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Abstract: Visible-light optical coherence tomography (vis-OCT) has enabled new spectroscopic
applications, such as retinal oximetry, as a result of increased optical absorption and scattering
contacts in biological tissue and improved axial resolution. Besides extracting tissue properties
from back-scattered light, spectroscopic analyses must consider spectral alterations induced by
image reconstruction itself. We investigated an intrinsic spectral bias in the background noise
floor, which is hereby referred to as the spectrally-dependent background (SDBG). We developed
an analytical model to predict the SDBG-induced bias and validated this model using numerically
simulated and experimentally acquired data. We found that SDBG systemically altered the
measured spectra of blood in human retinal vessels in vis-OCT, as compared to literature data.
We provided solutions to quantify and compensate for SDBG in retinal oximetry. This work is
particularly significant for clinical applications of vis-OCT.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) [1] detects back-scattered light to image biological
tissue at microscopic resolutions noninvasively. In spectral-domain OCT (SD-OCT) [2], three-
dimensional (3D) images are reconstructed using the Discrete Fourier transform (DFT) of a
sampled interference spectrum. Visible-light OCT (vis-OCT) [3] is a rapidly evolving SD-OCT
technology that operates within the visible-light wavelength range to increase axial resolution and
spectroscopic tissue contrast, as compared with near-infrared OCT (NIR-OCT). These benefits
enabled new spectroscopic vis-OCT applications, including oximetry [4,5], detection of tissue
ultrastructure [6], and investigating various neuropathologies [7,8]. Spectroscopic vis-OCT
computes a series of short-time Fourier Transforms (STFT) using moving spectral windows with
reduced bandwidth across the entire spectral interference fringes. Performing STFT enables the
reconstruction of a series of sub-band spectral images with a reduced axial resolution.

To accurately extract tissue spectral information, it is essential to eliminate influence from
the OCT image reconstruction itself. In most SD-OCTs, a grating-based spectrometer samples
the interference fringe according to the grating equation and spectrometer optics [9]. It is
typical for such spectrometers to sample almost linearly in the wavelength (λ) space, which
is inversely proportional to the wavenumber (k) space. Since axial depth (z) is the Fourier
conjugate of k, non-uniformly sampled frequencies in the k domain will result in a broadened
point-spread-function in the z domain. Thus, the optimal axial resolution requires the interference
fringe to be interpolated linearly in k space [2,10]. We found that linear-in-k interpolation
generates spectrally-dependent background (SDBG), an intrinsic bias of the vis-OCT background
noise floor that can alter spectroscopic measurements.

The prevalence of linear-in-k interpolation in SD-OCT makes the systemic nature of the SDBG
highly significant towards the spectroscopic OCT research community. Various background
biases have been previously reported [11–15]. For example, in polarization-sensitive OCT
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(PS-OCT) the noise floor may vary in different polarization channels and, therefore, comparing
the polarization channels may require noise floor correction to achieve more accurate PS-OCT data
[12]. Although researchers previously recognized the existence of SDBG and applied empirical
corrections [1315], a thorough investigation of SDBG’s origin, influence on spectroscopic
vis-OCT, and correction techniques have yet to be conducted.

In this work, we first theoretically derive the systemic bias of SDBG caused by linear-in-k
interpolation of the interference fringe. We simulate SDBG in our vis-OCT system and compare
it with experimentally acquired SDBG. Then, we establish a minimum fringe upsampling rate
in spectroscopic vis-OCT that removes many depth-dependences of the SDBG, increasing
simplicity of SDBG correction. Finally, we investigate the influence of SDBG on vis-OCT retinal
oximetry and apply an SDBG correction strategy. This work establishes important principles and
consequences of widely-used data processing in spectroscopic vis-OCT and all other SD-OCTs,
informing a broad range of biophotonic applications.

2. Origin and derivation of SDBG

2.1. Wavenumber dispersion in spectrometer detection

In SD-OCT, the noise-free interference fringe (neglecting the DC component) can be written as

S(k)int = ∫
zmax
0 2

√︂
Ssamp(k, z)Sref (k) cos(2kz)dz, (1)

where z is the depth of the collected back-scattered photons from the zero-delay; zmax is the
maximum imaging depth [16]; Ssamp(k, z) is the power spectrum of the back-scattered light from
the depth z; and Sref (k) is the power spectrum of the reference arm. S(k)int is spatially dispersed
onto a one-dimensional (1D) pixel array in the spectrometer as a function of k(x) across the range
from kstart to kend, which is determined by the grating equation and spectrometer optics [9]. Here,
x is the spatial coordinate along the 1D array ranging from 0 to N∆x, where N is the the total
number of pixels and ∆x is the width of each pixel.

