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Abstract: Optical coherence tomography angiography (OCTA) is a novel and clinically promis-
ing imaging modality to image retinal and sub-retinal vasculature. Based on repeated optical
coherence tomography (OCT) scans, intensity changes are observed over time and used to
compute OCTA image data. OCTA data are prone to noise and artifacts caused by variations in
flow speed and patient movement. We propose a novel iterative maximum a posteriori signal
recovery algorithm in order to generate OCTA volumes with reduced noise and increased image
quality. This algorithm is based on previous work on probabilistic OCTA signal models and
maximum likelihood estimates. Reconstruction results using total variation minimization and
wavelet shrinkage for regularization were compared against an OCTA ground truth volume,
merged from six co-registered single OCTA volumes. The results show a significant improvement
in peak signal-to-noise ratio and structural similarity. The presented algorithm brings together
OCTA image generation and Bayesian statistics and can be developed into new OCTA image
generation and denoising algorithms.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the last years, optical coherence tomography angiography (OCTA) has become increasingly
popular in research and clinical imaging. It allows micrometer-resolution imaging of retinal
vessels and the choriocapillaris, the latter which is challenging to image using other existing
methods [1]. In addition to that, OCTA is non-invasive compared to other methods, such as
fluorescein angiography, which requires the injection of a contrast agent and carries the risk of
anaphylactic shock [2]. OCTA is in clinical use and available in commercial devices by various
manufacturers.

Two commonly used methods to generate OCTA data are amplitude decorrelation (AD) and
speckle variance (SV). In both cases, optical coherence tomography (OCT) B-scans of the same
location are acquired in immediate succession and changes in intensity over time serve as the basis
on which OCTA is computed [3,4]. To the best of our knowledge, denoising of OCTA images is
usually performed by applying basic filters such as a median filter and background thresholding
to the measured data. While these approaches already achieve significant improvement with
simple methodology, their underlying assumptions do not accurately apply to the OCTA image
formation process. This discrepancy leaves plenty of room for further improvement of OCTA
image quality without imposing changes to the acquisition protocol or the device.

Reconstruction of medical image data has made substantial progress in recent years, which was
achieved by inverse problem formulations, which map the measurements backwards through the
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image formation process to the true observed specimen. Such problems can be solved via iterative
reconstruction, where the result image is found by optimizing an objective function comprised of
two major parts: First, a data consistency term that ensures that the reconstructed data closely
represents the inversely mapped measurements. Secondly, regularization terms are used to
improve image quality by enforcing certain properties. Here, the formulation as inverse problem
has the crucial advantage that such constraints can be enforced not only on the measurements,
but also directly in the reconstructed data. Applications of this principle range through the entire
field of medical imaging: In magnetic resonance imaging (MRI), compressed sensing-based
regularization is used to enforce sparseness of the reconstructed data, achieving great reductions
in imaging time [5]. Closely related, in computed tomography (CT), homogeneity within tissue
classes was modeled by regularizers, achieving significant dose reduction at equal image quality
[6–10].

A common way for setting up the objective function is to use Bayesian statistics, which has
been used in the context of OCT before to reduce speckle noise [11]. More recently, Ploner et
al. introduced a Bayesian signal model for OCTA which uses maximum likelihood estimation
(MLE) [12]. While this initial model provided a theoretical basis for the data consistency
term, image quality was not improved, because the model still lacks the key advantage of the
inverse problem formulation: the inclusion of prior information on the reconstructed signal via
regularization terms. This would extend the MLE to a complete Bayesian maximum a posteriori
(MAP) estimation. In this paper we present, to the best of our knowledge, the first MAP image
reconstruction algorithm for OCTA: we extend the OCTA MLE model by Ploner et al. to a MAP
estimate and use wavelet shrinkage and total variation minimization as regularizers.

The evaluation of an algorithm like this poses some challenges though. OCT scans suffer from
a wide range of motion artifacts because scan acquisition can take several seconds and patient
eyes exhibit involuntary eye motion. This causes severe difficulties in acquiring any ground
truth (GT) data that exhibit few motion artifacts and which have sufficient overlap with test data.
To address this problem, we generated a low-noise GT OCTA volume by co-registering and
merging six individual OCTA volumes with each OCTA volume generated from scans using
ten B-scan repetitions each. One of the six volumes also serves as test volume. Because of the
co-registration with the GT, reconstruction results can be deformed to match it and error metrics
between the two can be computed.

This paper is structured as follows: in the next section we provide a description of the MAP
estimate, comprised of the MLE it is based on and the newly introduced regularizers, and the
reconstruction algorithm. It is followed by the experiment section that explains how the OCTA
ground truth was generated. Results and discussion sections follow and the paper ends with a
conclusion.

