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Abstract 

Background:  In biomedical applications, valuable data is often split between owners who cannot openly share the 
data because of privacy regulations and concerns. Training machine learning models on the joint data without violat-
ing privacy is a major technology challenge that can be addressed by combining techniques from machine learning 
and cryptography. When collaboratively training machine learning models with the cryptographic technique named 
secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computa-
tional cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimiza-
tions are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be 
tailored to the kind of data and Machine Learning problem at hand.

Methods:  Our setup involves secure two-party computation protocols, along with a trusted initializer that distrib-
utes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a 
logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corre-
sponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function 
that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering 
optimizations to improve the performance.

Results:  For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications; 
the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized 
version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis 
competition.

Conclusions:  In this paper, we present a secure logistic regression training protocol and its implementation, with a 
new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest 
existing secure multi-party computation implementation for training logistic regression models on high dimensional 
genome data distributed across a local area network.

Keywords:  Logistic regression, Gradient descent, Machine learning, Secure multi-party computation, Gene 
expression data
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Background
Introduction
Machine learning (ML) has many applications in the 
biomedical domain, such as medical diagnosis and per-
sonalized medicine. Biomedical data sets are typically 
characterized by high dimensionality, i.e.  a high num-
ber of features such as lab test results or gene expression 
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values, and low sample size, i.e. a small number of train-
ing examples corresponding to e.g.  patients or tissue 
samples. Adding to these challenges, valuable training 
data is often split between parties (data owners) who can-
not openly share the data because of privacy regulations 
and concerns. Due to these concerns, privacy-preserving 
solutions, using techniques such as secure multi-party 
computation (MPC), become important so that this data 
can still be used to train ML models, perform a diagnosis, 
and in some cases even derive genomic diagnoses [1].

We tackle the problem of training a binary classifier 
on high dimensional gene expression data held by differ-
ent data owners, while keeping the training data private. 
This work is directly inspired by Track 4 of the iDASH 
2019 secure genome analysis competition.1 The iDASH 
competition is a yearly international competition for 
participants to create and implement privacy-preserving 
protocols for applications with genomic data. The goal 
is in evaluating the best-known secure methods and 
advancing new techniques to solve real-world problems 
in handling genomic data. In the 2019 edition there were 
a total of four different tracks, where Track 4 invited par-
ticipants to design MPC solutions for collaborative train-
ing of ML models originating from multiple data owners. 

One of the Track 4 competition data sets consists of 470 
training examples (records) with 17,814 numeric fea-
tures, while the other consists of 225 training examples 
with 12,634 numeric features. An initial fivefold cross-
validation analysis in the clear, i.e.  without any encryp-
tion, indicated that in both cases logistic regression (LR) 
models are capable of yielding the level of prediction 
accuracy expected in the competition, prompting us to 
investigate MPC-based protocols for secure LR training.

The competition requirements implied the exist-
ence of multiple data owners who each send their train-
ing example(s) in an encrypted or secret shared form 
to data processors (computing nodes), as illustrated in 
Fig. 1. The honest-but-curious data processors are not to 
learn anything about the data as they engage in computa-
tions and communications with each other. At the end, 
they disclose the trained classifier—in our case, the coef-
ficients of the LR model—to the data owners. Since the 
data processors cannot learn anything about the values in 
the data set, this implies that our protocol is applicable 
in a wide range of scenarios, independently of how the 
original data is split by ownership. Our protocol works in 
scenarios where the data is horizontally partitioned, i.e. 
when each data owner has different records of the data, 
such as data belonging to different patients. It also works 
in scenarios where the data is vertically partitioned, i.e. 
when each data owner has different features of the data, 
such as the expression values for different genes.

Fig. 1  Overview of MPC based secure logistic regression (LR) training. Each of n data owners secret shares their own training data between two 
data processors. The data processors engage in computations and communications to train a ML model, which is at the end revealed to the data 
owners

1  http://www.human​genom​epriv​acy.org/2019/compe​titio​n-tasks​.html, 
accessed on Jan 19, 2020.

http://www.humangenomeprivacy.org/2019/competition-tasks.html
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Real-world applications of privacy-preserving ML, as 
reflected in the iDASH2019 competition requirements, 
call for a careful and purposefully balanced trade-off 
between privacy, accuracy, and efficiency. In the solution 
presented in this paper, no information is leaked, i.e. pri-
vacy is fully preserved. The price paid for such high secu-
rity is an increase in computational cost (runtime), which 
can be alleviated by a careful choice of “MPC-friendly” 
functions in the ML algorithm. As we explain in the 
description of our methods, in our case we achieve this 
by approximating the sigmoid activation function that is 
traditionally used in logistic regression, by a piecewise 
linear function that is computationally cheaper to evalu-
ate securely. Such so-called ReLu-like activation func-
tions have been used before in MPC protocols, and the 
resulting trained ML models are still referred to as logis-
tic regression models (see e.g.  [2, 3]) even though they 
are strictly speaking slightly different because of a differ-
ent choice of activation function and corresponding loss 
function. In the “Results” section, we report details about 
the effect that using the alternative activation function 
has on the accuracy of the trained LR like classifiers.

Contributions
The main novelty points of our solution for private LR 
training over a distributed data set are: (1) a new proto-
col for securely computing the activation function that 
avoids the use of full-fledged secure comparison pro-
tocols; (2) a novel method for bit decomposing secret 
shared integers and bundling their instantiations; and 
(3) several cryptographic engineering enhancements 
that together with the novel protocol for the activation 
function gave us the fastest privacy-preserving LR imple-
mentation in the world when run in local area networks 
(LANs). In summary, we designed a concrete solution for 
fast secure training of a binary classifier over gene expres-
sion data that meets the strict security requirements of 
the iDASH 2019 competition. For our largest data set, we 
train a model that requires over 7 billion secure multi-
plications and the training completes in about 26.9  s in 
a LAN.

This paper significantly expands over a preliminary 
version of this result [4], presented at a workshop with-
out formal proceedings. In this version we have a formal 
description of all protocols, security proofs and improved 
running times.

