
RESEARCH ARTICLE Open Access

HSP22 (HSPB8) positively regulates PGF2α-
induced synthesis of interleukin-6 and
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Abstract

Background: Heat shock protein 22 (HSP22) belongs to class I of the small HSP family that displays ubiquitous
expression in osteoblasts. We previously demonstrated that prostaglandin F2α (PGF2α), a potent bone remodeling
factor, induces the synthesis of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) via p44/p42
mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study,
we investigated whether HSP22 is implicated in the PGF2α-induced synthesis of IL-6 and VEGF and the mechanism
of MC3T3-E1 cells.

Methods: MC3T3-E1 cells were transfected with HSP22-siRNA. IL-6 and VEGF release was assessed by ELISA.
Phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was detected by Western blotting.

Results: The PGF2α-induced release of IL-6 in HSP22 knockdown cells was significantly suppressed compared with
that in the control cells. HSP22 knockdown also reduced the VEGF release by PGF2α. Phosphorylation of p44/p42
MAP kinase and p38 MAP kinase was attenuated by HSP22 downregulation.

Conclusions: Our results strongly suggest that HSP22 acts as a positive regulator in the PGF2α-induced synthesis of
IL-6 and VEGF in osteoblasts.
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Introduction
Bone tissue is continuously remodeled to maintain bone
homeostasis through bone remodeling, and the bone
metabolism is tightly coordinated by two types of func-
tional cells, osteoclasts and osteoblasts [1]. The former
cells contribute to bone resorption, whereas the latter

cells are responsible for bone formation. The process of
bone remodeling is initiated with the osteoclastic resorp-
tion of an old bone, and osteoblasts subsequently
migrate into the resorption lacuna, leading to the forma-
tion of a new bone [2]. Various bone remodeling factors
including cytokines and growth factors regulate the bone
metabolism [3]. It is well recognized that interleukin-6
(IL-6), a proinflammatory cytokine, is a potent bone
resorptive agent, which stimulates osteoclastic bone
resorption in bone metabolism [4]. On the other hand,
vascular endothelial growth factor (VEGF) stimulates the
proliferation of vascular endothelial cells as a specific
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mitogen [5]. Evidence is accumulating that the micro-
vasculature provided by capillary endothelial cells is
essential for bone remodeling [6]. Thus, it is currently
recognized that the functions of osteoclasts, osteo-
blasts, and capillary endothelial cells are strictly coor-
dinated by one another, and the three types of cells
cooperatively drive bone metabolism. In our previous
studies [7, 8], we have shown that prostaglandin F2α
(PGF2α), a potent bone remodeling mediator [9],
induces the synthesis of IL-6 and VEGF in osteoblast-
like MC3T3-E1 cells. Regarding the intracellular
signaling of PGF2α, we demonstrated that p44/p42
mitogen-activated protein (MAP) kinase and p38
MAP kinase are involved in the synthesis of IL-6 and
VEGF in these cells [8, 10–12].
Heat shock proteins (HSPs) recognized as molecular

chaperones are induced in the cells in response to envir-
onmental stresses including heat and oxidation [13]. It is
generally established that HSPs act as key regulators of
proteostasis under the stress conditions [13]. The HSP
family is classified into seven groups, namely HSPA
(HSP70), HSPB, HSPC (HSP90), HSPD/E (HSP60/
HSP10), HSPH (HSP110), DNAJ (HSP40), and CCT
(TRiC) [13, 14]. Among the seven groups, HSPBs are
known as small molecular weight HSPs with molecular
mass in the range of 12–43 kDa, and ten small HSPs
have been identified [13]. Accumulating evidence indi-
cates that the small HSP family is classified into class I
(ubiquitous expression) and class II (tissue-restricted ex-
pression) [13, 15]. Thus, it is currently recognized that
ubiquitously expressed small HSPs are involved in vari-
ous cellular processes such as vasoconstriction and can-
cer in addition to protein folding [13].
Heat shock protein 22 (HSP22; HSPB8) that belongs