The spatial dispersion of the spectrometer is represented by δk =
|︁|︁|︁ dk(x)

dx

|︁|︁|︁, which we refer to
as the k spacing. It is also important to consider a hypothetical uniform dispersion across the
same spectral range, δklin =

|kend−kstart |
N∆x , which is constant. The dimensionless ratio, δkrel =

δk
δklin

,
referred to as relative k spacing, describes how the spectrometer deviates from ideal uniform k
dispersion across each pixel. Indeed, a larger δkrel indicates more k-space bandwidth per unit
pixel ∆x, while a smaller δkrel indicates less k-space bandwidth per unit pixel. The interference
fringe in the Eq. (1) sampled by the 1D pixel array (without considering spectrometer roll-off
[17]) can be written as

S[j]int =
∑︂N

j=1
S
(︃
x

1
δkrel

)︃
int
θ(x − j∆x), (2)

where j = 1, 2, . . .N is the array pixel index, and θ(x − j∆x) is the Dirac comb function with a
period ∆x. The spectrometer pixel array samples with a uniform period in x, but the fringe is a
function of 1

δkrel
. Such a non-uniform sampling of the k space results in a phase nonlinearity

in S[j]int [18], which distorts S[j]int and reduces image axial resolution. For optimal image
reconstruction, the phase of S[j]int must be made linear-in-k, which we will discuss in Section 2.2.

Quantifying 1
δkrel

for a spectrometer is valuable for understanding the distortion of S[j]int. In
this work, we measured 1

δkrel
digitally sampled by the spectrometer: 1

∆krel
. From here on, δkrel.

refers to the k spacing in the continuous domain, while ∆krel refers to the k spacing in the discrete
domain. Briefly, we found the k distribution on the pixel array k[j]map using spectral calibration
lamps [17,18]. Next, we obtained the sampled δk, defined as ∆k, by calculating the absolute
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change in k[j]map with j. Hence, the sampled δklin is

∆klin =

|︁|︁|︁|︁k[N]map − k[1]map

N

|︁|︁|︁|︁ . (3)

From this information, we obtained the sampled δkrel, defined as ∆krel =
∆k
∆klin

.
In Fig. 1(a), we plot measured 1

∆krel
and 1

∆klin
as a function of pixel j for a commercial vis-OCT

spectrometer (Blizzard SR, Opticent Health, Evanston, IL.) Briefly, the spectrometer collimates
light from a single-mode fiber output. The collimated light is diffracted by a transmission grating.
The diffracted light is focused on a 2048-pixel camera (OctoPlus, Teledyne E2V, UK) placed at
the focal plane of the diffracted light. The spectral detection range is from 506 nm to 613 nm.
We measured the full spectrum roll-off as -4.8 dB/mm and confirmed that aberrations at the focal
plane were minimized by measuring the spectrally-dependent roll-off (SDR) [17].

Fig. 1. Influence of grating dispersion on interference fringe (a) Digitized relative k rates of
a spectrometer. Colored dots represent locations of pixel segments in (c-e); (b) illustration
of Dirac comb sampling by pixel array with period ∆x; (c) Interference fringe plotted at the
location of the yellow dot in panel a; (d) Interference fringe plotted at the location of the
green dot in panel a; (e) Interference fringe plotted at the location of the orange dot in panel
a.

From Fig. 1(a), is evident that 1
∆krel

is smaller for shorter wavelengths and larger for longer
wavelengths. Physically, this can be considered as a compression of the k-space for shorter
wavelengths and an expansion of the k-space for longer wavelengths, as shown in Figs. 1(b)–1(e).
Figure 1(b) shows a segment of the Dirac Comb from Eq. (2), representing sampling by 10 pixels
with a period of ∆x. Figure 1(c) shows a single sine wave, representing a segment of S

(︂
x 1
δkrel

)︂
int

,

where 1
δkrel
= 1

δklin
(highlighted by the yellow dot in Fig. 1(a)). All sine waves are plotted along

the same x-axis from Fig. 1(b). Figure 1(d) shows the same S
(︂
x 1
δkrel

)︂
int

as in Fig. 1(c), but for

a segment where 1
δkrel
< 1

δklin
(highlighted by the green dot in Fig. 1(a)). This condition causes

a compression of the k-space. Therefore, more cycles of S
(︂
x 1
δkrel

)︂
int

are observed comparing
with Fig. 1(c). Since the pixel array samples with uniform period ∆x, which is independent of
δkrel, dispersing more k-space per pixel comes at the expense of acquiring fewer k-space samples.
As shown in Eq. (2), S

(︂
x 1
δkrel

)︂
int

experiences a relatively sparse discrete sampling rate when
1

δkrel
< 1

δklin
. In this way, we show that the k-space sampling rate is proportional to 1

δkrel
(and
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estimated by 1
∆krel

). Figure 1(e) shows S
(︂
x 1
δkrel

)︂
int

for a segment where 1
δkrel
> 1

δklin
(highlighted

by the orange dot in Fig. 1(a)), where expanded k-space results in a relatively dense k-space
sampling rate when 1

δkrel
> 1

δklin
. Other than the spectral distortions described above, uniform

sampling by the pixel array itself does not introduce any new distortions (not considering aliasing
and roll-off).

2.2. Linear-k interpolation and resampling

A linear-in-k version of S[j]int can be estimated by digitally redistributing the locations of k-space
samples. Specifically, S[j]int is interpolated to linear-in-k by calculating unknown values of S[j]int
from an estimated continuous version of itself. Due to its simplicity and computational efficiency,
a popular SD-OCT fringe interpolation is a linear interpolation (LI) [19], which is the focus of
our analysis. However, the mathematical principles and fundamental conclusions derived here
remain valid for other interpolations, such as cubic spline. A discrete LI consists of three steps:
up-sampling, low-pass filtering, and down-sampling [20].

