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Abstract

Purpose: We propose a novel domain specific loss, which is a differentiable loss function based 

on the dose volume histogram, and combine it with an adversarial loss for the training of deep 

neural networks. In this study, we trained a neural network for generating Pareto optimal dose 

distributions, and evaluate the effects of the domain specific loss on the model performance.

Methods: In this study, 3 loss functions—mean squared error (MSE) loss, dose volume 

histogram (DVH) loss, and adversarial (ADV) loss—were used to train and compare 4 instances of 

the neural network model: 1) MSE, 2) MSE+ADV, 3) MSE+DVH, and 4) MSE+DVH+ADV. The 

data for 70 prostate patients, including the planning target volume (PTV), and the organs-at-risk 

(OAR) were acquired as 96 × 96 × 24 dimension arrays at 5 mm3 voxel size. The dose influence 

arrays were calculated for 70 prostate patients, using a 7 equidistant coplanar beam setup. Using a 

scalarized multicriteria optimization for intensity modulated radiation therapy, 1200 Pareto surface 

plans per patient were generated by pseudo-randomizing the PTV and OAR tradeoff weights. With 

70 patients, the total number of plans generated was 84,000 plans. We divided the data into 54 

training, 6 validation, and 10 testing patients. Each model was trained for a total of 100,000 

iterations, with a batch size of 2. All models used the Adam optimizer, with a learning rate of 1 × 

10−3.

Results: Training for 100,000 iterations took 1.5 days (MSE), 3.5 days (MSE+ADV), 2.3 days 

(MSE+DVH), 3.8 days (MSE+DVH+ADV). After training, the prediction time of each model is 

0.052 seconds. Quantitatively, the MSE+DVH+ADV model had the lowest prediction error of 

0.038 (conformation), 0.026 (homogeneity), 0.298 (R50), 1.65% (D95), 2.14% (D98), 2.43% 

(D99). The MSE model had the worst prediction error of 0.134 (conformation), 0.041 

(homogeneity), 0.520 (R50), 3.91% (D95), 4.33% (D98), 4.60% (D99). For both the mean dose 

PTV error and the max dose PTV, Body, Bladder and rectum error, the MSE+DVH+ADV 

outperformed all other models. Regardless of model, all predictions have an average mean and 

max dose error less than 2.8% and 4.2%, respectively.
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Conclusion: The MSE+DVH+ADV model performed the best in these categories, illustrating 

the importance of both human and learned domain knowledge. Expert human domain specific 

knowledge can be the largest driver in the performance improvement, and adversarial learning can 

be used to further capture nuanced attributes in the data. The real-time prediction capabilities 

allow for a physician to quickly navigate the tradeoff space for a patient, and produce a dose 

distribution as a tangible endpoint for the dosimetrist to use for planning. This is expected to 

considerably reduce the treatment planning time, allowing for clinicians to focus their efforts on 

the difficult and demanding cases.

I. Introduction

External beam radiation therapy is one of the major treatments available to cancer patients, 

with major modalities available including intensity modulated radiation therapy (IMRT)1–7 

and volume modulated arc therapy (VMAT)8–15. IMRT and VMAT have revolutionized the 

treatment planning over the past decades, drastically improving the treatment plan quality 

and patient outcome. However, many tedious and time consuming aspects still exist within 

the clinical treatment planning workflow. In particular, there are two aspects: 1) The 

dosimetrist must tediously and iteratively tune the treatment planning hyperparameters of 

the fluence map optimization in order to arrive at a planner-acceptable dose, and 2) many 

feedback loops between the physician and dosimetrist occur for the physician to provide his 

comments and judgement on the plan quality, until a physician-acceptable dose is finally 

produced. For a patient, this process can continually repeat for many hours to many days, 

depending on the complexity of the plan.

Much work over the years has been focused on reducing the treatment complexity by 

simplifying certain aspects in the planning workflow, such as feasibility seeking16, 

multicriteria optimization for tradeoff navigation on the Pareto surface17–19, and other 

algorithms for performance improvements20–26. While effective, these methods still require 

a large amount of intelligent input from the dosimetrist and physician, such as in weight 

tuning and deciding appropriate dose-volume constraints and tradeoffs.