2. Method

The reconstruction is based on a MAP estimate, which is described first. The OCTA signal model
used within the estimate is described afterwards, followed by the reconstruction algorithm.

2.1. Maximum a posteriori probability estimation

Image reconstruction arose from the need to reconstruct some data X from a limited number of
measurements Y. For instance, where a linear sampling operation A ∈ RM×N maps from a finite
signal X ∈ RN to

Y = AX + e , (1)

with Y ∈ RM , while e ∈ RM models the impact noise has on the measured signal Y. A models
the sampling of X to the observed signal Y and is often called the system matrix. The goal is to
reconstruct X based on the measurements Y which is an inverse problem. One approach to solve
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this inverse problem in the case of OCTA, is to treat it as a MAP estimate [13]. By interpreting
X and Y as random variables with their own distributions, the MAP estimate has the goal to find
an OCTA volume X̂ which maximizes its probability given the OCT scan Y. This is defined as

X̂ = arg max
X

P (X|Y) = arg max
X

P (Y|X)P (X)

P (Y)
= arg max

X
P (Y|X)P (X) . (2)

It is possible to ignore P (Y) because it does not depend on X. P (Y|X) is the MLE for Y and
P (X) is the prior probability of X. If P (Y|X) is a multivariate Gaussian distribution with mean
µ = AX and covariance matrix Σ = I, maximizing the log probability yields

arg max
X

ln P (Y|X)P (X) = arg max
X

ln
[︃
exp

(︃
−

1
2
(Y − AX)TΣ−1(Y − AX)

)︃
|Σ |−

1
2 P (X)

]︃
(3)

= arg max
X

−
1
2
(Y − AX)T (Y − AX) + ln P (X) (4)

= arg min
X

1
2
∥Y − AX∥2

2 + λR (X) . (5)

The MAP estimate yields a least squares problem with a regularizer R (X) in lieu for ln P (X) to
include prior knowledge about X or as a regularizer. In cases such as described by Manhart et al.
and Neukirchen et al. where the system matrix A is ill-conditioned and the data dimensions are
large, the Landweber iteration was successfully used to find a solution for X [14,15].

However, because OCTA computations are non-linear and non-invertible, the above Gaussian
model for the maximum log likelihood estimate does not apply. This is where the work of Ploner
et al. becomes relevant, in which the authors describe maximum log likelihood estimates for
AD, SV, and interframe variance (IFV) which are used as P (Y|X) [12]. The next section will
summarize the OCTA signal models and MLE used for reconstruction.

2.2. Probabilistic OCTA signal models

As noted in the introduction, intensity-based OCTA functions are based on changes in intensity
over time for a given voxel. For an OCT scan where each B-scan was repeatedly scanned N times,
yi denotes the measured amplitude for scan repetition i ∈ [1, 2, . . . , N]. AD is the variance of the
pair-wise difference amplitudes yi and yi+1 normalized by

1√︂
y2

i + y2
i+1

. (6)

We assume that µ = 0 for the differences between yi and yi+1 because both are identically
distributed. The likelihood to acquire the measurements y1 to yN is then

LAD =

N−1∏︂
i=1

P
⎛⎜⎜⎝

yi − yi+1√︂
y2

i + y2
i+1

|︁|︁|︁|︁|︁|︁|︁µ = 0,σ2 = x
⎞⎟⎟⎠ =

N−1∏︂
i=1

1
√

2πx
exp

⎛⎜⎜⎝−
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2

y2
i +y2

i+1

2x
⎞⎟⎟⎠ . (7)

Using the maximum log-likelihood estimation one obtains

arg max
x

log LAD = arg max
x

(N − 1) · log
(︃

1
√

2πx

)︃
−

N−1∑︂
i=1

(yi−yi)
2

y2
i +y2

i+1

2x
, (8)

with the derivative over x being

d log LAD
dx

=

−(N − 1) · x +
∑︁N−1

i=1
(yi−yi+1)

2

y2
i +y2

i+1

2x2 . (9)
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Setting the derivative to zero and solving for x results in the definition of AD [3]

x =
1

N − 1

N−1∑︂
i=1

(yi − yi+1)
2

y2
i + y2

i+1
= 1 −

1
N − 1

N−1∑︂
i=1

yi · yi+1

1
2

(︂
y2

i + y2
i+1

)︂ . (10)

Based on SV, Ploner et al. proposed a new angiography formula, IFV [12]. Compared to SV,
IFV computes the variance of the differences between voxel values over time but without the
normalization used in AD