As shown above, S[j]int is initially down-sampled at shorter wavelengths and up-sampled at
longer wavelengths according to 1

δkrel
. Phase distortion of S[j]int can be removed by an inverse

operation. Therefore, S[j]int is resampled at a rate inverse to 1
δkrel

, which is in the up-sampling
and down-sampling steps in LI. As illustrated in Fig. 1, LI results in an expansion of shorter
wavelengths and compression of longer wavelengths exactly inverse to their original distortions.
This can be described mathematically as

S[j]int_lin =
∑︂N

j=1
S
(︃
x
δkrel

δkrel

)︃
int
θ(x − j∆x) =

∑︂N

j=1
S(x)int θ(x − j∆x). (4)

From Eq. (5), the noise-free interference fringe is resampled linearly in k and x, canceling
sampling-based distortions. Finally, the low-pass filtering step in LI uses a triangle function

t[j] =
⎧⎪⎪⎨⎪⎪⎩

1 −
|j |
ξ , |j | ≤ ξ

0, elsewhere
, (5)

where ξ is the order of interpolation [21]. We show the influence of Eq. (5) in Section 3.3.

2.3. Noise in SD-OCT

In SD-OCT, the additive noise consists of shot noise, dark noise, readout noise, and relative
intensity noise (RIN) and is assumed to be Gaussian distributed at each pixel [22]. Unlike sampled
fringe S[j]int, the additive noise is not correlated with k. Therefore, we modify representation of
the signal detected by the spectrometer to

S[j]total = S[j]int + e[j]noise, (6)

where e[j]noise is the additive noise in SD-OCT.
We confirmed the Gaussian noise distribution by acquiring images using our vis-OCT system

(40 µs exposure time, 5000 A-lines, 0.15 µW laser power from reference arm) without any sample
in the sample arm. After normalizing the detected noise by the spectral shape of the light source
(NKT Photonics, SuperK 150 MHz), we found that our measured noise followed the Gaussian
distribution with a mean near 0 and a standard deviation (σ) of 0.79 [arb. Units]. Additionally, it
has been shown in SD-OCT that a supercontinuum laser source contributes to pink RIN noise
[22]. In our experimental measurements in Section 3, we demonstrate that although pink noises
exist, SDBG bias and the general spectral profile of the background is dominated by the white
noise component.
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2.4. Interpolation of noise in SD-OCT

To understand how interpolation leads to SDBG, we must consider a complete representation of
the SD-OCT signal

S[j]total_lin = S[j]int_lin + e[j]noise_lin = LI{S[j]int} + LI{e[j]noise}, (7)

where S[j]total_lin is the linearly interpolated signal detected by the spectrometer; S[j]int_lin is the
linearly interpolated interference fringe; e[j]noise_lin is the linearly interpolated noise; and LI is
the linear interpolation operator. S[j]int and e[j]noise are interpolated independently.

A useful property of white noise is that its autocorrelation is proportional to the Dirac delta
function. First, we denote the autocorrelation of e[j]noise as ϕ[j]noiseee . To investigate ϕ[j]noiseee in
the same way as the sampled interference fringe, we write ϕ[j]noiseee as

ϕ[j]noiseee =
∑︂N

j=1
[e(x) ∗ e(x)] θ(x − j∆x) =

∑︂N

j=1
σ2δ(x)θ(x − j∆x) = σ2δ[j], (8)

where e(x)noise is the SD-OCT noise as a function of continuous space x; ∗ is the continuous
convolution operator; σ2 is the variance of the noise; and δ(x) and δ[j] are the continuous and
discrete Dirac delta functions, respectively. Equation (8) is valid because e[j]noise is a wide-sense
stationary signal [20]. Unlike the interference fringe, neither e[j]noise nor e(x) are correlated with
k. As such, from the perspective of the spectrometer array, e(x), e[j]noise, and ϕ[j]noiseee are all
assumed linear with the pixel index. However, interpolating S[j]int still necessitates linear-in-k
interpolation of e[j]noise. Similar to Eq. (4), we can write the interpolated noise as

e[j]noise_lin =
∑︂N

j=1
e(xδkrel)noise θ(x − j∆x). (9)

Now, we can write the autocorrelation of the interpolated noise, as

ϕ[j]noise_linee =
∑︂N

j=1
[e(xδkrel) ∗ e(xδkrel)] θ(x − j∆x) =

∑︂N

j=1
σ2δ(xδkrel)θ(x − j∆x) =

σ2

∆krel
δ[j].

(10)
Indeed, expansion or compression by δklin does not linearize k domain sampling for e[j]noise

like it does for S[j]int. Equation (11) shows that the amplitude of ϕ[j]noise_linee is determined by
δkrel and scaled by 1

∆krel
.