To address this, the field developed machine learning models to predict relevant dosimetric 

endpoints, which can be categorized into 1 of 3 categories: 1) predicting single dose 

constraint points directly, 2) predicting dose volume histograms (DVH), and 3) predicting 

the 3D dose distribution of the plan. With a 3D dose distribution, one can fully reconstruct 

the DVH, and with the DVH, the dose constraints can then be calculated. Many studies 

focused on either predicting dose constraints or the dose volume histogram, eventually 

forming the backbone of knowledge-based planning (KBP)27–42. KBP used machine 

learning techniques and models to predict clinically acceptable dosimetric criteria, utilizing 

a large pool of historical patient plans and information to draw its knowledge from. Before 

the era of deep neural networks, KBP’s efficacy was heavily reliant on not only the patient 

data size and diversity, but also on the careful selection of features extracted from the data to 

be used in the model32–39,42,43. This limited the model to predict small dimensional data, 

such as the DVH or specific dosimetrist criteria.
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With the advancements in deep learning, particularly in computer vision44–46 and 

convolutional neural networks47, many studies have investigated clinical dose distribution 

prediction using deep learning on several sites such as for prostate IMRT48,49, prostate 

VMAT32, lung IMRT50, head-and-neck IMRT51–54, head-and-neck VMAT55. In addition to 

clinical dose prediction, deep learning models are capable of accurately generating Pareto 

optimal dose distributions, navigating the various tradeoffs between planning target volume 

(PTV) dose coverage and organs-at-risk (OAR) dose sparing56. Most of these methods 

utilize a simple loss function for training the neural network—the mean squared error (MSE) 

loss. MSE loss is a generalized, domain-agnostic loss function that can be applied to many 

problems in many domains. It’s large flexibility also means that it is incapable of driving its 

performance in a domain-specific manner.

Mahmood and Babier et al.52–54 investigated the use of adversarial learning for dose 

prediction. Since the development of generative adversarial networks (GAN) by 

Goodfellow57, adversarial loss has been popularized in the deep learning community for 

many applications. While used heavily for generative models, such as GANs, the adversarial 

loss can be applied to almost any neural network training. The adversarial loss’s emerging 

success in deep learning application is largely due to the discriminator capability to calculate 

its own feature maps during the training process. In essence, the discriminator is learning its 

own domain knowledge of the problem. However, an adversarial framework is not without 

its issues. The user has little control over what kinds of features the discriminator may be 

learning during the training process. It is possible for the discriminator to learn the correct 

answer for the wrong reason. In addition, careful balancing of the learning between the two 

networks is essential for preventing catastrophic failure. These may affect the overall 

performance of the prediction framework.

In 2018, Muralidhar et al.58 proposed a domain adapted loss into their neural network 

training, in order to address deep learning in cases of limited and poor-quality data, which is 

a problem commonly found within the medical field. They found that, by including domain-

explicit constraints, the domain adapted network model had drastically improved 

performance over its domain-agnostic counterpart, especially in the limited, poor-quality 

data situation. We realize the importance of including domain specific losses into the 

radiation therapy problem of dose prediction. We propose the addition of a differentiable 

loss function based on the dose volume histogram (DVH), one of the most important and 

commonly used metrics in radiation oncology, into the training of deep neural networks for 

volumetric dose distribution prediction. In this study, we will train a neural network for 

generating Pareto optimal dose distributions, and evaluate the effects of MSE loss, DVH 

loss, and adversarial loss on the network’s performance. Pareto optimal plans are the 

solutions to a multicriteria problem with various tradeoffs. In particular, the tradeoff lies 

with the dose coverage of the tumor and the dose sparing of the various critical structures. 

The benefit of such a model is two-fold. First, the physician can interact with the model to 

immediately view a dose distribution, and then adjust some parameters to push the dose 

towards their desired tradeoff in real time. This also allows for the physician to quickly 

comprehend the kinds of the tradeoffs that are feasible for the patient. Second, the treatment 

planner, upon receiving the physician’s desired dose distribution, can quickly generate a 

Nguyen et al. Page 3

Med Phys. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fully deliverable plan that matches this dose distribution, saving time in tuning the 

optimization hyperparameters and discussing with the physician.