Related work
A variety of efforts have previously been made to train LR 
classifiers in a privacy-preserving way.

One scenario that was considered in previous works 
[5–7] is the setting in which a data owner holds the data 
while another party (the data processor), such as a cloud 

service, is responsible for the model training. These solu-
tions usually rely on homomorphic encryption, with the 
data owner encrypting and sending their data to the data 
processor who performs computations on the encrypted 
data without having to decrypt it.

When the data is held by multiple data owners, they 
can either execute an MPC protocol among themselves 
to train the model, or delegate the computation to a set of 
data processors that run a MPC protocol. It is the latter 
setting that we follow in this paper.

Existing MPC approaches to secure LR differ in the 
numerical optimization algorithms used for LR training 
and in the cryptographic primitives leveraged [2, 8–10]. 
The SPARK protocol [8] uses additive homomorphic 
encryption (Paillier cryptosystem) and uses Newton–
Raphson as the numerical optimization algorithm to find 
the values of the weights that maximize the log-likeli-
hood. The SPARK protocol can use the actual logistic 
function without approximating it at the cost of the plain-
text data being horizontally partitioned and seen by the 
data processors. The two protocols from [9] rely on the 
Newton-Raphson method, both approximate the logis-
tic function, and both use additive secret sharing. The 
first protocol includes the use of Yao’s garbled circuits 
to compute the approximation of the logistic function, 
while the second protocol uses a Taylor approximation 
and Euler’s method. The PrivLogit method [10] uses Yao’s 
garbled circuits and Paillier encryption; their protocol 
uses the Newton-Raphson method and a constant Hes-
sian approximation to speed up computation. However, 
this protocol relies on the plaintext data being horizon-
tally partitioned and seen by the data processors, which, 
like the work in [8], would not align with the iDASH 2019 
competition requirements. We also point out a protocol 
secure against active adversaries from SecureNN [11] for 
computing a ReLu. While we compute a different func-
tion (clipped ReLu), we share a similar idea that using the 
most significant bit of an input can tell us the output of 
the function.

The work closest to ours is SecureML [2], which was 
the fastest protocol for privately training LR models 
based on secure MPC prior to our work. SecureML 
separates the data owners from the data processors, 
and uses mini-batch gradient descent. The main nov-
elty points of SecureML are a clipped ReLu activation 
function, a novel truncation protocol, and a combina-
tion of garbled circuits and secret sharing based MPC 
in order to obtain a good trade-off between commu-
nication, computation and round complexities. The 
SecureML protocol is evaluated on a data set with up 
to 5000 features, while—to the best of our knowledge—
the existing runtime evaluation of all other approaches 
for MPC based LR training is limited to 400 features 
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or less [8–10]. Like our solution, the SecureML proto-
col is split into an offline and online phase (the offline 
phase can be executed before the inputs are known 
and is responsible for generating multiplication tri-
ples). The SecureML solution is based on two servers, 
while our solution is based on three servers, namely a 
party who pre-computes so-called multiplication tri-
ples in the offline stage, and two parties who actively 
compute the final result. If we exclude the preprocess-
ing/offline stage from SecureML and exclude the pre-
distribution of triples in our solution, we are left with 
protocols that work in exactly the same setting. We 
compare the runtime of both solutions in the “Results” 
section, showing that our implementation is substan-
tially faster.

A preliminary version of this work appeared in a 
workshop without formal proceedings [4]. This paper 
is a substantially longer and detailed description that 
includes security proofs, detailed comparison with the 
state-of-the-art, and improved running times.

Paper organization
We first discuss below our work as compared to others. 
In the “Methods” section, we present preliminary infor-
mation on MPC, describe the secure subprotocols that 
are building blocks for our secure LR training protocol, 
and finally describe the protocol itself. In the “Results” 
section we describe details of our implementation and 
runtime results for the overall protocol and micro-
benchmarks for our secure activation function proto-
col. We experimentally compare our solution with the 
state-of-the-art SecureML approach [2], demonstrating 

substantial runtime improvements. In the “Discussion” 
section, we note possible future work to improve and 
extend our results, and finally in the “Conclusions” sec-
tion we present our summary remarks.

Methods
Logistic regression
Logistic regression is a common Machine Learning 
algorithm for binary classification. The training data 
D consists of training examples d = (xd , td) in which 
xd = �xd,1, xd,2, . . . , xd,m� is an m-dimensional numeri-
cal vector, containing the values of m input attributes 
for example d, and td ∈ {0, 1} is the ground truth class 
label. Each xd,i for i ∈ {1, 2, . . . ,m} is a real number 
value.

As illustrated in Fig.  2a, we train a neuron to map 
the xd ’s to the corresponding td’s, correctly classify-
ing the examples. The neuron computes a weighted 
sum of the inputs (the values of the weights are 
learned during training) and subsequently applies 
an activation function to it, to arrive at the output 
od = f (w0 · xd,0 + w1 · xd,1 + · · · + wn · xd,n) , which is 
interpreted as the probability that the class label is 1. 
Note that, as is common in neural network training, 
we extend the input attribute vector with a dummy fea-
ture xd,0 which has value 1 for all xd’s. The traditionally 
used activation function for LR is the sigmoid function 
σ(z) = 1

1+e−z  . Since the sigmoid function σ requires 
division and evaluation of an exponential function, 
which are expensive operations to perform in MPC, we 
approximate it with the activation function ρ from [2], 
which is shown in Fig. 2b.

Fig. 2  Architecture. a Neuron; b approximation of sigmoid activation function σ by clipped ReLu ρ
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For training, we use the full gradient descent based 
algorithm shown in Algorithm 1 to learn the weights for 
the LR model. On line 3, we choose not to use early stop-
ping2 because in that case the number of iterations would 
depend on the values in the training data, hence leaking 
information [9]. Instead, we use a fixed number of itera-
tions during training.

Our scenario
In the scenario considered in this work the data is not 
held by a single party that performs all the computation, 
but distributed by the data owners to the data processors 
in such way that each data processor does not have any 
information about the data in the clear. Nevertheless, the 
data processors would still like to compute a LR model 
without leaking any other information about the data 
used for the training. To achieve this goal, we will use 
techniques from MPC.