LIFV =

N−1∏︂
i=1

P
(︂
yi − yi+1

|︁|︁µ = 0,σ2 = x
)︂
=

N−1∏︂
i=1

1
√

2πx
exp

(︃
−
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2

2x

)︃
. (11)

Again, as with AD, the assumption is that µ = 0. After applying the log function

log LIFV = (N − 1) · log
(︃

1
√

2πx

)︃
−

N−1∑︂
i=1

(yi − yi+1)
2

2x
, (12)

and taking the first degree derivative with respect to x

d log LIFV
dx

= −
(N − 1) · x +

∑︁N−1
i=1 (yi − yi+1)

2

2x2 , (13)

the maximum can then be found at

x =
1

N − 1

N−1∑︂
i=1

(yi − yi+1)
2 . (14)

The MLE for SV can be found in Supplement 1.
By including prior knowledge in form of a regularizer, the MLE can be extended into a MAP

estimate. For this paper we evaluated two different regularizers: wavelet shrinkage, and total
variation minimization. Wavelet shrinkage works by transforming the OCTA volume into wavelet
domain and setting the wavelet coefficients below a certain threshold to zero [16]. For total
variation regularization, in which the variation over the signal is minimized, we used the algorithm
by Chambolle et al. [17]. These regularizers are also commonly used in compressed sensing to
enforce sparsity. The relationship of the algorithm described in this paper to compressed sensing
is described in Supplement 1.

2.3. Reconstruction algorithm

For the purposes of this paper, both structural and angiography OCT volumes consist of Nb
B-scans. A B-scan is a 2D image composed of Na A-scans, which in turn contain Ns samples or
pixels. Furthermore, in order to generate OCTA data, every structural B-scan is scanned Nr times.
A structural OCT volume is thus Y ∈ RNb ·Nr ·Na ·Ns while an OCTA volume is X ∈ RNb ·Na ·Ns .

Even though AD and IFV are non-linear and non-invertible, it is possible to compute an OCTA
reconstruction of X using the MAP estimate. For this we propose a novel data consistency term,
based on the MLE in section 2.2 and the MAP estimate in Eq. (2). The goal is to find an OCTA
volume X̂ that maximizes the probabilities at each voxel position that fit the OCT observations Y
by maximizing

X̂ = arg max
X

log [P (Y|X)P (X)] (15)

= arg max
X

log P (Y|X) + R (X) . (16)

Using the observations in Y we can find the OCTA volume X̂ that maximizes the posterior
probability of Y. Assuming that X is uniformly distributed, P (X) becomes constant, and can be
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Objective: Find X̂ = arg maxX P (X|Y)

Input: Supply the following components and parameters:

• Step size λ

• Regularizer R and parameters

• Total number of iterations Niter and number of iterations Nreg for the regularizer

Initialization: Set X0 = Aalg (y)
Loop:

• Update the OCTA volume Xk+1 = Xk + λ∇Lalg (Xk).

• Every Nreg iterations apply the regularizer Xk+1 = R (Xk).

End of Loop:
Result: The output X̂

Algorithm 1. Description of the OCTA MAP reconstruction algorithm. The current estimate Xk is
iteratively updated using the element-wise derivative ∇Lalg (Xk) while a regularizer is applied every Nreg
iterations. The result is X̂.

disregarded. A regularizer is added in its place that fulfills a similar function, enforcing prior
knowledge about X. Finally, we search X̂ = arg max

X
P (X|Y) using the Landweber iteration

Xk+1 = Xk + λ∇Lalg (Xk) , (17)

with λ being the relaxation factor or step size and ∇Lalg the element-wise derivative for
alg ∈ {AD, IFV} from Eq. (9) and Eq. (13) [18]. The regularizer is applied to the currently

Fig. 1. Use of test data during the evaluation. Six OCT scans were acquired for testing
(center). OCTA volumes were computed from the test scans and structural/angiographic
volume pairs were co-registered and merged. The merged OCTA volume serves as ground
truth (red, right). Every one of the six test scans was acquired using ten repeats per B-scan.
One of these scans is used as test scan (blue). Of the ten repeats, reconstruction was evaluated
using three, five, and all ten repeats per B-scan (left).
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reconstructed volume Xk every Nreg iterations [14,15]. Figure 1 shows the complete reconstruction
algorithm, including the required parameters.

3. Evaluation

This section describes the experiments, the data used, including the generation of the GT data,
and patient data.

3.1. Experiments

Two experiments using the GT and patient data were conducted:

1. Comparison of reconstruction results with the GT for AD and IFV OCTA formulas using
wavelet shrinkage and total variation minimization as regularizers for different numbers of
repeated samples.