2.5. SDBG in the reconstructed depth spectrum

Since we are interested in the depth-resolved spectral signatures of vis-OCT signals, we need to
investigate the STFT of S[j]total_lin as

STFT{S[j]total_lin} =
∑︂Rtotal

r=1
(DFT{S[∆jr]int_lin} + DFT{e[∆jr]noise_lin}), (11)

where r is the STFT sub-band spectral window and ∆jr are the sample indexes under the
full-width-half-maximum (FWHM) bandwidth of spectral sub-band window r. S[∆jr]int_lin
and e[∆jr]noise_lin are the windowed versions of S[j]int_lin and e[j]noise_lin, respectively. We can
compute STFT of ϕ[j]noise_linee as

STFT{ϕ[j]noise_linee } =
∑︂Rtotal

r=1

1
jend − jstart

∑︂jend−1

j=jstart

σ2δ[j]
∆krelr

e
−i2π jz

jend−jstart ∼
σ2

∆krelr
, (12)

where z is the transformed index of j representing the depth; i is the complex number; jstart and
jend are the first and last indexes of ∆jr, respectively; and ∆krelr is the windowed version of ∆krel.
Applying the Wiener-Khinchen theorem, the DFT of ϕ[j]noise_linee for each sub-band is the power
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spectral density (PSD) of e[j]noise_lin under each sub-band, referred to as Φ[j]noise_linee [20]. Since
the result of Eq. (12) is a positive constant for each r, we can relate the PSD to its amplitude
spectrum (spectrally dependent A-line or SDA-line: A[z,∆jr]noise_lin) using

A[z,∆jr]noise_lin =
√︂

Φ[j]noise_linee ∼
σ√︁
∆krelr

. (13)

Then Eq. (11) can be rewritten as

STFT{S[j]total} = A[z,∆jr]int_lin + A[z,∆jr]noise_lin, (14)

where A[z,∆jr]int_lin is an SDA-line reconstructed from the fringe. SDBG is, therefore, a bias of
the noise floor proportional to 1√

∆krelr
.

3. Results

3.1. Simulated SDBG

We simulated SDBG for the Blizzard SR spectrometer by generating a Gaussian white noise
(e[j]noise) and processing it following an STFT spectroscopic vis-OCT reconstruction procedure
[3]. Briefly, we generated e[j]noise with N = 2048 pixels and an SD of 0.79 (arb. units, same
as measured in Section 2.3). Then, we up-sampled e[j]noise six times using FT zero-padding
[19] and linearly resampled to obtain e[j]noise_lin. Finally, we applied STFTs using Rtotal = 24
Gaussian windows spaced equidistantly in the k space from 523 nm to 591 nm. Each sub-band
had the same FWHM bandwidth, corresponding to a 13-nm FWHM bandwidth for a sub-band
centered at 556 nm. We repeated this processing 5000 times with and without the LI step and
averaged all the respective A[z,∆jr]noise_lin.

Figure 2(a) shows the simulated A[z,∆jr]noise_lin with LI after normalizing by its average
spectral amplitude

(︂∑︁R
r=1 A[z,∆jr]noise_lin

r

)︂
and average depth amplitude between z= 500 µm and

z= 800 µm
(︃∑︁800 µm

z=500 µm A[z,∆jr]noise_lin
300 µm

)︃
. From here on, all A[z,∆jr]noise_lin are plotted after this

normalization. The simulated A[z,∆jr]noise_lin has 24 background values, each representing the
rth STFT sub-band. We color-code the central wavelength of each sub-band, as shown by the
color bar. Although all A[z,∆jr]noise_lin are approximately constant with z, the mean amplitude
from shorter (green) wavelengths are higher than those from longer (orange) wavelengths. We
visualize the simulated SDBG bias in Fig. 2(b) (red dashed line), which we approximate as the
depth-averaged A[z,∆jr]noise_lin between 500 µm and 800 µm:

SDBG ≈ A[∆jr]noise_lin =

∑︁800 µm
z=500 µm A[z,∆jr]int_lin

300 µm
(15)

The blue line in Fig. 2(b) shows the SDBG bias predicted by the spectrometer’s 1√
∆krelr

,

which agrees well with the simulated A[∆jr]noise_lin. Figure 2(b) and all plotted A[∆jr]noise_lin are
normalized by their average spectral amplitude, as done in Fig. 2(a). We noted that there is a
small difference between the SDBG biases at the shortest wavelengths, although this difference is
< 1% of the predicted value. This difference may be caused by σ not being perfectly constant
with sub-band center wavelength or a minute depth-dependence of A[z,∆jr]noise_lin, which is
discussed in Section 3.3. Figure 2(c) illustrates the simulated A[z,∆jr]noise_lin after the same
respective processing and analysis as Figs. 2(a), without the LI of e[j]noise. Figure 2(d) illustrates
the simulated A[∆jr]noise_lin calculated from Fig. 2(c) and the predicted SDBG bias. It is clear
that all the noises have the same amplitude, regardless of their center wavelengths. This matches
the predicted SDBG bias since e[j]noise is not correlated with k and no k distortion is present.
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Fig. 2. Simulated SDBGs in vis-OCT. (a) Simulated background SDA-lines with LI; (b)
predicted SDBG bias (blue line) and simulated SDBG bias (red dashed line) with LI from
z= 500 µm to 800 µm; (c) simulated background SDA-lines without LI; (d) predicted SDBG
bias (blue line) and simulated SDBG bias (red dashed line) without LI from z= 500 µm to
800 µm.