Because generating Pareto optimal plans for the patient requires for the network to learn 

how to map many dose distributions with tradeoffs from a single anatomy, the neural 

network must learn to differentiate the potentially small nuances between the different doses 

that may have substantial clinical consequences. While these small nuances may not be well 

reflected in a metric such as voxel-wise mean squared error, our own domain metrics can 

amplify the clinically relevant differences. The usage of an adversarial loss can further aid 

the neural network in learning important differences that cannot be easily formulated into a 

loss function. We believe that training a network to generate Pareto optimal dose distribution 

is well suited for testing the effects of MSE loss, DVH loss, and adversarial loss.

II. Methods

II.1. Patient and Pareto Optimal Plan Data

The data for 70 prostate patients, including the planning target volume (PTV), and the 

organs-at-risk (OAR)—body, bladder, rectum, left femoral head, and right femoral head—

were acquired as 96 × 96 × 24 dimension arrays at 5 mm3 voxel size. Ring and skin 

structures were added as tuning structures. The dose influence arrays were calculated for the 

70 patients, using a 7 equidistant coplanar beam plan IMRT setup. The beamlet size was 2.5 

mm2 at 100 cm isocenter. Using this dose influence data, we generated IMRT plans that 

sampled the Pareto surface, representing various tradeoffs between the PTV dose coverage 

and OAR dose sparing. The multicriteria objective can be written as

argmin
x      fPTV x , fOAR1 x , fOAR2 x , …, fOARnOAR x

subject to                         x ≥ 0, (1)

where x is the fluence map intensities to be optimized. The individual objectives, fs(x) ∀s ∈ 
{PTV, OARu ∀u ∈ {1,2,…,nOAR}}, are for the PTV and each of the OARs used in the 

optimization problem, where nOAR represents the total number of OARs. The index s 
represents a structure used in the optimization, which is the PTV or one of the OARs. For 

simplicity, we define S as the set of all structures used in the optimization. In this case, S = 

{PTV, OARu ∀u ∈ {1,2,…,nOAR}} and s ∈ S. In radiation therapy, the objective function is 

formulated with the intention to deliver the prescribed dose to the PTV, while minimizing 

the dose to each OAR. Because to the physical aspects of radiation in external beam 

radiation therapy, it is impossible to deliver to the PTV the prescription dose without 

irradiating normal tissue. In addition, it has been shown that the integral dose to the body is 

similar regardless of the plan59–62, so, in essence, one can only choose how to best distribute 

the radiation in the normal tissue. For example, by reducing the dose to one OAR, either the 

PTV coverage will worsen or more dose will be delivered to another OAR. Therefore, we 

arrive at a multicriteria objective, where there does not exist a single optimal x* that would 

minimize all fs(x) ∀s ∈ PTV, OAR. In this study, we choose to use the l2-norm to represent 
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the objective, fs x = 1
2 Asx − ps 2

2. In this formulation, As is the dose influence matrix for a 

given structure, and ps is the desired dose for a given structure, assigned as the prescription 

dose if s is the PTV, and 0 otherwise. Our beamlet-based dose influence matrix was 

calculated using the Eclipse AAA dose calculation engine (Varian Medical Systems, Inc.). 

This allows for us to linearly scalarize the multicriteria optimization problem63, by 

reformulating it into a single-objective, convex optimization problem

argmin
x              12 ∑

s ∈ S
ws2 Asx − ps 2

2

subject to                         x ≥ 0. (2)

Scalarizing the problem required the addition of new hyperparameters, ws, which are the 

tradeoff weights for each objective function, fs(x) ∀s ∈ S. By varying ws to different values, 

different Pareto optimal solutions can generated by solving the optimization problem. Using 

an in-house GPU-based proximal-class first-order primal-dual algorithm, Chambolle-

Pock64, we generated many pseudo-random plans, by assigning pseudo-random weights to 

the organs-at-risk. The weight assignment fell into 1 of 6 categories as shown in Table 1.