Our setup is illustrated in Fig. 1. We have multiple data 
owners who each hold disjoint parts of the data that is 
going to be used for the training. This is the most gen-
eral approach and covers the cases in which the data is 
horizontally partitioned (i.e. for each training sample 
d = (xd , td) , all the data for d is held by one of the data 
owners), vertically partitioned (for each feature, the val-
ues of that feature for all training samples are held by 
one of the data owners), and even arbitrary partitions. 
There are two data processors who collaborate to train 
a LR model using secure MPC protocols, and a trusted 

initializer (TI) that predistributes correlated randomness 
to the data processors in order to make the MPC compu-
tation more efficient. The TI is not involved in any other 
part of the execution, and does not learn any data from 
the data owners or data processors.

We next present the security model that is used and 
several secure building blocks, so that afterwards we can 
combine them in order to obtain a secure LR training 
protocol.

Security model
The security model in which we analyze our protocol 
is the universal composability (UC) framework [12] as 
it provides the strongest security and composability 
guarantees and is the gold standard for analyzing cryp-
tographic protocols nowadays. Here we will only give a 
short overview of the UC framework (for the specific case 
of two-party protocols), and refer interested readers to 
the book of Cramer et al. [13] for a detailed explanation.

The main advantage of the UC framework is that the 
UC composition theorem guarantees that any protocol 
proven UC-secure can also be securely composed with 
other copies of itself and of other protocols (even with 
arbitrarily concurrent executions) while preserving its 
security. Such guarantee is very useful since it allows the 
modular design of complex protocols, and is a necessity 
for protocols executing in complex environments such as 
the Internet.

The UC framework first considers a real world scenario 
in which the two protocol participants (the data pro-
cessors from Fig.  1, henceforth denoted Alice and Bob) 
interact between themselves and with an adversary A and 
an environment Z (that captures all activity external to 
the single execution of the protocol that is under consid-
eration). The environment Z gives the inputs and gets the 
outputs from Alice and Bob. The adversary A delivers the 
messages exchanged between Alice and Bob (thus mod-
eling an adversarial network scheduling) and can corrupt 
one of the participants, in which case he gains the control 
over it. In order to define security, an ideal world is also 
considered. In this ideal world, an idealized version of the 
functionality that the protocol is supposed to perform 
is defined. The ideal functionality F  receives the inputs 
directly from Alice and Bob, performs the computations 
locally following the primitive specification and delivers 
the outputs directly to Alice and Bob. A protocol π exe-
cuting in the real world is said to UC-realize functional-
ity F  if for every adversary A there exists a simulator S 
such that no environment Z can distinguish between: (1) 
an execution of the protocol π in the real world with par-
ticipants Alice and Bob, and adversary A ; (2) and an ideal 
execution with dummy parties (that only forward inputs/
outputs), F  and S.

2  This is a technique that uses a metric, such as the accuracy on a held-out 
validation data set, to check when a model starts to overfit and will then stop 
training at that point.
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This work like the vast majority of the privacy-preserv-
ing machine learning protocols in the literature consid-
ers honest-but-curious, static adversaries. In more detail, 
the adversary chooses the party that he wants to cor-
rupt before the protocol execution and he also follows 
the protocol instructions (but tries to learn additional 
information).

Setup assumptions and the trusted initializer model
Secure-two party computations are impossible to achieve 
without further assumptions. We consider the trusted 
initializer model, in which a trusted initializer function-
ality FD

TI pre-distributes correlated randomness to Alice 
and Bob. A trusted initializer has been often used to 
enable highly efficient solutions both in the context of 
privacy-preserving machine learning [14–18] as well as 
in other applications, e.g., [19–24].

If a trusted initializer is not desirable, the comput-
ing parties can “emulate” such a trusted party by using 
computational assumptions in an offline phase in asso-
ciation with a suitable setup assumption, as done e.g.  in 
SecureML [2].3 Even with such a different technique to 
realize the offline phase, the online phase of our proto-
cols would remain the same. The novelties of our work 
are in the online phase, and can be used in combination 
with any standard technique for the offline phase, such 
as the TI assumption (as we do in our implementation), 
or the computational assumptions made in SecureML. 
Our solution for the online phase leads to substantially 
better runtimes than SecureML, as we document in the 
“Results” section.

Simplifications In our proofs the simulation strategy 
is simple and will be described briefly: all the messages 
look uniformly random from the recipient’s point of view, 
except for the messages that open a secret shared value 
to a party, but these ones can be easily simulated using 
the output of the respective functionalities. Therefore a 

simulator S , having the leverage of being able to simu-
late the trusted initializer functionality FD

TI in the ideal 
world, can easily perform a perfect simulation of a real 
protocol execution; therefore making the real and ideal 
worlds indistinguishable for any environment Z . In the 
ideal functionalities the messages are public delayed out-
puts, meaning that the simulator is first asked whether 
they should be delivered or not (this is due to the mod-
eling that the adversary controls the network scheduling). 
This fact as well as the session identifications are omit-
ted from our functionalities’ descriptions for the sake of 
readability.

Secret sharing based secure multi‑party computation
Our MPC solution is based on additive secret sharing 
over a ring Zq = {0, 1, . . . , q − 1} . When secret sharing 
a value x ∈ Zq , Alice and Bob receive shares xA and xB , 
respectively, that are chosen uniformly at random in Zq 
with the constraint that xA + xB = x mod q . We denote 
the pair of shares by �x�q . All computations are modulo q 
and the modular notation is henceforth omitted for con-
ciseness. Note that no information of the secret value x 
is revealed to either party holding only one share. The 
secret shared value can be revealed/opened to each party 
by combining both shares. Some operations on secret 
shared values can be computed locally with no commu-
nication. Let �x�q , �y�q be secret shared values and c be a 
constant. Alice and Bob can perform the following opera-
tions locally:

•	 Addition ( z = x + y ): Each party locally adds its local 
shares of x and y in order to obtain a share of z. This 
will be denoted by �z�q ← �x�q + �y�q.