3.2. Experimentally measured SDBG

We applied the same analysis from Section 3.1 to experimentally acquired e[j]noise using our
vis-OCT system. Figure 3(a) shows the A[z,∆jr]noise_lin from the measured e[j]noise, plotted
using the same colorbar in Fig. 2(a). The experimental A[z,∆jr]noise_lin in Fig. 3(a) has a similar,
monotonic spectral bias to that of the simulated version (Fig. 2(a)). We confirmed this trend by
measuring A[∆jr]noise_lin (Fig. 3(b), red dashed line). Similar to the simulated A[∆jr]noise_lin, the
experimental A[∆jr]noise_lin (also for depths 500 µm – 800 µm) decreases approximately linearly
with increasing central wavelength. Unlike the simulated A[z,∆jr]noise_lin, the experimental
A[z,∆jr]noise_lin (Fig. 3(a)) is not approximately constant with depth. Instead, its amplitudes
are higher at shorter depths and decay exponentially with depth, which may be caused by two
experimental conditions. First, the noise distribution from a supercontinuum laser is pink [22],
which contains a higher proportion of low-frequency noises. Second, imperfect normalization of
the light source spectral shape can propagate a low-frequency component into interference fringe.
As shown in Eq. (10), the SDBG bias is contingent on the spectroscopic processing of white noise.
To this end, it was important to directly measure A[z,∆jr]noise_lin to monitor any inconsistencies
with the model. Since the measured SDBG bias was in strong agreement with our mathematical
model and simulation, we concluded, to a reasonable approximation, that background noise in our
vis-OCT system was dominated by a white noise process and interpolation. We did note small
differences (∼ 2% error) between the measured A[∆jr]noise_lin and predicted SDBG bias, which
was likely explained by the lower noise frequencies, normalization of the light source shape, or σ
not being perfectly constant across spectral locations, which may be caused by different excess
noises or efficiencies of the spectrometer elements [23]. Since supercontinuum laser sources
may vary in power, spectral shape, repetition rate, and RIN noise, it is important that researchers
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directly measure the SDBG. They may also directly investigate light-dependent influences by
comparing the SDBG with the light source on and off.

Fig. 3. Measured SDBGs in vis-OCT. (a) Measured background SDA-lines with LI; (b)
predicted SDBG bias (blue line) and measured SDBG bias (red dashed line) with LI from
z= 500 µm to 800 µm; (c) measured background SDA-lines without LI; (d) predicted SDBG
bias (blue line) and measured SDBG bias (red dashed line) without LI from z= 500 µm to
800 µm

Finally, Figs. 3(c) and 3(d) illustrate the measured A[z,∆jr]noise_lin and A[∆jr]noise_lin, respec-
tively, without LI. As predicted, the spectral dependence of the background noise floor is not
present. Furthermore, depth decay of the background still existed since the frequency distribution
of the background noise is not influenced by interpolation.

3.3. Influence of interference fringe up-sampling

To this point, to simplify the calculation of SDBG, we did not extend the analysis to the filter
in Eq. (5). Indeed, the convolution of t[j] with e[j]noise adds additional depth-dependence and
spectral dependence to the SDBG. The STFT of t[j] for LI is

T[z,∆jr] = sinc2
[︃
z∆krelr
π

]︃
, (16)

where ξ from Eq. (5) is set to 1 since the total number of samples in each sub-band does not
change. The multiplication of ∆krel with z signifies the scaling of the k domain after resampling.
Therefore, true SDA-line can be written as

STFT{S[j]total} = A[z,∆jr]int_linT[z,∆jr] + A[z,∆jr]noise_linT[z,∆jr] (17)

which adds the spectrally-dependent roll-off (SDR) [17] component to the signal and noise,
according to Eq. (16). It has been shown that uniformly up-sampling S[j]total before the
interpolation step reduces A-line amplitude decay with depth [19]. This is because up-sampling
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compresses SDA-lines, but not the depth-resolved interpolation filter. Compression of imaging
depths relative to the interpolation filter exposes them to less decay by the sinc2 function than
without compression (no up-sampling).

If S[j]total is up-sampled at a high enough rate, the SDR induced by the interpolation filter
becomes small enough to be negligible for most applications. This is also why there is no
visually noticeable decay by the sinc2 function in Fig. 3. However, to our knowledge, an optimal
up-sampling rate for spectroscopic vis-OCT has not been determined. An optimal up-sampling
rate should be established since researchers may apply low upsampling rates to increase processing
speeds without considering the spectroscopic consequences.

We investigate a minimum upsampling rate for spectroscopic vis-OCT in Fig. 4, which uses
the simulation from Fig. 2(a), except that we varied the up-sampling rates before interpolation.
We compared A[z,∆jr]noise_linT[z,∆jr] corresponding to upsampling rates of 1, 2, 4, and 6. In
Fig. 4(a), A[z,∆jr]noise_linT[z,∆jr] is influenced by the depth-independent amplitude scaling in
Eq. (13) and the depth-dependent interpolation filter in Eq. (16). Each noise component decays
with depth, where shorter wavelengths decay more rapidly than longer ones. Such decay adds
two additional influences to the noise floor: decay with depth and different depth decay rates
with different wavelengths. These influences further complicate the alterations of spectroscopic
vis-OCT measurements since the assumption of a constant SDBG bias shown in Eq. (13) is
no longer satisfied. This also complicates the SDBG correction, which is described in Section
3.4. As shown in Figs. 4(b) and 4(c), the influence of the interpolation filter is reduced with
increased upsampling but cannot be completely removed. Under six-fold up-sampling (Fig. 4(d)),
A[z,∆jr]noise_linT[z,∆jr] only shows minute decay with depth, which suggests that S[j]total should
be up-sampled at least six times. At this point, Eq. (17) can be simplified back to Eq. (14).
Finally, we note that T[z,∆jr] is also multiplicative with the signal-carrying SDA-lines in Eq. (17).
Up-sampling S[j]total by six-fold will reduce SDR of the signal-carrying SDA-lines in the same
way as the background shown in Fig. 4.