For each patient, 100 plans of the single organ spare category (bladder, rectum, left femoral 

head, right femoral head, shell, skin) were generated for each critical structure, yielding 600 

organ sparing plans per patient. To further sample the tradeoff space, another 100 plans of 

the high, medium, low, and extra low weights category were generated, as well as 200 plans 

of the controlled weights category. In the high, medium, low, extra low, and controlled 

weights category, the PTV had a 0.05 probability of being assigned rand(0,1) instead of 

1.The bounds for the controlled weights were selected through trial-and-error such that the 

final plan generated was likely to fall within clinically relevant bounds, although it is not 

necessarily acceptable by a physician. In total 1200 plans were generated per patient. With 

70 patients, the total number of plans generated was 84,000 plans.

Regarding time for data generation, for each patient, on average it takes 32 minutes to use 

the Eclipse AAA engine to compute beamlet-based dose influence matrices for a 5 beam 

IMRT plan. Using our GPU-accelerated optimization algorithm, it takes roughly 2 seconds 

to generate 1 Pareto optimal plan. These exclude the time it takes to identify and gather the 

original patient data, as well as preprocessing steps required for converting the data into 

python-friendly formats. While the optimization of the Pareto optimal plans is fast, the 

bottleneck is the dose influence matrix calculation for each patient. This is an additional 

motivation for using neural networks, which do not require dose influence matrices for 

predicting Pareto optimal dose distributions. This has been shown to yield substantial time 

savings in generating Pareto optimal plans56.

II.2. Loss Functions

In this study, 3 loss functions—mean squared error (MSE) loss, dose volume histogram 

(DVH) loss, and adversarial (ADV) loss—were used to train and compare 4 instances of the 
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neural network model. The first model used only the voxel-wise MSE loss. The second 

model’s loss function used the MSE loss in conjunction with the ADV loss. The third model 

used the MSE loss in conjunction with the DVH loss. The fourth and last model’s loss 

function combined MSE, DVH, and ADV losses all together. Respectively, the study will 

denote each variation as MSE, MSE+ADV, MSE+DVH, and MSE+DVH+ADV. The 

following section will describe the ADV and DVH losses in detail.

II.1.1. Adversarial Loss—Our adversarial-style training utilizes a framework similar to 

that of generative adversarial networks (GAN)57, with respect to having another model 

acting as a discriminator to guide the main network to produce a dose distribution close to 

the real data. The major benefit to this approach is that the discriminator is calculating its 

own features and metrics to distinguish the ground truth data and predicted data. Effectively, 

this is allowing the discriminator to learn its own domain knowledge, and then provide 

feedback to update the main model. For this study, we utilized the Least Squares GAN 

(LSGAN)65 formulation:

argmin
θND

   LADV D = 1
2 ND ytrue − b 2

2 + 1
2 ND NG x − a 2

2
(3)

argmin
θNG

                      LADV G =  12 ND NG x − c 2
2

(4)

where θND and θNG are the trainable weights parameterizing the discriminator, ND, and 

generator, NG, respectively. LADV D and LADV G are the loss functions to be minimized with 

respect to θND and θNG. The variable x represents the input into the generator, NG, which, 

because of LADV G, tries to create data that has a similar distribution to that of ytrue, our 

target data. The discriminator tries to distinguish ytrue from the data created from the 

generator. As per suggestion by the LSGAN publication65, to minimize the Pearson X2 

divergence, we set a = −1, b = 1, and c = 0.