•	 Subtraction ( z = x − y ): Each party locally subtracts 
its local share of y from that of x in order to obtain a 
share of z. This will be denoted by �z�q ← �x�q − �y�q
.

•	 Multiplication by a constant ( z = cx ): Each party 
multiplies its local share of x by c to obtain a share of 
z. This will be denoted by �z�q ← c�x�q

•	 Addition of a constant ( z = x + c ): Alice adds c to 
her share xA of x to obtain zA , while Bob sets zB = xB . 
This will be denoted by �z�q ← �x�q + c.

The secure multiplication of secret shared values (i.e., 
z = xy ) cannot be done locally and involves communi-
cation between Alice and Bob. To obtain an efficient 
secure multiplication solution, we use the multiplica-
tion triples technique that was originally proposed by 
Beaver [35]. We use a trusted initializer to pre-dis-
tribute the multiplication triples (which are a form of 
correlated randomness) to Alice and Bob. We use the 
same protocol πDMM for secure (matrix) multiplication 

3  Using a setup assumption, like the trusted initializer, in two-party secure 
computation protocols is a necessity in order to get UC-security [25, 26]. 
Other possible setup assumption to achieve UC-security include: a common 
reference string [25–27], the availability of a public-key infrastructure [28], 
the random oracle model [29, 30], the existence of noisy channels between the 
parties [31, 32], and the availability of tamper-proof hardware [33, 34].
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of secret shared values as in [17, 36] and denote by πDM 
the protocol for the special case of multiplication of 
scalars and πIP for the inner product. As shown in [17] 
the protocol πDMM (described in Protocol  2) UC-real-
izes the distributed matrix multiplication functionality 
FDMM in the trusted initializer model.

Converting to fixed‑point representation
Each data owner initially needs to convert their train-
ing data to integers modulo q so that they can be secret 
shared. As illustrated in Fig. 3, each feature value x ∈ R 
is converted into a fixed point approximation of x using 
a two’s complement representation for negative num-
bers. We define this new value as Q(x) ∈ Zq . This con-
version is shown in Eq. (1):

Specifically, when we convert Q(x) into its bit representa-
tion, we define the first a bits from the right to hold the 
fractional part of x, and the next b bits to represent the 
non-negative integer part of x, and the most significant 
bit (MSB) to represent the sign (positive or negative). We 
define � to represent the total number of bits such that 
the ring size q is defined as q = 2� . It is important to 
choose a � that is large enough to represent the largest 
number x that can be produced during the LR protocol, 
and therefore � should be chosen to be at least 2(a+ b) 
(see Truncation). It is also important to choose a b that is 
large enough to represent the maximum possible value of 
the integer part of all x’s (this is dependent on the data). 
This conversion and bit representation is shown in Fig. 3.

Truncation
When multiplying numbers that were converted into 
a fixed point representation with a fractional bits, the 
resulting product will end up with a more bits repre-
senting the fractional part. For example, a fixed point 
representation of x and y, for x, y > 0 , is x · 2a and y · 2a , 
respectively. The multiplication of both these terms 
results in xy · 22a , showing that now 2a bits are repre-
senting the fractional part, which we must scale back 
down to xy · 2a to do any further computations. In our 
solution, we use the two-party local truncation pro-
tocol for fixed point representations of real numbers 
proposed in [2] that we will refer to as πtrunc . It does 
not involve any messages between the two parties, each 
party simply performs an operation on its own local 
share. This protocol almost always incurs an error of at 
most a bit flip in the least-significant bit. However, with 
probability 2a+1−� , where a is the number of fractional 
bits, the resulting value is completely random.

When this truncation protocol is performed on 
increasingly large data sets (in our case we run over 7 
billion secure multiplications), the probability of an 
erroneous truncation becomes a real issue—an issue 
not significant in previous implementations. There 
are two phases in which truncation is performed: (1) 

(1)Q(x) =

{

2� −
⌊

2a · |x|
⌋

if x < 0
⌊

2a · x
⌋

if x ≥ 0
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when computing the dot product (inner product) of 
the current weights vector with a training example in 
line 7 of Algorithm  1, and (2) when the weight differ-
entials ( �wi ) are adjusted in line 9 of Algorithm 1. If a 
truncation error occurs during (1), the resulting erro-
neous value will be pushed into a reasonable range by 
the activation function and incur only a minor error for 
that round. If the error occurs during (2), an element 
of the weights vector will be updated to a completely 
random ring element and recovery from this error 
will be impossible. To mitigate this in experiments, 
we make use of 10–12 bits of fractional precision with 
a ring size of 64 bits, making the probability of failure 
1
253

< p < 1
251

 . The number of truncations that need to 
be performed is also reduced in our implementation 
by waiting to perform truncation until it is absolutely 
required. For instance, instead of truncating each result 
of multiplication between an attribute and its corre-
sponding weight, a single truncation can be performed 
at the end of the entire dot product.

Additional error is incurred on the accuracy by 
the fixed point representation itself. Through cross-
validation with an in-the-clear implementation, we 
determined that 12 bits of fractional precision provide 
enough accuracy to make the output accuracy indistin-
guishable between the secure version and the plaintext 
version.

Conversion of sharings
For efficiency reasons, in some of the steps for securely 
computing the activation function we use secret shar-
ings over Z2 , while in others we use secret sharings over 
Z2� . Therefore we need to be able to convert between 
the two types of secret sharings.

We use the two-party protocol from [17] for perform-
ing the bit-decomposition of a secret-shared value �x�2� 
to shares �xi�2 , where x� · · · x1 is the binary representa-
tion of x. It works like the ripple carry adder arithmetic 
circuit based on the insight that the difference between 
the sum of the two additive shares held by the parties 
and an “XOR-sharing” of that sum is the carry vec-
tor. As proven in [17], the bit-decomposition protocol 

Fig. 3  Fixed-point representation. Register map of fixed-point representation of numbers shared over Z2� with examples
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πdecomp (described in Protocol  3) UC-realizes the bit-
decomposition functionality Fdecomp.

In our implementation we use a highly parallelized 
and optimized version of the bit-decomposition pro-
tocol πdecomp in order to improve the communication 

efficiency of the overall solution. The optimizations are 
described in the Appendix.