to class I is expressed abundantly in the muscle, heart,
and brain [16–18]. With regard to HSP22 in diseases, it
has been reported that neuromuscular diseases including
distal hereditary motor neuropathy and Charcot-Marie-
Tooth disease are caused by the dysfunction of HSP22
[19, 20]. Additionally, HSP22 reportedly regulates the
progression of cancers such as glioblastoma, melanoma,
and breast cancer [21, 22]. As for HSP22 in osteoblasts,
we have previously demonstrated that HSP22 exists in
quiescent osteoblast-like MC3T3-E1 cells and plays a
limiting role in the cell migration stimulated by trans-
forming growth factor-β [23]. In our recent study, we
have shown that downregulation of HSP22 reduces
tumor necrosis factor-α-stimulated IL-6 synthesis [24].
However, the exact roles of HSP22 in osteoblasts remain
to be clarified.
In this study, we investigated whether HSP22 is in-

volved in the PGF2α-induced synthesis of IL-6 and
VEGF in osteoblast-like MC3T3-E1 cells. We herein
demonstrate that HSP22 acts as a positive regulator in

the synthesis of IL-6 and VEGF through p44/p42 MAP
kinase and p38 MAP kinase in these cells.

Materials and methods
Materials
PGF2α was obtained from Sigma-Aldrich Co. (St. Louis,
MO, USA). The ELISA kits for mouse IL-6 and mouse
VEGF were purchased from R&D Systems, Inc. (Minne-
apolis, MN, USA). Phospho-specific p44/p42 MAP kin-
ase antibodies, p44/p42 MAP kinase antibodies,
phospho-specific p38 MAP kinase antibodies, and p38
MAP kinase antibodies were obtained from Cell
Signaling Technology, Inc. (Danvers, MA, USA).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
antibodies were purchased from Santa Cruz Biotechnol-
ogy, Inc. (Santa Cruz, CA, USA). An ECL Western
blotting detection system was obtained from GE Health-
care Life Sciences (Buckinghamshire, UK). Negative
control-small interfering RNA (siRNA) (Silencer Nega-
tive Control #1 siRNA (Neg)) and HSP22-siRNA
(s206904 (#1) and s96094 (#2)) were purchased from
Ambion (Austin, TX, USA). Other materials and chemi-
cals were obtained from commercial sources.

Cell culture
Cloned osteoblast-like MC3T3-E1 cells which had been
derived from newborn mouse calvaria [25] were main-
tained as described previously [7]. In brief, the MC3T3-
E1 cells were cultured in α-minimum-essential medium
(α-MEM) containing 10% fetal bovine serum (FBS). The
cells were seeded into 35-mm diameter dishes or 90-mm
diameter dishes in 10% FBS and incubated at 37 °C in a
humidified atmosphere of 5% CO2/95% air for 48 h.

siRNA transfection
In order to knockdown HSP22 in MC3T3-E1 cells, the
cells were transfected with HSP22-siRNA (#1 and #2) or
negative control-siRNA (Neg) utilizing siLentFect Lipid
Reagent (Bio-Rad Laboratories, Inc., Hercules, CA, USA)
according to the manufacturer’s protocol. The cells were
incubated with 50 nM siRNA (Neg, #1 or #2) siLentFect
complexes for 24 h at 37 °C. The medium was then
exchanged to α-MEM containing 0.3% FBS before
experiments.

Assay for IL-6 or VEGF
The siRNA-transfected MC3T3-E1 cells were stimulated
by 10 μM of PGF2α or vehicle in 1 ml of α-MEM con-
taining 0.3% FBS. The conditioned medium was col-
lected after 48 h, and the concentration of IL-6 or VEGF
was measured using the mouse ELISA kit for IL-6 or
VEGF, respectively, according to the manufacturer’s
protocol. The levels of IL-6 or VEGF were adjusted for
the total protein levels of whole-cell lysates.
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Western blotting
The MC3T3-E1 cells transfected with siRNA were
stimulated by 10 μM of PGF2α or vehicle in 1 ml of
α-MEM containing 0.3% FBS for the indicated pe-
riods. The cells were then washed twice with
phosphate-buffered saline, and then lysed, homoge-
nized, and sonicated in a lysis buffer containing 62.5
mM Tris/HCl, pH 6.8, 2% sodium dodecyl sulfate
(SDS), 50 mM dithiothreitol, and 10% glycerol. SDS-
polyacrylamide gel electrophoresis (PAGE) was per-
formed by the method of Laemmli [26] in 10% poly-
acrylamide gels. The protein was fractionated and
transferred onto an Immun-Blot polyvinyl difluoride
sheet (Bio-Rad, Hercules, CA, USA). The sheets were
blocked with 5% fat-free dry milk in Tris-buffered
saline-Tween (TBS-T; 20 mM Tris-HCl, pH 7.6, 137
mM NaCl, 0.1% Tween 20) for 1 h before incubation
with primary antibodies. Western blot analysis was
performed as described previously [27] using
phospho-specific p44/p42 MAP kinase antibodies,
p44/p42 MAP kinase antibodies, phospho-specific p38
MAP kinase antibodies, p38 MAP kinase antibodies,
or GAPDH antibodies as primary antibodies with
peroxidase-labeled antibodies raised in goat against
rabbit IgG used as secondary antibodies. The primary
and secondary antibodies were diluted at optimal con-
centrations with 5% fat-free dry milk in TBS-T. The
peroxidase activity on the sheet was visualized on X-
ray film using an ECL Western blotting detection sys-
tem as described in the manufacturer’s protocol. The
densitometric analysis was performed using a scanner
and image analysis software package (image J version
1.48; NIH, Bethesda, MD, USA). The background-
subtracted signal intensity of each phosphorylation
signal was normalized to the GAPDH signal.