3.4. Correcting SDBG in vis-OCT oximetry in humans

Influence of SDBG on spectroscopic analysis can be corrected experimentally by subtracting
A[z,∆jr]int_lin from Eq. (14) as

A[z,∆jr]int_lin = STFT{S[j]total} − A[z0,∆jr]noise_lin (18)

where z0 is the depth of the spectroscopic calculation. Practically, this can be accomplished
by selecting a depth region where the spectroscopic image is completely attenuated. Since
the experimental SDBG was shown to decay with depth, we fit an exponential curve to each
A[z,∆jr]noise_lin in the selected depth region. We then used the fitted values at z0 to estimate
A[z0,∆jr]noise_lin. We note that zero-padding the fringe at least 6-fold greatly simplifies this
correction since the depth decays of the SDBG are minimized and nearly uniform across all
spectral sub-bands. Insufficient zero-padding, as exemplified in Fig. 4(a), introduces additional
complications: (1) The assumption of simple exponential decay is lost according to Eq. (16);
and (2) Each sub-band experiences a unique, spectrally-dependent decay, leaving them more
susceptible to errors from direct measurement or depth-fitting of the SDBG. If the spectroscopic
image is not completely attenuated, it is an acceptable alternative to acquiring only the background
signal, as shown in Fig. 3(a), and directly calculate A[z0,∆jr]noise_lin. However, this will also
require the researcher to account for any other modifications made in the spectroscopic image
processing, which is discussed in Section 4.

To demonstrate the importance of SDBG correction, we measured the vis-OCT spectrum of
blood in human retinal vessels. Briefly, we imaged the retina of a healthy 23-year-old volunteer
with a vis-OCT system described in [24]. Human imaging was approved by the Northwestern
University Institutional Review Board and adhered to the Declaration of Helsinki. The optical
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Fig. 4. Simulated background SDA-lines with LI after (a) no, (b) two-fold, (c) four-fold,
and (d) six-fold up-sampling.

power incident on the cornea was 250 µW. We measured the spectrum inside the retinal blood
vessels using STFT sub-bands r = 3 to r = 23 (528 nm to 588 nm). We applied standard OCT
processing, including removal of the spectrum DC component, 6-fold zero-padding, compensation
for dispersion mismatch, and correction for the system roll-off. We averaged ∼ 500 pixels in each
vessel from 16 B-scans (8192 A-lines per B-scan) to reduce the background and speckle noise
fluctuations.

We calculated the influence of SDBG in an artery (red box) and vein (blue box), as highlighted
in Fig. 5(a), near the optic disk. The spectrum was detected at an average distance of ∼40 µm
below the anterior vessel wall and is plotted in blue in Fig. 5(b). All spectra are plotted after
normalizing by their respective mean amplitudes. The red dashed-line in Fig. 5(b) is the predicted
spectrum from the literature [25] for oxygen concentration (sO2)= 100%. Note how the blue
spectrum is tilted downwards with increasing wavelength and does not well match the literature
spectrum. Figure 5(c) shows the measured A[z0,∆jr]noise_lin. It matches well with those simulated
and experimental SDBGs shown in Figs. 2(b) and 3(b). The downwards tilt in the measured
spectrum in Fig. 5(b) follows the trend of A[z0,∆jr]noise_lin in Fig. 5(c).

Figure 5(d) shows the same spectral calculation in Fig. 5(b) after SDBG correction. We
corrected the spectrum using A[z0,∆jr]noise_lin from Fig. 5(c). After correction, the spectrum
matches well (R2 = 0.98) with the literature spectrum (sO2= 100%). Figure 5(e) shows the
measured spectrum (blue line) without SDBG correction in the vein and literature spectrum (red
dashed-line) for sO2 = 60%. Again, the measured spectrum differs from the literature spectrum
with a tilt downwards at longer wavelengths. Figure 5(f) shows the measured A[z0,∆jr]noise_lin.
Figure 5 g shows the SDBG corrected spectrum, which well agrees with the literature spectrum
(R2 = 0.98).
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Fig. 5. SDBG correction in the human retina. (a) B-scan image with one artery (red box)
and one vein (blue box); scale bars are 250 µm (lateral) and 50 µm (axial); (b) measured
blood spectrum in the artery before SDBG correction; (c) measured SDBG bias in the
artery; (d) measured blood spectrum in the artery after SDBG correction; (e) measured
blood spectrum in the vein before SDBG correction; (f) measured SDBG bias in the vein;
(g) measured blood spectrum in the vein after SDBG correction.