The opposite of a secure bit-decomposition is con-
verting from bit sharing to an additive sharing over a 
larger ring. In our secure activation function protocol, 
we require securely converting a bit sharing to an addi-
tive sharing in 2� . This is done using the protocol π2to2� 
from [18] (described in Protocol 4) that UC-realizes the 
secret sharing conversion functionality F2to2�.
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Secure activation function
We propose a new protocol that evaluates ρ from Fig. 2b 
directly over additive shares and does not require full 
secure comparisons, which would have been more expen-
sive. Instead of doing straightforward comparisons 
between z, 0.5 and −0.5 , we derive the result through 
checking two things: (i) whether z′ = z + 1/2 is positive or 
negative; (ii) whether z′ ≥ 1 . Both checks can be performed 
without using a full comparison protocol.

When z′ is bit decomposed, the most significant bit is 0 if 
z′ is non-negative and 1 if z′ is negative. In fact, if out of the 
� bits, the a lowest bits are used to represent the fractional 
component and the b next bits are used to represent the 
integer component, then the remaining �− a− b bits all 
have the same value as the most significant bit. We will use 
this fact in order to optimize the protocol by only perform-
ing a partial bit-decomposition and deducting whether z′ is 
positive or negative from the (a+ b+ 1)-th bit.

In the case that z′ is negative, the output of ρ is 0. But, if 
z′ is positive, we need to determine whether z′ ≥ 1 in order 
to know if the output of ρ should be fixed to 1 or to z′ . A 
positive z′ is such that z′ ≥ 1 if and only if at least one of the 
b bits corresponding to the integer component of z′ repre-
sentation is equal to 1, therefore we only need to analyze 
those b bits to determine if z′ ≥ 1.

Our secure protocol πρ is described in Protocol 5. The 
AND operation corresponds to multiplications in Z2 . By 
the application of De Morgan’s law, the OR operation is 
performed using the AND and negation operations. The 
successive multiplications can be optimized to only take 
a logarithmic number of rounds by using well-known 
techniques.

The activation function protocol πρ UC-realizes the 
activation function functionality Fρ . The correctness can 
be checked by inspecting the three possible cases: (i) if 
z > 1/2 , then pos = 1 and geq1 = 1 (since at least one of 
the bits representing the integer component of z + 1/2 will 
have a value 1). The output is thus �2a�2� (the fixed-point 
representation of 1); if −1/2 ≤ z < 1/2 , then pos = 1 and 
geq1 = 0 , and therefore the output will be �z′�2� , which 
is the fixed-point representation of z + 1/2 ; if z < −1/2 , 
then pos = 0 and the output will be a secret sharing repre-
senting zero as expected. The security follows trivially from 
the UC-security of the building blocks used and the fact 
that no secret sharing is opened.

Secure logistic regression training
We now present our secure LR training protocol that 
uses a combination of the previously mentioned building 
blocks.

Notice that in the full gradient descent technique 
described in Algorithm 1, the only operations that cannot 
be performed fully locally by the data processors, i.e. on 
their own local shares, are:
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•	 The computation of the inner product in line 7
•	 The activation function ρ in line 7
•	 The multiplication of td − od with dd,i in line 9

Our secure LR training protocol πLR−Training (described 
in Protocol 6) shows how the secure building blocks 
described before can be used to securely compute 
these operations. The inner product is securely com-
puted using πIP on line 5, and since this involves mul-
tiplication on numbers that are scaled to a fixed-point 
representation, we truncate the result using πtrunc . The 
activation function is securely computed using πρ on 
line 6. The multiplication of td − od with xd,i is done 
using secure multiplication with batching on line 11. 
Since this also involves multiplication on numbers that 
are scaled, the result is truncated using πtrunc in line 14. 
A slight difference between the full gradient descent 
technique described in Algorithm  1 and our protocol 
πLR−Training , is that instead of updating �wi after every 
evaluation of the activation function, we batch together 
all activation function evaluations before computing 
the �wi . Since the activation function requires a bit-
decomposition of the input, we can now make use of 
the efficient batch bit-decomposition protocol batch-
πdecompOPT (see Appendix) within the activation func-
tion protocol πρ.

The LR training protocol πLR−Training UC-realizes the 
logistic regression training functionality FLR−Training . 
The correctness is trivial and the security follows 
straightforwardly from the UC-security of the building 
blocks used in πLR−Training.

The following steps describe end-to-end how to 
securely train a LR classifier: 

1	 The TI sends the correlated randomness needed for 
efficient secure multiplication to the data processors. 
Note that while our current implementation has the 
TI continuously sending the correlated randomness, 
it is possible for the TI to send all correlated random-
ness as the first step, and therefore can leave and not 
be involved during the rest of the protocol.

2	 Each data owner converts the values in the set of 
training examples D that it holds to a fixed-point rep-
resentation as described in Eq. 1. Each value is then 
split into two shares, which are then sent to the data 
processor 1 and data processor 2 respectively.

3	 Each data processor receives the shares of data from 
the data owners. They now have secret sharings 
(�xd�, �td�) of the set of training examples D. The 
learning rate η and number of iterations niter are pre-
determined and public to both data processors.

4	 The data processors collaborate to train the LR 
model. They both follow the secure LR training pro-
tocol πLR−Training.
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5	 At the end of the protocol, each data processor will 
hold shares of the model’s weights �wi� . Each data 
processor sends their shares to all of the data own-
ers, who can then combine the shares to learn the 
weights of the LR model.

Cryptographic engineering optimizations
Sockets and threading
A single iteration of the LR protocol is highly paralleliz-
able in three distinct segments: (1) computing the dot 
products between the current weights and the data set, 
(2) computing the activation of each dot product result, 
and (3) computing the gradient and updating the weights. 
In each of these phases, a large number of computations 
are required, but none have dependencies on others. We 
take advantage of this by completing each of these phases 
with thread pools that can be configured for the machine 
running the protocol. We implemented the proposed 
protocols in Rust; with Rust’s ownership concept, it is 
possible to yield results from threads without message 
passing or reallocation. Hence, the code is constructed 
to transfer ownership of results at each phase back to the 
main thread to avoid as much inter-process communica-
tion as possible. Additionally, all threads complete socket 
communications by computing all intermediate results 
directly in the socket buffer by implementing the buffer 
as a union of byte array and unsigned 64-bit integer array. 
This buffer is allocated on the stack by each thread which 
circumvents the need for a shared memory block while 
also avoiding slower heap memory. The implementation 
of this configuration reduced running times significantly 
based on our trials.