Determination
Concentrations of protein in soluble extracts were esti-
mated with a protein assay kit (Thermo Scientific, Rock-
ford, IL, USA).

Statistical analysis
The data were analyzed by analysis of variance followed
by the Bonferroni method for multiple comparisons be-
tween pairs. The values of p < 0.05 were considered to
be statistically significant. Each data are presented as the
mean ± S.E.M. of triplicate determinations from three
independent cell preparations.

Results
Effect of PGF2α-on the IL-6 release in HSP22-knockdown
MC3T3-E1 cells
In our previous study, we have shown that PGF2α in-
duces the IL-6 synthesis in osteoblast-like MC3T3-E1

cells [7]. In order to investigate whether or not HSP22 is
implicated in the IL-6 synthesis by PGF2α in these cells,
we examined the effect of HSP22-knockdown on the
PGF2α-elicited IL-6 release. We have already found that
HSP22 was truly expressed in quiescent MC3T3-E1
cells, and the protein levels were markedly suppressed
by the transfection of HSP22-siRNA (#1 and #2) [23].
The PGF2α-elicited IL-6 release in the HSP22-siRNA
(#1 and #2)-transfected MC3T3-E1 cells was signifi-
cantly reduced compared with that in the control cells
(Fig. 1).

Effect of PGF2α-on the VEGF release in HSP22-knockdown
MC3T3-E1 cells
We have demonstrated that PGF2α stimulates the syn-
thesis of VEGF in addition to IL-6 in osteoblast-like
MC3T3-E1 cells [8]. To clarify the involvement of
HSP22 in the PGF2α-elicited VEGF synthesis, we

Fig. 1 Effect of HSP22-knockdown on the PGF2α-induced release of
IL-6 in MC3T3-E1 cells. The cells were transfected with 50 nM of
HSP22-siRNA (#1 or #2) or negative control-siRNA (Neg) for 24 h and
then stimulated by 10 μM of PGF2α or vehicle for another 48 h. IL-6
concentrations in the conditioned medium were determined. The
values were presented as the levels adjusted for the total protein
levels of whole-cell lysates. The data were analyzed by analysis of
variance followed by Bonferroni method for multiple comparisons
between pairs. The values of p < 0.05 were considered to be
statistically significant. Each value represents the mean ± S.E.M. of
triplicate determinations from three independent cell preparations.
*p < 0.05 compared to the value of negative control-siRNA-
transfected cells without PGF2α-stimulation. **p < 0.05 compared to
the value of the negative control-siRNA-transfected cells
with PGF2α-stimulation
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examined the effect of PGF2α on the VEGF release in
the HSP22-knockdown MC3T3-E1 cells. The levels of
PGF2α-elicited VEGF release from the cells transfected
with HSP22-siRNA (#1 and #2) were significantly lower
than that from the control cells (Fig. 2).