II.1.2. Dose Volume Histogram Loss—The DVH is one of the most commonly used 

metrics in radiation oncology for evaluating the quality of a plan, so it is natural to assume 

that including this metric as part of the loss would be beneficial. However, the calculation of 

the DVH involves non-differentiable operations, which means any loss based on it cannot 

provide a gradient to update the neural network. We propose a differential approximation of 

the DVH, which we define as DV H. Given a binary segmentation mask, Ms, for the sth 

structure, and a volumetric dose distribution, D, the volume at or above a given dose 

threshold value, dt, can be approximated as

vs, dt D, Ms =
∑i, j, k Sigmoid m

βt
D i, j, k − dt Ms i, j, k

∑i, j, k Ms i, j, k
(5)
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where Sigmoid x = 1
1 + e−x  is the sigmoid function, m controls the steepness of the curve, βt 

is the bin width of the histogram, and i,j, and k are the voxel indices for the 3D arrays. The t 
is an index for the dose threshold values and bin widths. The total number of thresholds is 

defined as nt, which is also equivalent to the number of bins in DV H. We also constrain the 

dose to be monotonically increasing with increasing index, d1 ≤ d2 ≤ … ≤ dnt. Based on this, 

the DV Hs for any structure, s, can then be defined as:

DV Hs D, Ms = vs, d1,  vs, d2, ⋯, vs, dnt (6)

The bin centers and widths are then defined as

centerbin = d1 + d2
2 , d2 + d3

2 , ⋯,
dnt + dnt + 1

2 (7)

widtℎbin = β1,  β2, ⋯,  βnt = d2 − d1,  d3 − d2, ⋯,  dnt + 1 − dnt (8)

To illustrate Equation 3, we calculated the DVH and the approximated DVH, of varying 

steepness values of m = {1,2,4,8}, of a PTV and OAR or an example prostate patient. As 

demonstrated by Figure 1, when the steepness of the curve m → ∞, then DV H DV H.

Because DV H is computed using sigmoid, the gradient, 

∂DV H D, M
∂D =

vs, d0
∂D ,  

vs, d1
∂D , ⋯,

vs, dn
∂D , can be computed, allowing for a loss function 

utilizing DV H to be used to update the neural network weights. We can then define a mean 

squared loss of the DVH as

LDV H Dtrue, Dpred, M = 1
ns

1
nt

∑s DV Hs Dtrue, Ms − DV Hs Dpred, Ms 2
2

(9)

where Dtrue and Dpred are the ground truth and predicted doses, respectively. While a 

gradient of LDVH exists, it is possible that the gradient space is ill-behaved and would be not 

suitable for use. We studied the properties of this approximation using a simple toy example. 

Letting D = (1,2), The exact DVH and approximate DVH with varying values of m = 

{1,2,4,8} can be calculated, shown in Figure 2.

It can be observed that in this toy example in Figure 2 the approximation is smoother and 

has larger error with smaller m, which agrees with Figure 1. To investigate the gradient 

properties of the loss using the approximate DVH, we calculated 

DV H 1, 2 , M − DV H i, j , M 2
2 ∀i, j ∈ 0, 3  for M = [1,1].

Figure 3 shows the squared error value of the difference between DVH for the data (1,2) and 

the DV H for the data (i,j) ∀i,j ∈ (0,3). There are multiple local minima. For our case it is 

when (i,j) = (1,2) or (2,1), since either will produce the same DVH. For higher m, the local 
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minimas become more defined, with steeper gradients surrounding them, an undesirable 

quality for optimization and learning problems. While a lower steepness, m, may not 

approximate the DVH as well, the loss function involving the DV H maintains the same local 

minima, and provides a smoother, and more well-behaved gradient than its sharper 

counterparts. For the remainder of this study, we chose to use DV H with m = 1.

II.3. Model Architecture

In this study the dose prediction model that was utilized was a U-net style architecture66, 

and the discriminator model was a classification style architecture67,68.

Specifically, the models were adjusted to match the data shape. The architectures shown in 

Figure 4 depict the models used in the study. The U-net takes as input a 3 channel tensor that 

consists of, 1) the PTV mask with the value wPTV assigned as its non-zero value, 2) the 

OAR masks that include all the OARs respectively assigned their wOARs, and 3) the body 

mask as a binary. The U-net then performs multiple calculations, with maxpooling 

operations to reduce the resolution for more global feature calculation, and then upsampling 

operations to eventually restore the image resolution back to the original. Concatenation 

operations are used to merge the local features calculated in the first half of the U-net with 

the global features calculated at the bottom and later half of the U-net.