3.5. Metric to evaluate the influence of SDBG on spectroscopic OCT measurements

We recognized that the influence of SDBG also depends on the amplitude of the spectroscopic
signal relative to the noise floor. To quantify SDBG’s influence on retinal oximetry in vessels
similar to the ones in Fig. 5, we simulated oxygen-dependent spectra for sO2 = 0 to 100% and
SDBGs for different signal-to-noise-floor-ratios (SNFRs). We define SNFR as

SNFR =
∑︁R

r=1 A[z0,∆jr]int_lin/r∑︁R
r=1 A[z0,∆jr]noise_lin/r

, (19)

which is the ratio between the mean spectral amplitudes from the structure of interest and the noise
floor. We calculated sO2 from the simulated spectra and calculated the root-mean-squared-error
(RMSE) between the calculated sO2 and the ground truth. Figure 6 illustrates RMSE from the
computer-generated ground truth when SNFR varies from 3 to 100 (sO2 values for SNFRs below
3 could not be quantified). Indeed, the error of sO2 is severely compromised by SDBG until
SNFR > 55 (RMSE < 2%). For our vis-OCT setup, we found that typical SNFR in locations
used for sO2 were no higher than 5, which was limited by the rapid attenuation of blood. The
SNFRs in Fig. 5(a) were 2.05 and 1.77 for the artery and vein, respectively. The sO2 could
not be calculated in these vessels until the SDBG was corrected. Therefore, we conclude that
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SDBG correction is critical for human retinal oximetry. The influence of SDBG correction
will be different depending on specific applications. We recommend readers to simulate an
accuracy metric similar to that shown in Fig. 6 to quantify the influence of the SDBG in a specific
application.

Fig. 6. RMSE of simulated sO2 measurements with respect to the ground truth as a function
of SNFR.

4. Discussion

We thoroughly investigated a systemic SDBG in spectroscopic SD-OCT. We developed a
mathematical model to show that SDBG is caused by linear-in-k interpolation of the white noise.
We validated the model using simulated and experimental SDBGs in vis-OCT. We demonstrated
the importance of up-sampling the fringe before LI. We corrected SDBG in human spectroscopic
vis-OCT and found that correcting SDBG was critical for measuring an accurate blood spectrum
in humans. Finally, we showed the influence of SDBG in spectroscopic SD-OCT under different
SNFR levels.

Potentially most insidious are cases where measured spectra agree with their literature models
but are still subject to SDBG bias. Indeed, the SDBG amplitude derived here monotonically
decreases with wavelength. Such shape is inconveniently correlated with the reported λ−α
scattering and backscattering spectra of many biological tissues, where α is a constant [4,26]. As
such, perceived scattering properties of tissue may be altered by the SDBG. This is relevant in a
model of light-tissue interaction where the scattering coefficient or elements of the scattering
coefficient a fitted parameter [13].

We note that δkrel varies more in visible-light spectral range than in NIR spectral range. To
this end, the SDBG is likely to influence spectroscopic vis-OCT applications the most. Using
a linear-in-k spectrometer [27] or swept-source [16] (not currently available in visible light),
rather than a grating-based spectrometer, will greatly reduce the influence of SDBG since δkrel
becomes nearly constant. In this work, we performed all STFT analysis using sub-bands with
uniform bandwidths in k space. Varying sub-bands’ bandwidths in the STFT to compensate for
SDBG remains an open question. However, doing so will alter the amplitudes and resolutions of
A[z,∆jr]int_lin. Finally, we recognize that in spectroscopic OCT, the interference fringe is often
divided by the source spectrum,

√︁
Ssamp(k, z)Sref (k) from Eq. (1), for normalization purposes. As

such, the measured SDBG may be altered by
√︁

Ssamp(k, z)Sref (k), depending on normalization
method and SDBG amplitude. However, such normalization does not alter the analysis concluded
in this work, nor does it alter the proposed SDBG correction.

Finally, while this work focused on LI, more sophisticated interpolations, such as spline,
which trade speed and simplicity for better roll-offs, are of interest to researchers based on
application. We confirmed that our SDBG analysis is consistent with other interpolations. In
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the Appendix, Fig. 7(a) illustrates the SDBG for simulated noise using spline interpolation,
and Fig. 7(b) illustrates the SDBG for measured noise using spline interpolation. The plots
were generated using the same methods that generated Figs. 2(a) & 3a, respectively. Indeed,
the SDBGs generated using spline interpolation are nearly identical to those generated using
LI. This is because the SDBG bias is principally dependent on the resampling of white noise
shown in Eq. (13). Since spline interpolation has less roll-off than LI [20], it required only 2-fold
upsampling to reach the constant bias derived in Eq. (13) and seen in Fig. 7(a), as opposed to
6-fold for LI, as shown in Fig. 4. Researchers can use the tools provided in this work to assess
which interpolation technique best fits their application of spectroscopic OCT.

5. Conclusion

In conclusion, we demonstrated that spectroscopic SD-OCT signals are intrinsically biased by
the spectrometer’s k spacing after linear-in-k interpolation. We investigated this phenomenon
in vis-OCT and found strong agreements between mathematical modeling, simulation, and
experiment. We found that correction of the SDBG is important for retinal oximetry, a primary
application for vis-OCT. By establishing and verifying the principles of the SDBG, this work
informs researchers towards making accurate spectroscopic OCT measurements.