PGF2α-stimulated phosphorylation of p44/p42 MAP
kinase or p38 MAP kinase in HSP22-knockdown MC3T3-
E1 cells
We have previously shown that p44/p42 MAP kinase
positively regulate the PGF2α-elicited synthesis of IL-
6 and VEGF in osteoblast-like MC3T3-E1 cells [8,
10]. Therefore, to investigate whether or not HSP22
affects the PGF2α-induced activation of p44/p42 MAP
kinase in these cells, we examined the effect of
HSP22 knockdown on the phosphorylation of p44/
p42 MAP kinase by PGF2α. The PGF2α-induced
levels of phosphorylated p44/p42 MAP kinase in the

HSP22-siRNA (#1 and #2)-transfected cells were
markedly decreased compared with those in the con-
trol cells (Fig. 3a and b).
With regard to the intracellular signaling of PGF2α

in osteoblasts, we have reported that p38 MAP kinase
in addition to p44/p42 MAP kinase plays as a positive
regulator in the synthesis of IL-6 and VEGF in
MC3T3-E1 cells [11, 12]. We further examined the
effect of PGF2α on the phosphorylation of p38 MAP
kinase in the HSP22-knockdown cells. The HSP22-
siRNA (#1 and #2) transfection remarkably reduced
the PGF2α-stimulated levels of phosphorylated p38
MAP kinase compared with the control cells (Fig. 4a
and b).

Discussion
In the present study, we showed that the PGF2α-
stimulated release of IL-6 and VEGF was reduced by
HSP22-knockdown in osteoblast-like MC3T3-E1 cells.
We have previously demonstrated that PGF2α induces
the expression of IL-6 mRNA [28] and VEGF mRNA
[8] in these cells. In addition, we have confirmed that
the transfection of HSP22-siRNA downregulates the
expression levels of HSP22 protein in MC3T3-E1 cells
[23]. Based on these results, it seems likely that
HSP22 positively regulates the PGF2α-induced synthe-
sis of IL-6 and VEGF in MC3T3-E1 cells. As for the
intracellular signaling of PGF2α in osteoblasts, we
have reported that PGF2α stimulates the synthesis of
IL-6 and VEGF through the activation of p44/p42
MAP kinase in osteoblast-like MC3T3-E1 cells [8,
10]. We showed herein that the level of phosphory-
lated p44/p42 MAP kinase induced by PGF2α was
markedly attenuated in the HSP22-knockdown
MC3T3-E1 cells. Thus, it seems likely that HSP22 is
involved in the activation of PGF2α-induced p44/p42
MAP kinase in MC3T3-E1 cells. Additionally, we have
reported that p38 MAP kinase acts as a positive regu-
lator not only in the IL-6 synthesis by PGF2α but
also in the VEGF synthesis in MC3T3-E1 cells [11,
12]. The HSP22 knockdown remarkably downregu-
lated the PGF2α-stimulated level of phosphorylated
p38 MAP kinase. Thus, these results suggest that
HSP22 positively regulates the PGF2α-induced activa-
tion of p44/4p2 MAP kinase and p38 MAP kinase.
Taking our findings into account as a whole, it is
most likely that HSP22 functions at a point upstream
of p44/p42 MAP kinase and p38 MAP kinase in
osteoblast-like MC3T3-E1 cells, resulting in the regu-
lation of PGF2α-stimulated synthesis of IL-6 and
VEGF. The possible mechanism of HSP22 in PGF2α-
induced synthesis of IL-6 and VEGF in osteoblasts
shown here is summarized as Fig. 5.

Fig. 2 Effect of HSP22-knockdown on the PGF2α-induced release of
VEGF in MC3T3-E1 cells. The cells were transfected with 50 nM of
HSP22-siRNA (#1 or #2) or negative control-siRNA (Neg) for 24 h and
then stimulated by 10 μM of PGF2α or vehicle for another 48 h.
VEGF concentrations in the conditioned medium were determined.
The values were presented as the levels adjusted for the total
protein levels of whole-cell lysates. The data were analyzed by
analysis of variance followed by Bonferroni method for multiple
comparisons between pairs. The values of p < 0.05 were considered
to be statistically significant. Each value represents the mean ± S.E.M.
of triplicate determinations from three independent cell
preparations. *p < 0.05 compared to the value of negative control-
siRNA-transfected cells without PGF2α-stimulation. **p < 0.05
compared to the value of the negative control-siRNA-transfected
cells with PGF2α-stimulation
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In bone metabolism, IL-6 has been considered as a
potent bone resorptive agent, which stimulates osteo-
clastic bone resorption [4]. On the other hand, accu-
mulating current evidence indicates that IL-6 acts as
an osteotropic factor under the condition of increased
bone turnover in addition to the effect on bone re-
sorption [29]. It is generally recognized that proin-
flammatory cytokines including IL-6 play a pivotal
role in the pathogenesis of bone metabolic diseases
including osteoporosis [30]. In the patients with
rheumatoid arthritis, IL-6 causes chronic inflamma-
tion and bone loss [4]. It has been reported that
HSP22 is abundantly expressed in synovial tissue in
rheumatoid arthritis [31]. We have found that HSP22
exists in the unstimulated osteoblast-like MC3T3-E1