The discriminator architecture is of an image classification style network. The goal of the 

discriminator is to learn how to distinguish the optimized dose distributions versus the U-net 

predicted dose distribution. Similar to conditional generative adversarial network 

framework69, the discriminator will additionally take the same input as the U-net. In total, 

the input data has 4 channels—3 channels of the U-net’s input and 1 channel of either the 

optimized or predicted dose distribution. As shown in Figure 4, the discriminator goes 

through a process of convolutions and strided convolutions to calculate new feature maps 

and to reduce the image resolution, respectively. It is important to note that the strided 

convolution is used to reduce one or more of the image dimensions by half, but differ in 

which dimensions are being reduced in order to eventually reduce the image to 4 × 4 ×4 

pixels. For example, the first strided convolution is applied to the first 2 image dimensions, 

reducing the image from 92 × 92 × 20 to 46 × 46 ×20, but the last strided convolution is 

reducing the 3rd image dimension. The specific details can be seen in the image sizes 

specified in Figure 4.

In addition, Group Normalization70 was used in place of Batch Normalization71, which has 

been shown to allow for the models to effectively train on small batch sizes. All activations 

in the hidden layer are rectified linear units (ReLU) activations. Final activations for both the 

U-net and discriminator are linear activations.

II.4. Training and Evaluation

We first notate the mean squared error loss, dose volume histogram loss, and U-net’s 

adversarial loss as LMSE(yt,yp), LDVH(yt,yp,M), and LADV G yt, yp, x , where x is the input 

into the U-net model, yt is the ground truth optimized dose distribution, yp is the predicted 
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dose distribution, and M contains the binary segmentation masks. The total objective for 

training the U-net is then defined as

LTotal =  LMSE yt, yp + λDV HLDV H yt, yp, M + λADV LADV G yp, x , (10)

and the objective for training the discriminator is simply LADV D y, x , where y can either be 

yt or yp for a given training sample. For each study—MSE, MSE+ADV, MSE+DVH, and 

MSE+DVH+ADV—the weightings, λDVH and λADV, used are shown in Table 2. These 

were chosen by evaluating the order of magnitude of the values that each loss function 

exhibits for a converged model. From previous dose prediction studies and results48,55, we 

can estimate that the LMSE~10−4 and LDVH~10−3 for a converged model. Since we are using 

least squares GAN framework, we estimate the loss LADV G ranges from 10−1 to 100. Our 

choice of λDVH and λADV, shown in Table 2, is to have each component of the loss to be 

within a similar order of magnitude for when the model is converged.

We divided the 70 prostate patients into 54 training, 6 validation, and 10 testing patients, 

yielding 64,800 training, 7,200 validation, and 12,000 testing plans. For the training that 

involved adversarial loss, the U-net and discriminator would alternate every 100 iterations, 

to allow for some stability in the training and loss. The discriminator was trained to take as 

input the same inputs as the u-net as well as a dose distribution, either from the real training 

data or from the U-net’s prediction. With a 0.5 probability, the discriminator would receive 

either real training data or data predicted from the U-net. Each U-net model was trained for a 

total of 100,000 iterations, using a batch size of 2. All models used the Adam optimizer, 

with a learning rate of 1 × 10−3. All training was performed on an NVIDIA 1080 Ti GPU 

with 11 GB RAM. After training, the model with the lowest total validation loss was used to 

assess the test data.

All dose statistics will also be reported relative to the relative prescription dose (i.e. the 

errors are reported as a percent of the prescription dose). As clinical evaluation criteria PTV 

coverage (D98, D99), PTV max dose, homogeneity D2 − D98
D50 , van’t Riet conformation 

number72 
V PTV   ∩  V 100%Iso

2

V PTV   ×  V 100%Iso
, the dose spillage R50 

V 50%Iso
V PTV

, and the structure max and 

mean doses (Dmax and Dmean) were evaluated. Dmax is defined as the dose to 2% of the 

structure volume, as recommended by the ICRU report no 8373.