Further, all modular arithmetic operations are handled 
implicitly with the Rust API’s Wrapping struct which tells 
the ALU to ignore integer overflow. As long as the size 
of the ring over which the MPC protocols are performed 
is selected to align with a provided primitive bit width 
(i.e. 8, 16, 32, 64, 128) it is possible to omit computing the 
remainder of arithmetic with this construction.

Results
We implemented the protocols from the “Methods” sec-
tion in Rust4 and experimentally evaluated them on the 
BC-TCGA and GSE2034 data sets of the iDASH 2019 
competition. Both data sets contain gene expression data 
from breast cancer patients which are normal tissue/non-
recurrence samples (negative) or breast cancer tissue/
recurrence tumor samples (positive) [37].

Table  1 contains accuracy results obtained with LR 
with sigmoid activation function, using the implemen-
tation in the sklearn library [38], and default parameter 
settings. These models were not trained in a privacy-pre-
serving manner, and the results in Table  1 are included 
merely for comparison purposes. As Table 1 shows, reg-
ularization with ridge or lasso regression did not have a 
significant impact on the accuracies, which is the reason 
why we did not include regularization in our privacy-pre-
serving training protocols for the iDASH competition. In 
the “Discussion” section we provide information on how 
Protocol 6 can be expanded to include regularization as 
well.

The results obtained with our privacy-preserving pro-
tocols are given in Table 2. Using Protocol 6, we trained 
LR models with a clipped ReLu activation function on 
both data sets with a learning rate η = 0.001 . We use 
a fixed number of iterations for each data set: 10 itera-
tions for the BC-TCGA data set and 223 iterations for 
the GSE2034 data set. The accuracy of the resulting mod-
els, evaluated with fivefold cross-validation, is presented 
in Table  2, along with the average runtime for training 
those models. It is important to note that these are the 
same accuracies that are obtained when training LR with 
a clipped ReLu activation function in the clear, i.e. there 
is no accuracy loss in the secure version. Comparing the 
accuracies in Table 1 and 2, one observes that for the BC-
TCGA data set there is no significant difference between 
the use of a sigmoid activation function (Table 1)and the 
clipped ReLu activation function (Table 2). While the dif-
ference in accuracy on the second data set is significant, 
we decided to proceed with clipped ReLu anyway for 
the iDASH competition as the rules stipulated that “this 
competition does not require for the best performance 
model”. Instead, the criteria were privacy (no informa-
tion leakage permitted), efficiency (short runtimes), and 
reasonable accuracy. This is a reflection of real-world 
applications of privacy-preserving machine learning, 
where an acceptable balance among privacy, accuracy, 
and efficiency is obtained by choosing primitives (such as 
clipped ReLu) that are MPC-friendly.

Table 1  Accuracy results obtained with  fivefold cross-
validation with  LR, using the  traditional sigmoid 
activation function and cross-entropy loss

Models were trained for 100 iterations. All computations are done in-the-clear, 
i.e. without use of the privacy-preserving protocols proposed in this paper

# no regularization 
(%)

Ridge 
regression (%)

Lasso 
regression 
(%)

BC-TCGA​ 99.57 99.57 99.57

GSE2034 68.83 68.84 68.83

4  https​://bitbu​cket.org/uwtpp​ml/idash​2019.

https://bitbucket.org/uwtppml/idash2019
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We used integer precision b = 15 , fractional preci-
sion a = 12 and ring size � = 64 (these choices were 
made based on experiments in the clear as mentioned in 
the previous section). We ran the experiments on AWS 
c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. 
Each of the parties ran on separate machines (connected 
with a Gigabit Ethernet network), which means that the 
results in Table 2 cover communication time in addition 
to computation time. The results show that our imple-
mentation allows to securely train models with state-of-
the-art accuracy [37] on the BC-TCGA and GSE2034 
data sets within about 2.52 s and 26.90 s respectively.

A previous version of this implementation was submit-
ted to the iDASH 2019 Track 4 competition. 9 of the 67 
teams who entered Track 4 completed the challenge. Our 
solution was one of the 3 solutions who tied for the first 
place. Our implementation trained on all of the features 
for both data sets (no feature engineering is done), and 
generated a model that gave the highest accuracy, with 
runtimes that were well within the competition’s limit of 
24 h. The implementation presented in the current work 
is further optimized in relation to the iDASH version and 
achieves far better runtimes.

We note that while SecureML differs from our work in 
their setup and cryptographic primitives, it shares many 
similarities to ours and reports a fast runtime such that 
we find it valuable as a standard to compare to. While 
SecureML does not originally use a TI to predistribute 
the multiplication triples, it would be easy to adapt their 
result to use a TI for that purpose. Therefore, in order to 
have a fair comparison, we compare our protocol runt-
ime against only their online runtime (thus excluding 
their offline runtime). We evaluated our implementation’s 
runtime against SecureML’s implementation by running 
their implementation on the same AWS machines using 

the same data sets (see Table 3 for runtime comparisons). 
For both data sets, our online phase runs faster than 
SecureML’s online phase which trains BC-TCGA in 12.73 
seconds and GSE2034 in 49.95 s.

We then compare online microbenchmark computa-
tion times. For the computation of the activation func-
tion, our run of the SecureML code reported around 
0.057–0.059  ms for 1 activation, while our implemen-
tation completes 1024 evaluations in around 30  ms 
(0.029 ms per activation function). This makes our secure 
activation function implementation nearly twice as fast 
as SecureML’s. Additionally, it eliminates the overhead 
of switching between Yao gates and additive secret shar-
ing. Furthermore, our activation function runs more effi-
ciently (per evaluation) the more evaluations of it need to 
be computed, due to the design of the batch bit-decom-
position protocol. This is illustrated in Table 4 where the 
calculated runtime per evaluation (runtime divided by 
number of evaluations) decreases as the number of eval-
uations increase.

