on random projection for cancer classification.
Comput Biol Chem. 2016;65:165–72.

	38.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: machine learning in Python. J Mach Learn Res.
2011;12:2825–30.

	39.	 Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-
expression profiles to predict distant metastasis of lymph-node-negative
primary breast cancer. Lancet. 2005;365(9460):671–9.

	40.	 Toft T. Constant-rounds, almost-linear bit-decomposition of secret shared
values. In: Topics in cryptology—CT-RSA 2009, The Cryptographers’ Track
at the RSA conference 2009, San Francisco, CA, USA, 20–24 April 2009.
Proceedings; 2009. p. 357–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	High performance logistic regression for privacy-preserving genome analysis
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Introduction
	Contributions
	Related work
	Paper organization

	Methods
	Logistic regression
	Our scenario
	Security model
	Setup assumptions and the trusted initializer model
	Secret sharing based secure multi-party computation
	Converting to fixed-point representation
	Truncation
	Conversion of sharings
	Secure activation function
	Secure logistic regression training
	Cryptographic engineering optimizations
	Sockets and threading

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