2. Qualitative evaluation of two scans of patient’s eyes.

The wavelet shrinkage regularizer is used with a threshold of 5e-4 using Haar wavelets for a
total of 1000 iterations. The total variation regularizer uses a denoising weight of 1e-4 and
ten iterations for the regularizer. The reconstruction was run for 2000 iterations. For the
reconstruction of AD data, a step size of λ = 5e − 6 was chosen and for IFV data λ = 3e − 6.
The number of samples in experiment one refers to the number of repeated OCT B-scans used in
computing the OCTA signal. The reconstruction and experiments were implemented in Python
using NumPy and scikit-learn [19,20].

3.2. Ground truth data

In order to evaluate the performance of our method, we decided to compare the reconstruction
results with GT OCTA data. The GT gold standard for structural OCT is averaged B-scans
[21]. However, patient motion and its associated artifacts pose a significant challenge for the
acquisition of a GT. In order to generate GT OCTA data with minimal motion artifacts, we chose
the motion correction algorithm by Kraus and Ploner et al. [22–25]. The motion correction
algorithm requires at least two OCT volumes which were raster-scanned with orthogonal fast-scan
directions. It is based on the principle of non-rigid registration, i.e. the motion correction
algorithm estimates a 3D displacement field for each scan such that similarity between the
displaced inputs is maximized, while using both OCT and OCTA for registration. After deforming
the volumes to match each other, the motion correction algorithm is able to produce a merged
and interpolated result by performing a weighted average per A-scan. This allows to correct
for gaps and overlaps in the input volumes as long as the missing data is contained in another
volume. The more volumes are used as inputs, the higher the signal-to-noise ratio (SNR) of the
motion-corrected and merged result, which includes both OCT and OCTA channels [24,25]. It
is important to note that the merging step of the motion correction algorithm is only used for
generating the GT. Since the chosen test volume is also co-registered with the GT it is possible
to compute comparative metrics. The merged GT OCTA volume with high SNR allows to
compare the reconstructed results. Although noise is substantively reduced, the GT OCTA
volume is not perfect since it still exhibits some low levels of noise. Because of this it is more of
a silver than a gold standard, but still useful as a low-noise, motion artifact-free GT to compare
reconstruction results against. The overall process of obtaining the data necessary for a GT is
very time consuming. A sufficient number of OCT scans needs to be acquired, which have to
be in focus, suffer from a minimal amount of motion artifacts, have similar alignment, and are
scanned using orthogonal scan patterns. Only five to six scans could be acquired in a single
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sitting due to eye fatigue of the volunteer. Of 32 scans that were acquired over the course of a
week, six were suitable for the generation of a GT.

The data were acquired from a healthy 24 year old male volunteer. The OCT system used is a
ultrahigh speed swept source OCT research prototype developed at the Massachusetts Institute of
Technology and used by the New England Eye Center at Tufts Medical Center in Boston. The
scanned field size is 3 × 3 mm with 400 A-scans by 400 B-scans. The system runs at a scan rate
of 600 kHz and scanned each B-scan ten times with an inter-scan time of ∼0.83 µs. Power on
cornea is ∼4.5 mW. Axial and lateral resolution are ∼8 µm and ∼20 µm respectively. Six scans
were acquired with alternating scan patterns. Three scans were acquired using an X-fast scan
pattern while the other three were acquired using a Y-fast scan pattern. Having both X and Y-fast
scans ensures the necessary scan orthogonality for the motion correction algorithm. During each
scan, every B-scan was repeatedly scanned ten times. This allows to compute OCTA data using
the angiography formulas. Figure 1 illustrates the data used and the relationship between the GT
and test data. The six scans are depicted in the center with the scan used for testing highlighted
blue. All six were co-registered and merged to obtain the OCTA GT visible on the right. Because
the test scan, like the other five scans, was scanned with ten B-scan repeats, we decided to test
reconstruction using three, five and all ten B-scans, which is illustrated on the left. In the case of
three repeats, the first, fifth, and ninth repeat were used. For five repeats, every second repeat
was used.

To compare the reconstructed OCTA data with the GT, en face projections of the respective
volumes were generated. OCTA data are commonly viewed as en face projections, because
it allows clinicians to see the retinal vasculature or the choriocapillaris. In order to obtain
clean OCTA en face projections, the volumes were segmented using segmentation software
developed by Schottenhamml et al. [26]. The space between the outer nerve fiber layer and
the inner plexiform layer was projected using a 98th percentile projection. This corresponds to
the superficial capillary plexus in the retina. In the case of AD, a background thresholding is
performed to avoid excess noise in the en face image. The en face projections of the reconstructed
OCTA volume can then be compared to the en face projection of the GT and peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) is computed. We chose SSIM in addition to
PSNR because it is not based on the absolute error, but is based on the human visual perception
of changes in structure [27].