Discussion
Our runtime experiments on securely training a LR 
model show that it is feasible to train on data that 
includes a large number of attributes, as is common 
with genomic data. Given the high dimensionality of the 
genomic data, an interesting direction for future work 
would be the design of MPC protocols for privacy-pre-
serving feature reduction. If any kind of feature reduction 
is used, it would result in a decrease in secure training 
runtime with a possibility for a slight decrease in the 
accuracy. We demonstrate this by choosing (in the clear) 
54 features of the BC-TCGA data set that were part of the 
76-gene signature described in [39]. Training on these 54 

Table 2  Accuracy and training runtime for LR like models with clipped ReLu activation function, and trained in a privacy-
preserving manner using the protocols proposed in this paper

# features # pos. samples # neg. samples # of iterations Fivefold CV 
accuracy (%)

Avg. runtime (s)

BC-TCGA​ 17,814 422 48 10 99.58 2.52

GSE2034 12,634 142 83 223 64.82 26.90

Table 3  Runtime comparisons between SecureML and our 
work

BC-TCGA 
training 
(online) (s)

GSE2034 
training 
(online) (s)

Activation function 
(one evaluation) 
(ms)

Our work 2.52 26.90 0.030

SecureML 12.73 49.95 0.057

Table 4  Activation function runtimes

# evaluations Avg. runtime (ms) Runtime per activation 
(runtime/#eval) (ms)

256 9 0.035

512 16 0.031

1024 30 0.029

2048 59 0.028
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features, we get a fivefold cross-validation accuracy of 
98.93% (training on all features produced 99.58%), and 
the average secure training time (of three runs) is 0.51 s, 
which is about a 2 s decrease from training on all 17,814 
features. The genes in the GSE2034 data set are not 
labeled in a way where we can map them to the 76-gene 
signature to test the accuracy for a reduced number of 
features, but we test the runtime of training on 76 attrib-
utes and we get an average of 6.71 s, which is about a 20 s 
decrease from training on all 12,634 features. This shows 
that if feature reduction can be performed, runtimes can 
be improved while still being able to produce an accurate 
trained model.

While regularization did not appear to have a signifi-
cant effect on the data sets of the iDASH2019 Track 4 
competition (see Table 1), the question of how to perform 
regularization in a privacy-preserving manner with MPC 
is still relevant and interesting. Protocol 6 for secure LR 
training can be adapted to include ridge regression by 
changing the weight update rules (Line 12 of Protocol 6) 
to include a term that depends linearly on the value of 
the weights. This means that only secure additions and 
secure multiplications with a constant are needed, which 
are relatively inexpensive to perform in MPC and would 
not significantly change the runtimes. On the other hand, 
the penalty introduced in lasso regression depends on the 
absolute value of the weights. Established techniques for 
learning the parameters of a lasso model, such as coordi-
nate descent, require a secure comparison—an expensive 
operation—per weight per iteration. This would drasti-
cally affect the runtime of our protocols. Therefore, for 
the specific case of our protocols, we would suggest the 
use of the much MPC-friendlier ridge regression.

Our main contribution is the proposal of the fast-
est implementation and protocol for privacy-preserving 
training of LR models. Our novelty points are the new 
protocol for privately evaluating the activation function 
ρ which can be computed using only additive shares and 
MPC protocols, without using a protocol for secure com-
parison. We use ρ as an approximation of the sigmoid 
function σ since that is what is traditionally used in LR 
training, but σ is also used as an activation function in 
neural networks. Therefore, our fast secure protocol for 
computing ρ can also result in faster neural network 
training. While training neural networks are out of the 
scope of this paper, we note that our results can be appli-
cable to those types of ML models as well.

Conclusions
In this paper, we have described a novel protocol for 
implementing secure training of LR over distributed 
parties using MPC. Our protocol and implementa-
tion present several novel points and optimizations 

compared to existing work, including: (1) a novel pro-
tocol for computing the activation function that avoids 
the use of full-fledged secure comparison protocols; (2) 
a series of cryptographic engineering optimizations to 
improve the performance.

With our implementation, we can train on the BC-
TCGA data set with 17,814 features and 375 samples 
with 10 iterations in 2.52  s, and we can train on the 
GSE2034 data set with 12,634 features and 179 samples 
with 223 iterations in 26.90 s. A less optimized version 
of this implementation won first place at the iDASH 
2019 Track 4 competition when considering accuracy 
and efficiency. Our solution is particularly efficient for 
LANs where we can perform 1024 secure computa-
tions of the activation function in about 30 ms. To the 
best of our knowledge, ours is the fastest protocol for 
privately training logistic regression models over local 
area networks.

While the scenario where computing parties com-
municate over a local area network is a relevant one, it 
is also important to develop tailored solutions for the 
case where the parties are potentially connected over the 
internet and across different countries. The solutions for 
each of these cases will be substantially different depend-
ing on what kind of delay is more important in the net-
work: propagation, transmission, processing, or queuing 
delays. We expect that round and communication com-
plexities would need to be traded, depending on the com-
munication settings’ specifics. We leave it as a future 
extension of our work to optimize it for more general 
communication scenarios.
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Appendix
Optimization of πdecomp

Overview and previous work
The functionality Fdecomp (described in “Methods” sec-
tion) is easily realized as an adder circuit that takes as 
inputs each bit of the additive shares of a secret sharing 
�x�2� in a large ring Z2� and outputs an “XOR-sharing” 
of the secret �x1�2, . . . , �x��2 . First, each party regards 
its share of �x�2� , denoted xi , as an XOR-shared secret 
�xi,1�2, . . . , �xi,��2 and passes it to the adder circuit. The 
adder circuit then computes the carry vector which 
accounts for the rollover of binary addition. Adding this 
vector to all bitwise shares �x1,j�2, �x2,j�2 resolves the dif-
ference between �x1,1� · · · �x1,��⊕ �x2,1� · · · �x2,�� and the 
bit-decomposed secret x.