III. Results

For each model, training for 100,000 iterations took 1.5 days (MSE), 3.5 days (MSE+ADV), 

2.3 days (MSE+DVH), 3.8 days (MSE+DVH+ADV). After training, the prediction time of 

each U-net is the same at 0.052 seconds, since all 4 U-net models in the study are identical 

in architecture.

Figure 5 shows the validation losses for each model. The top row shows the total validation 

loss, while the bottom row shows just the mean squared error loss. Overall the loss curve had 

flattened by the end of the 100,000 iterations, indicating that each model converged. The 
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final instances of the models chosen for evaluation were the models that performed the best 

on their respective total validation loss. Each model has achieved similar MSE losses, with 

our chosen models having their MSE validation losses at 2.46 × 10−4 (MSE), 2.40 × 10−4 

(MSE+ADV), 2.26 × 10−4 (MSE+DVH), 2.5 × 10−4 (MSE+DVH+ADV).

Figure 6 shows a comparison of the predictions between each of the 4 models in the study 

on 1 example patient and Pareto optimal plan. The “optimized” dose is the ground truth 

Pareto optimal dose that was obtained by solving the optimization problem outlined in 

Equations 1 and 2. The avoidance map is a sum of the critical structures, including a ring 

and skin tuning structure, with their assigned tradeoff weights. The 4 models each take in the 

top row of Figure 6 as their input, and then predict what the Pareto optimal plan should look 

like. Visually, with the same input, each model produces a strikingly similar dose 

distribution to the optimized case. The MSE model visually did slightly better in sparing the 

dose in the normal tissue region posterior of the rectum.

The DVHs of the dose predictions are more revealing to the dose prediction errors in a 

clinically relevant manner, shown in Figure 7. The two models involving DVH loss (red and 

green) have less error in predicting the dose in the PTV, Body, and Bladder, with respect to 

its DVH, and visually similar predictions for the remaining OARs. Overall, including the 

domain specific DVH based loss has overall improved the model’s dose prediction in 

regards to the structure’s DVH.

Figure 8 shows the errors for several clinical metrics calculated from the predicted dose 

distributions, as compared to that of the optimized dose. The MSE model had the largest 

prediction error of 0.134 (conformation), 0.041 (homogeneity), 0.520 (R50), 3.91% (D95), 

4.33% (D98), 4.60% (D99). The additional adversarial and DVH losses further improved the 

prediction error, with the MSE+DVH+ADV model having the lowest prediction error of 

0.038 (conformation), 0.026 (homogeneity), 0.298 (R50), 1.65% (D95), 2.14% (D98), 

2.43% (D99). The other two models, MSE+ADV and MSE+DVH, had errors that were 

between the other two, with the MSE+DVH model’s having less error than MSE+ADV. In 

terms of these dosimetric criteria, including the DVH loss has the best performance, even 

more than just including adversarial loss. Figure 8 is the prime example of how expert 

human domain knowledge can be used to greatly improve the model performance towards 

the domain relevant criteria. Since comformation, homogeneity, dose spillage, and dose 

coverage all use particular DVH values in its calculation, they all improved greatly from 

usage of LDVH. Adversarial training for automatic learning of domain knowledge can further 

augment the performance by further capturing details that we did not specifically quantify in 

the loss. It does performs worse on its own, compared to the domain knowledge loss, due to 

the fact that the adversarial learning model does not truly know what is important to the user. 

However, when combined with our own domain knowledge, the performance can be 

maximized.

For both the mean dose PTV error and the max dose PTV, Body, Bladder and rectum error, 

the same improving trend can be observed in the order of the MSE model, MSE+ADV 

model, MSE+DVH model, and MSE+DVH+ADV model shown in Figures 9 and 10. 

However, there is not a clear trend in the mean dose for the OARs, due to the fact that MSE 
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is already designed for reducing average errors, making it competitive for the mean dose 

error performance. There also lacks a trend for the max dose point for the femoral heads, 

which are further away from the PTV and are in the lower dose region that has higher 

variability in the dose distribution. All predictions have very low average mean and max 

dose errors of less than 2.8% and 4.2%, respectively.