3.3. Patient data

In order to not only test on the scans of one eye, we decided to apply the reconstruction algorithm
to existing scans of patient eyes. These data were not acquired with the generation of a GT in
mind, which is very time-consuming and labor-intensive, thus the reconstruction results can only
be evaluated qualitatively. But it allows to observe reconstruction results on more OCTA scans
where there is also pathology present.

Patient 1 is male and was 41 years old at the time of imaging and exhibits severe non-
proliferative diabetic retinopathy (NPDR) in connection with diabetic macular edema. Patient
2 is female and was 88 years old at the time of imaging and shows dry age-related macular
degeneration and severe NPDR in both eyes. The system used was a 400 kHz Swept Source OCT
device. Field size is 3 × 3mm with 500 A-scans by 500 B-scans. Every B-scan was repeatedly
scanned five times with an inter-scan of ∼1.5 ms. Power on cornea was ∼1.8 mW [1,28].

4. Results

Figure 2 shows PSNR and SSIM metrics for the reconstruction tests that compare against the
GT. The colors indicate how many B-scan repeats were used during reconstruction. The two top
rows show AD results and the bottom row IFV. The plots in the left column show results using
wavelet shrinkage regularization (WS) and the plots in the right column show total variation
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minimization (TV) results. For AD and IFV, PSNR results are shown first, followed by SSIM
results directly below. Reconstruction using ten scan repeats consistently performs best, although
the largest improvements can be observed when using three repeats. IFV shows better results
using both PSNR and SSIM. Figure 3 shows 98th percentile en face projections based on AD and
IFV. The first row shows GT projections for AD and IFV. Enlarged sections of each en face image
are shown to the right of the respective en face image. Rows are grouped by AD and IFV first,
then by the initial OCTA volume, then WS and TV reconstruction results and, for comparison,
median filtered results of the initial OCTA volumes using a 3D median filter using a 3 × 3 × 3
kernel. Columns are grouped by the number of scan repeats used. Furthermore, Table 1 shows
PSNR and SSIM results in more detail, including the 3D median filter results. Results for SV are
included in Supplement 1.

5. Discussion

Figure 2 shows PSNR and SSIM over reconstruction iterations while Table 1 shows the
highest PSNR and SSIM values during reconstruction. A slight dipping of the curves during
reconstruction might indicate over-regularization, but, as can be seen in Figure 2, a decrease in
PSNR does not necessarily correspond with a decrease in SSIM.

Table 1. Reconstruction results using the GT for comparison. The top rows show the results for
AD and the bottom rows for IFV. Results for three, five, and ten scan repeats are sorted by row.

PSNR and SSIM measures are provided for the initial OCTA volume, wavelet shrinkage and total
variation reconstruction results and the median filtered initial volume. The final reported value

corresponds to the final iteration result of the reconstruction. The best PSNR and SSIM values in
each row are marked in bold.

Repeats Initial OCTA Wavelet Shrinkage Total Variation Median Filter

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

3 16.92 0.36 27.63 0.78 29.43 0.84 27.18 0.73

AD 5 20.96 0.55 28.64 0.81 30.29 0.86 27.25 0.73

10 25.70 0.73 29.30 0.83 30.50 0.86 26.95 0.72

3 23.78 0.54 34.55 0.91 35.56 0.93 36.03 0.93
IFV 5 27.33 0.72 35.81 0.93 36.76 0.95 36.55 0.93

10 31.78 0.88 37.12 0.95 37.76 0.96 36.71 0.92

It is apparent that using more B-scan repeats, or samples, generally leads to better PSNR and
SSIM while the initial OCTA and early reconstruction show larger discrepancies than the final
results. The raw, unreconstructed en face projections for AD have PSNRs of ∼16.92 dB, ∼20.96
dB, and ∼25.70 dB for three, five, and ten repeats respectively. Reconstruction results using WS
regularization show PSNRs of ∼27.63 dB, ∼28.64 dB, and ∼29.30 dB, while TV regularized
PSNRs are ∼29.43 dB, ∼30.29 dB, and ∼30.50 dB. To put it differently, using more repeats
generally leads to better results but with diminishing returns during reconstruction. This is an
important consideration, since more B-scan repeats give more information to compute OCTA
from, while longer scan times make the entire scan more susceptible to motion artifacts. This
is visually supported by the en face images in figure Fig. 3 where there is hardly a discernible
difference between the projections for 5 and 10 repeats, while the difference to 3 repeats is easily
apparent in the form of more noise. Commercial systems use two or three B-scan repeats where
the benefits of reconstruction is highest, but testing reconstruction using more repeats shows
that the algorithm is working correctly. One observation of interest is that SSIM of the median
filtered result slightly decreases from five to ten repeats.