Naively, this carry vector can be obtained with lin-
ear communication complexity by means of ripple carry 
addition, as is described in Protocol 3. But, it is possible 
to achieve logarithmic communication complexity and 
even constant complexity [40] (though with worse per-
formance than the logarithmic version for all reasonable 
bit lengths).

The highest performing realization of Fdecomp for real-
istic bit lengths is based on a speculative adder circuit 
[17] in which at each layer the next set of carry bits are 
computed twice; once for each case that the previous 
carry bit had been 0 and 1. This protocol has ⌈log(�)⌉ + 2 
rounds of communication and requires a total data trans-
fer of 4�⌈log(�)⌉ + 6� bits.

We propose a new, highly optimised protocol based on 
a matrix composition network that reduces the number 
of communication rounds by 1 (or 2, in special cases) 
and requires a small fraction of the aforementioned data 
transfer cost.

Matrix composition network
To sum the binary numbers a and b, the i-th bit is given 
by si = ai ⊕ bi ⊕ ci−1 , where ci = aibi ⊕ aici−1 ⊕ bici−1. 
In an alternate view, the carry can be seen to depend on 
two signals which in turn depend on a and b. Generate 
( gi = aibi ) creates a new carry bit at the i-th position, 
and Propogate ( pi = ai ⊕ bi ) perpetuates the previous 
carry bit, if it exists. In this representation, si = pi ⊕ ci−1 
and ci = gi + pici−1 . This sum-of-products form of the 
expression for ci lends itself to a matrix representation

When matrices in the form of Mi are composed, the 
lower entries remain unchanged. This implies that

Therefore, to compute all ci , it is sufficient to compute the 
set of all matrix compositions

Note that it is not necessary to compute the �-th carry 
bit because s� depends on c�−1 . Treating the carry-in to 
the 1st bit as the vector (0, 1), all ci can be derived implic-
itly from the upper right-hand entry of M1.i (here, M1,i 
denotes the matrix composed of all matrices M1 through 
Mi , consecutively).

From the MPC perspective, this matrix composition 
requires two Z2 multiplications: pi+1pi and pi+1gi as seen 
in the equation below. The OR operation (+), which usu-
ally requires multiplication in MPC, is reduced to XOR 
based on the observation that pi+1 and gi+1 cannot both 
be true for a given i.

The entire set of matrix compositions can be realized in 
a logarithmic depth network by, at the i-th layer, com-
puting all compositions M1.j that require fewer than 2i−1 
compositions. To set up conditions to allow us to mini-
mize the total data transfer, the constraint is added that 
each M1.j should be the composition of the “largest” 
matrix from the previous layer, M1.2i−2 , with the remain-
der M2i−2+1.j . If M2i−2+1.j doesn’t exist in the network, it 
is added recursively following the same set of constraints.

Figure 4 shows an example with � = 17 . This network 
is hereafter referred to as ComposeNetp where p is the 
highest order bit to decompose. The protocol description 
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that follows considers only the case where p = � , though 
the protocol functions the same for any p ≤ � . For 
instance, in Protocol  3, when using πdecomp to find the 
MSB of a secret, it is sufficient to set p = a+ b+ 1.

Efficiency discussion
The setup phase prior to the call to ComposeNet� 
requires � multiplications over Z2 to compute all �gj� . This 
corresponds to one communication round and 2� bits of 
data transfer.

A call to ComposeNet� has communication com-
plexity corresponding to the depth of the network, 
⌈log(�− 1)⌉ , and �2 multiplications over Z2 per layer, with 

fewer on the final layer when �− 1 is not a power of 2. 
However, due to the fact that the matrices at each node of 
ComposeNet� are reused extensively and known to not 
change value, the Beaver Triples used to mask the matri-
ces can be desgined to contain redundancies to minimise 
the data transfer at each layer [2]. By re-using correlated 
randomness where information leakage is not possible, 
only �2 − (2i−i − 1) masks need to be transferred at depth 
i, for i > 0 . At depth 0, there are � masks; one for each 
matrix. Each matrix mask is 2 bits (one for each of the 
Propogate and Generate bits), so the total data transfer 
is 2�+ 2

∑⌈log(�−1)⌉−1
i=1 ( �2 + 1− 2i−1).

The recombination phase after ComposeNet� is com-
puted has only local computations and thus contributes 
nothing to the complexity.

Combining all phases, we see that πdecompOPT has a 
communication cost of ⌈log(�− 1)⌉ + 1 and a total data 
transfer cost of 4�+ 2

∑⌈log(�−1)⌉−1
i=1 ( �2 + 1− 2i−1) bits. 

Comparing with the speculative adder’s performance, the 
number of communication rounds is decreased by 1 in all 
cases and 2 in the case that �− 1 is a power of 2. The total 
data transfer cost has roughly 13 the data transfer rate of 
the previous work at � = 8, 16 . For higher all bit lengths, 
the ratio quickly converges near 14.

Implementation and batching
ComposeNet� can be implemented efficiently as a set 
of index pairs that correspond to the positions of the 
Propogate and Generate bits that need to be combined 
at each layer. Once per layer, all products pi+1pi , pi+1gi 
can be computed in a single call to πDM by taking the 

Fig. 4  ComposeNet� for � = 17 . Computes the set of all matrix compositions M1,M1.2,M1.3, . . . ,M1.(�−1) . The notation Mi.j means “the composition 
of all matrices i through j.” The greyed nodes are only used for intermediate computations and the white nodes are part of the solution set
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bitwise product between the concatenations pi+1||pi+1 , 
pi||gi and splitting the result.

Extending to the case that many values need to be bit 
decomposed at the same time (as in Protocol 6), a vector 
of inputs can be decomposed “in parallel” by taking verti-
cal slices over the Generate and Propogate bits of each 
element and re-packing them into a transposed form. In 
this way, each layer of ComposeNet� can operate on a 
vector of matrices (represented as two lists of bit slices) 
to produce a vector of matrix compositions. This method 
has no effect on the number of rounds of communication 
and the total data transfer scales linearly with the length 
of the input vector.
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