Appendix

Fig. 7. SDBGs in vis-OCT using spline interpolation. (a) Simulated background SDA-lines
with spline interpolation; (b) Measured background SDA-lines with spline interpolation.

Funding

National Institutes of Health (R01EY019949, R01EY026078, R01EY028304, R01EY029121,
R44EY026466, T32EY25202).

Acknowledgments

The authors thank David A. Miller and Lisa Beckmann for helpful discussions.

Disclosures

RVK and HFZ have financial interests in Opticent Health.



Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 123

References
1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.

Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
2. J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” Optical Coherence Tomography:

Technology and Applications, 47–72 (2008).
3. X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J Biomed Opt

22(12), 121707 (2017).
4. J. Yi, Q. Wei, W. Z. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal

oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
5. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence

tomography,” Nat. Photonics 5(12), 744–747 (2011).
6. R. R. Liu, J. A. Winkelmann, G. Spicer, Y. X. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single

capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence
tomography,” Light: Sci. Appl. 7(1), 57 (2018).

7. L. Beckmann, X. Zhang, N. A. Nadkarni, Z. Cai, A. Batra, D. P. Sullivan, W. A. Muller, C. Sun, R. Kuranov, and H.
F. Zhang, “Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through
chronic microprism cranial window,” Biomed. Opt. Express 10(10), 5235–5250 (2019).

8. A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B.
Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s
disease brain samples,” Biomed. Opt. Express 8(9), 4007–4025 (2017).

9. Z. L. Hu, Y. S. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,”
Appl. Opt. 46(35), 8499–8505 (2007).

10. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform
spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).

11. B. Baumann, C. W. Merkle, R. A. Leitgeb, M. Augustin, A. Wartak, M. Pircher, and C. Hitzenberger, “Signal
averaging improves signal-to-noise in OCT images: But which approach works best, and when?” Biomed. Opt.
Express 10(11), 5755–5775 (2019).

12. B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K.
Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed.
Opt. 23(08), 1 (2018).

13. C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total
haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,”
Sci. Rep. 9(1), 15115 (2019).

14. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773
(2013).

15. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin
mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450
(2015).

16. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61
(2010).

17. I. Rubinoff, B. Soetikno, D. A. Miller, I. Rischall, A. Fawzi, R. Kuranov, and H. F. Zhang, “Spectrally dependent
roll-off in visible-light optical coherence tomography,” Opt. Lett. 45(9), 2680–2683 (2020).

18. N. Uribe-Patarroyo, S. H. Kassani, M. Villiger, and B. E. Bouma, “Robust wavenumber and dispersion calibration for
Fourier-domain optical coherence tomography,” Opt. Express 26(7), 9081–9094 (2018).

19. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth
Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 mu m,” J. Korean Phys. Soc. 55(6),
2354–2360 (2009).

20. A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, 3rd ed. (Pearson, 2010), pp. xxviii.
21. P. Laguna, G. B. Moody, and R. G. Mark, “Power spectral density of unevenly sampled data by least-square analysis:

Performance and application to heart rate signals,” IEEE Trans. Biomed. Eng. 45(6), 698–715 (1998).
22. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of

supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160
(2019).

23. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging
with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).

24. I. Rubinoff, L. Beckmann, Y. B. Wang, A. A. Fawzi, X. R. Liu, J. Tauber, K. Jones, H. Ishikawa, J. S. Schuman, R.
Kuranov, and H. F. Zhang, “Speckle reduction in visible-light optical coherence tomography using scan modulation,”
Neurophotonics 6(04), 1 (2019).

25. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen
saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).

https://doi.org/10.1126/science.1957169
https://doi.org/10.1364/OL.38.001796
https://doi.org/10.1038/nphoton.2011.257
https://doi.org/10.1038/s41377-018-0057-2
https://doi.org/10.1364/BOE.10.005235
https://doi.org/10.1364/BOE.8.004007
https://doi.org/10.1364/AO.46.008499
https://doi.org/10.1364/JOSAB.17.001795
https://doi.org/10.1364/BOE.10.005755
https://doi.org/10.1364/BOE.10.005755
https://doi.org/10.1117/1.JBO.23.8.086005
https://doi.org/10.1117/1.JBO.23.8.086005
https://doi.org/10.1038/s41598-019-51721-9
https://doi.org/10.1364/OE.21.009757
https://doi.org/10.1364/BOE.6.001429
https://doi.org/10.1364/AO.49.000D30
https://doi.org/10.1364/OL.389240
https://doi.org/10.1364/OE.26.009081
https://doi.org/10.3938/jkps.55.2354
https://doi.org/10.1109/10.678605
https://doi.org/10.1364/JOSAB.36.00A154
https://doi.org/10.1364/BOE.8.000323
https://doi.org/10.1117/1.NPh.6.4.041107
https://doi.org/10.1103/PhysRevLett.93.028102


Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 124

26. J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Capoglu, A. Taflove, and V. Backman, “Can OCT be
sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).

27. G. P. Lan and G. Q. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence
tomography,” Sci Rep-Uk 7(1), 42353 (2017).

https://doi.org/10.1364/OE.21.009043
https://doi.org/10.1038/srep42353