IFV results achieve both higher PSNR in range of ∼34 dB to ∼37.7 dB and SSIM of more than
0.9 when compared to AD with ∼27.6 dB to ∼30.50 dB and ∼0.8 respectively. Direct comparisons

https://doi.org/10.6084/m9.figshare.13120001


Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 63

Fig. 2. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) during recon-
struction. The color indicates whether three, five, or ten repeated B-scans were used for
reconstruction. The rows show PSNR for amplitude decorrelation and interframe variance,
the columns indicate the regularizer.
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Fig. 3. En face projections of the GT and reconstruction results. More detailed areas
are shown in enlargements next to the en face images. Rows are grouped by AD and IF,
and subdivided by initial OCTA, wavelet shrinkage and total variation reconstructions and
median filter for comparison. Columns are grouped by the number of scan repeats used.
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between IFV and AD results are of limited use however. Because of the normalization which
is part of the AD computation, its results tend to be very noisy. Background thresholding can
compensate for this, but can erase detail such as small capillaries. Comparing AD and IFV GT in
Fig. 3 shows, despite background thresholding for AD, that more noise is visible in intercapillary
areas and less capillary details. For this reason, IFV en face images start out at better PSNR and
SSIM to begin with than AD images.

Comparing WS to TV regularization is more meaningful though. The measurements in Table 1
consistently show better results when using TV regularization. In the case of AD, PSNR and
SSIM results range from ∼27.63 dB to ∼30.50 dB and ∼0.78 to ∼0.86. For IFV, these results
are much closer with ∼37.12 dB to ∼37.76 and ∼0.95 to ∼0.96. When looking at the images in
Fig. 3 the qualitative differences between WS and TV regularization can be easily seen. The
median filtered PSNR and SSIM results, however, do not show an advantage when using IFV.
Median filter PSNR is higher than 36 dB for all numbers of repeats. In the case of three repeats,
both PSNR and SSIM indicate that the median filter performs better than TV or WS regularized
reconstruction. When computing AD data though, both WS and TV regularization have better
PSNR and SSIM values than the median filter comparison.

Figure 3 shows en face projections of the GT and reconstruction results. GT projections for
both AD and IFV show that those are not completely noise-free. Co-registering and merging six
volumes does not result in a perfect gold standard GT. When comparing to the reconstruction
results below, it becomes evident that the GT displays significantly less noise and can still serve
as a silver-standard GT. First, we take a look at the AD en face projections in Fig. 3. The
initial AD projections show significant amounts of noise which continually decrease the more
repeats are used despite background thresholding. WS regularization seems to lead to less noisy
intercapillary areas, although blood vessels are more faint, when compared to TV regularization.
WS regularization also leads to isolated bright pixels in blood vessels. TV regularization my
preserver more noise in the intercapillary areas compared to WS, but fine capillaries remain more
visible. This is consistent with the results in Table 1. While, in the case of ten repeats, it can
be argued that WS regularization provides improvements over the initial projection, the same is
less obvious for the TV regularization. Although the median filtered results seem to provide
more contrast between vessels and intercapillary areas at first glance, vessels are blurred and fine
capillaries are harder to discern and less continuous.

Figure 4 shows the en face results for the two patient scans. Again, WS regularization used
in conjunction with AD leads to brightened sections in some blood vessels. TV regularization
makes the best impression, while the median-filtered comparison is exceedingly blurry with the
loss of finer vessels. With IFV data, WS regularization increases contrast but leads to irregular,
jagged borders along the vessels. TV regularization looks best, with enhanced contrast and a
better delineation between vessels and the areas in-between, while the median-filtered comparison
is more blurry.