cells [23]. In the present study, we showed that
HSP22 plays as a positive regulator in the PGF2α-
induced synthesis of IL-6. Furthermore, we recently
reported that tumor necrosis factor-α-stimulated syn-
thesis of IL-6 is suppressed by HSP22 knockdown in
MC3T3-E1 cells [24]. Taking these findings into ac-
count, it is most likely that HSP22 affects the IL-6
production in osteoblast and the development of
rheumatoid arthritis. Thus, HSP22 inactivation in os-
teoblasts could suppress the loss of bone mass
through the reduction of IL-6 synthesis. On the other
hand, VEGF is a potent angiogenic factor which in-
duces proliferation of endothelial cells [5]. It is cur-
rently recognized that the microvasculature provided
by capillary endothelial cells is indispensable for bone

Fig. 3 Effect of HSP22-siRNA on the PGF2α-stimulated phosphorylation of p44/p42 MAP kinase in MC3T3-E1 cells. The cells were transfected with
50 nM of HSP22-siRNA (#1) (a), HSP22-siRNA (#2) (b), or negative control-siRNA (Neg) for 24 h and then stimulated by 10 μM of PGF2α or vehicle
for 20 min. The cell lysates were analyzed by Western blot analysis with antibodies against phosphor-specific p44/p42 MAP kinase, p44/p42 MAP
kinase, or GAPDH. The histogram shows the quantification data of the phosphorylated levels after normalization with GAPDH levels determined
by laser densitometry analysis. The level was plotted as the fold increase in comparison with that of the control cells without PGF2α-stimulation
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remodeling [32]. In the present study, we demon-
strated that HSP22 could positively regulate the
PGF2α-stimulated synthesis of VEGF in osteoblasts.
Based on these findings, it seems that HSP22 activity
in osteoblasts might modulate the microvasculature
through VEGF, resulting in the regulation of bone
metabolism. Further experiments in vivo using animal
are required to confirm the exact roles of HSP22 in
bone metabolism. It has been reported that HSP22
knockout mouse was generated and used for the
study of heart failure, showing that HSP22 deletion in
HSP22 knockout mouse does not affect cardiac struc-
ture and function under normal conditions but pre-
cipitates heart failure under pressure overload [33].
However, to the best of our knowledge, there are no

reports showing the exact roles of HSP22 in bone
metabolism using the knockout mouse. Therefore,
further studies to elucidate the role of HSP22 on the
synthesis of IL-6 and VEGF which can lead to bone
resorption or bone formation in animal experiments
are necessary. Taken together, our results strongly
suggest that HSP22 acts as a positive regulator in the
PGF2α-induced synthesis of IL-6 and VEGF through
p44/p42 MAP kinase and p38 MAP kinase in
osteoblasts.

Conclusion
In conclusion, we are the first to demonstrate that
HSP22 (HSPB8) positively regulates PGF2α-induced
synthesis of IL-6 and VEGF through p44/p42 MAP

Fig. 4 Effect of HSP22-siRNA on the PGF2α-stimulated phosphorylation of p38 MAP kinase in MC3T3-E1 cells. The cells were transfected with 50
nM of HSP22-siRNA (#1) (a), HSP22-siRNA (#2) (b), or negative control-siRNA (Neg) for 24 h and then stimulated by 10 μM of PGF2α for 2 min. The
cell lysates were analyzed by Western blot analysis with antibodies against phosphor-specific p38 MAP kinase, p38 MAP kinase, or GAPDH. The
histogram shows the quantification data of the phosphorylated levels after normalization with GAPDH levels determined by laser densitometry
analysis. The level was plotted as the value of lane 1 to be 1
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kinase and p38 MAP kinase pathways in osteoblasts.
Our study showing that HSP22 could function as a
stimulator of the PGF2α-stimulated IL-6 and VEGF
synthesis in osteoblasts probably provides a novel
insight with regard to HSP22 as an essential regulator
of bone remodeling.
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