We do not provide a formal proof for the convergence of our algorithm, but the plots in
Fig. 2 indicate that the algorithm converges after a certain number of iterations depending on
the regularizer and parameters. When used in practice, there are no GT data available during
reconstruction of OCTA volumes. One way of determining whether convergence has been
reached, is to compare the current reconstruction result with the initial OCTA data and stop
reconstruction once an error metric such as mean squared error between the two stopped changing.
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Fig. 4. En face projections of reconstructed patient data. Rows are grouped by AD and
IFV, then by the initial OCTA volume, followed by wavelet shrinkage and total variation
reconstructions. Columns are grouped by patient, enlarged areas are directly to the right of
their projections.
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6. Conclusion and outlook

In this paper, we present a novel MAP estimate based data consistency term for the reconstruction
of OCTA volumes derived from Ploner et al. previous maximum likelihood estimates for
OCTA. This is, to the best of our knowledge, the first application of Bayesian statistics for the
reconstruction of OCTA images.estimation based data consistency term for the reconstruction
of OCTA volumes. It extends the MLE of Ploner at al. with regularization terms, thereby
harnessing the inverse problem formulation’s potential. We present OCTA reconstruction results
for AD and IFV data and compare them to GT OCTA data merged from six co-registered
OCT scans. Generally, TV regularization outperforms WS both quantitatively and qualitatively.
Contrast between vessels and areas in-between seems significantly increased, with only very
minor blurring. While median-filtering also leads to increases in contrast, those en face images
are significantly more blurry. TV reconstruction achieves PSNR of more ∼29.43 dB for AD and
more than ∼35.56 dB for IFV. Except in the case of three scan repeats using IFV, TV regularized
reconstruction outperforms 3D median filtering. Qualitative results show a clear reduction in
noise in the FAZ and intercapillary areas when compared to the state-of-the-art. Although this is
a simple iterative algorithm, it shows significant improvement for OCTA image data and opens
OCTA up to more sophisticated optimization techniques, such as alternating direction method of
multipliers (ADMM). The method presented in this paper is, to the best of our knowledge, the
first application of Bayesian statistics for the reconstruction of OCTA images.

Funding

Deutsche Forschungsgemeinschaft (MA 4898/12-1); National Institutes of Health (5-R01-
EY011289-31); Champalimaud Vision Award; Beckman-Argyros Award in Vision Research;
Macula Vision Research Foundation; Massachusetts Lions Club.

Disclosures

NKW: Optovue (C), Carl Zeiss Meditec (F), Heidelberg (F), Nidek (F). JGF: Optovue (I, P),
Topcon (F)

See Supplement 1 for supporting content.

References
1. W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J.

S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in
Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544
(2015).

2. E. A. Novais, M. Adhi, E. M. Moult, R. N. Louzada, E. D. Cole, L. Husvogt, B. Lee, S. Dang, C. V. Regatieri, A.
J. Witkin, C. R. Baumal, J. Hornegger, V. Jayaraman, J. G. Fujimoto, J. S. Duker, and N. K. Waheed, “Choroidal
Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography
Compared to Spectral-Domain Optical Coherence Tomography Angiography,” Am. J. Ophthalmol. 164, 80–88
(2016).

3. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and
D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express
20(4), 4710 (2012).

4. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. E. Cable,
B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source
optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).

5. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,”
Magn. Reson. Med. 58(6), 1182–1195 (2007).

6. E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained,
total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).

https://doi.org/10.6084/m9.figshare.13120001
https://doi.org/10.1016/j.ophtha.2015.08.029
https://doi.org/10.1016/j.ajo.2016.01.011
https://doi.org/10.1364/OE.20.004710
https://doi.org/10.1364/OL.33.001530
https://doi.org/10.1002/mrm.21391
https://doi.org/10.1088/0031-9155/53/17/021


Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 68

7. H. Wu, A. Maier, R. Fahrig, and J. Hornegger, “Spatial-temporal total variation regularization (STTVR) for 4D-CT
reconstruction,” in Medical Imaging 2012: Physics of Medical Imaging, vol. 8313 N. J. Pelc, R. M. Nishikawa, and
B. R. Whiting, eds. (International Society for Optics and Photonics, 2012).

8. M. Amrehn, A. Maier, F. Dennerlein, and J. Hornegger, “Portability of TV-Regularized Reconstruction Parameters to
Varying Data Sets,” in Bildverarbeitung für die Medizin 2015, H. Handels, T. M. Deserno, H.-P. Meinzer, and T.
Tolxdorff, eds. (Springer Vieweg, 2015), pp. 131–136.

9. D. Stromer, M. Amrehn, Y. Huang, P. Kugler, S. Bauer, G. Lauritsch, and A. Maier, “Comparison of SART and ETV
reconstruction for increased C-arm CT volume coverage by proper detector rotation in liver imaging,” in 2016 IEEE
13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 589–592.

10. Y. Huang, G. Lauritsch, M. Amrehn, O. Taubmann, V. Haase, D. Stromer, X. Huang, and A. Maier, “Image Quality
Analysis of Limited Angle Tomography Using the Shift-Variant Data Loss Model,” in Bildverarbeitung für die
Medizin 2016, T. Tolxdorff, T. M. Deserno, and H. Handels, eds. (Springer Vieweg, Berlin, Heidelberg, Berlin,
Heidelberg, 2016), pp. 277–282.

11. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in
optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338 (2010).

12. S. B. Ploner, C. Riess, J. Schottenhamml, E. M. Moult, N. K. Waheed, J. G. Fujimoto, and A. Maier, “A Joint
Probabilistic Model for Speckle Variance, Amplitude Decorrelation and Interframe Variance (IFV) Optical Coherence
Tomography Angiography,” in Bildverarbeitung für die Medizin 2018, A. Maier, T. M. Deserno, H. Handels, K. H.
Maier-Hein, C. Palm, and T. Tolxdorff, eds. (Springer Berlin Heidelberg, 2018), 211279, pp. 98–102.

13. G. L. Zeng, Medical Image Reconstruction (Springer Berlin Heidelberg, 2010), 1st ed.
14. M. T. Manhart, M. Kowarschik, A. Fieselmann, Y. Deuerling-Zheng, K. Royalty, A. Maier, and J. Hornegger,

“Dynamic Iterative Reconstruction for Interventional 4-D C-Arm CT Perfusion Imaging,” IEEE Trans. Med. Imaging
32(7), 1336–1348 (2013).

15. C. Neukirchen, M. Giordano, and S. Wiesner, “An iterative method for tomographic x-ray perfusion estimation in a
decomposition model-based approach,” Med. Phys. 37(12), 6125–6141 (2010).

16. S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE
Trans. on Image Process. 9(9), 1532–1546 (2000).

17. A. Chambolle, “An Algorithm for Total Variation Minimization and Applications,” J. Math. Imaging Vis. 20(1/2),
89–97 (2004).

18. L. Landweber, “An Iteration Formula for Fredholm Integral Equations of the First Kind,” Am. J. Math. 73(3),
615–624 (1951).

19. S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure for efficient numerical
computation,” Comput. Sci. Eng. 13(2), 22–30 (2011).

20. S. Van Der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu,
“Scikit-image: Image processing in python,” PeerJ 2, e453 (2014).

21. M. a. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Wavelet denoising of
multiframe optical coherence tomography data,” Biomed. Opt. Express 3(3), 572 (2012).

22. M. F. Kraus, B. Potsaid, M. a. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion
correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed.
Opt. Express 3(6), 1182 (2012).

23. M. F. Kraus, J. J. Liu, J. Schottenhamml, C.-L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J.
S. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and
illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591 (2014).

24. S. B. Ploner, M. F. Kraus, L. Husvogt, E. Moult, A. Y. Alibhai, J. Schottenhamml, T. Geimer, C. Rebhun, B. Lee,
C. R. Baumal, N. K. Waheed, J. S. Duker, J. G. Fujimoto, and A. Maier, “3-D OCT Motion Correction Efficiently
Enhanced with OCT Angiography,” in Investigative Ophthalmology & Visual Science, vol. 59 (The Association for
Research in Vision and Ophthalmology, 2018), p. 3922.

25. S. B. Ploner, M. F. Kraus, E. M. Moult, L. Husvogt, J. Schottenhamml, A. Y. Alibhai, N. K. Waheed, J. S. Duker, J.
G. Fujimoto, and A. K. Maier, “Efficient and high accuracy 3-D OCT angiography motion correction in pathology,”
(2020). arXiv:2010.06931.

26. J. Schottenhamml, E. M. Moult, E. A. Novais, M. F. Kraus, B. K. Lee, W. Choi, S. B. Ploner, L. Husvogt, C. D. Lu,
P. Yiu, P. J. Rosenfeld, J. S. Duker, A. K. Maier, N. Waheed, and J. G. Fujimoto, “OCT-OCTA Segmentation,” in
Bildverarbeitung für die Medizin 2018, A. Maier, T. M. Deserno, H. , K. Maier-Hein, C. Palm, and T. Tolxdorff, eds.
(Springer Vieweg, 2018), p. 284.

27. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to
structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

28. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S.
Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina
with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).

https://doi.org/10.1364/OE.18.008338
https://doi.org/10.1109/TMI.2013.2257178
https://doi.org/10.1118/1.3495818
https://doi.org/10.1109/83.862633
https://doi.org/10.1109/83.862633
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.2307/2372313
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.7717/peerj.453
https://doi.org/10.1364/BOE.3.000572
https://doi.org/10.1364/BOE.3.001182
https://doi.org/10.1364/BOE.3.001182
https://doi.org/10.1364/BOE.5.002591
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1364/OL.38.000338