Due to the large number of test plans we have found that, for conformity, homogeneity, and 

dose coverage (D95, D98, and D99), the MSE+DVH+ADV model had a statistically 

significant lower error than the other predictive models, with the largest p-value=0.007. For 

mean and max doses to the OARs, only 2 comparisons against the MSE+DVH+ADV model 

were found to be not significantly different, which was the mean dose error to the bladder 

against the MSE model (p-value=0.894), and the max dose error to the left femoral head 

against the MSE+DVH model (p-value=0.409). All other mean and max dose comparisons 

against the MSE+DVH+ADV had found statistically significant differences, with the largest 

p-value=0.042.

IV. Discussion

To our knowledge, this is the first usage of a domain specific loss function, the DVH loss, 

for volumetric dose distribution prediction in radiation therapy. We compare the 

performance of deep neural networks trained using various loss combinations, including 

MSE loss, MSE+ADV loss, MSE+DVH loss, and MSE+DVH+ADV. Inclusion of the DVH 

loss had improved the model’s prediction in almost every aspect, except for mean dose to the 

OARs and the max dose the femurs. The DVH loss does not directly represent mean or max 

dose, and thus is not directly minimizing these aspects. In addition, MSE loss is inherently 

designed to minimize average error, thus it is not surprising that MSE loss alone is 

competitive for driving the organ mean dose error down, since the additional DVH and ADV 

losses may have the model focus on aspects other than mean error. Regardless of the model, 

all predictions have an average mean and max dose error less than 2.8% and 4.2%, 

respectively, of the prescription dose for every structure of interest.

To be specific, the performance of our model improved with respect to our domain relevant 

metrics, because our domain knowledge-based losses are designed to reduce the error in 

very specific areas of the model’s prediction, while focusing less on minimizing error for 

irrelevant metrics. In addition, having multiple losses can have a regularization effect, which 

can improve model generalizability and overall performance on unseen data. However, this 

does not guarantee that the model’s performance will improve in all aspects, as indicated by 

the competitive organ mean dose error with the MSE model, since mean dose error is 

already heavily related to mean squared error.

Overall, the MSE+DVH+ADV performed the best in most of the categories, particularly the 

conformity, heterogeneity, high dose spillage, and planning target volume (PTV) dose 

coverage. This illustrates the importance of both human and learned domain knowledge. 

Expert human domain specific knowledge can greatly improve the performance of the 

model, tailoring the prediction towards domain relevant aspects. However, by having to 

explicit formulate this domain knowledge into an equation, it is difficult to capture the 
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nuanced aspects of the problem. Using adversarial learning can then be used to further 

augment the model’s performance, since the discriminator network can pick out the subtle 

aspects that the domain specific formulation may have missed.

Due to the non-convexity of both the DVH and ADV losses, as well as the inherent non-

convex nature of neural networks, the MSE loss was utilized in every variant of the study, 

acting as the initial driving force and guide for the model to reasonably converge before the 

DVH and/or ADV losses began to take effect on the model’s prediction. MSE loss still has 

many desirable properties from an optimization perspective. It is convex and has an 

extremely well behaved gradient. In addition the properties of the squared l2-norm, where 

lp x = ∑i x pp , is one of the most understood and utilized functions in optimization75. It is 

not surprising that the previous studies achieved the state-of-the-art performance for dose 

prediction utilizing only MSE loss.

The final errors were assessed with 12,000 plans from 10 test patients, with varying tradeoff 

combinations. The total large number of plans with the randomization scheme given in Table 

1 gives us confidence that the entire tradeoff space has been reasonably sampled. 

Theoretically, the space can be fully sampled from just using the “high weights” 

randomization scheme outlined in Table 1. However, it would take far more sampling points, 

since most of the plans deriving from this scheme would not be considered even close to 

clinically acceptable. By including weight randomizations in the “Single organ spare” 

category, we are able to create a particular single-organ-sparing plan, with varying degrees 

of sparing through randomization. Furthermore, the remaining randomization schemes allow 

for us to create general plans that are closer to clinical relevance than the “high weights” 

scheme. These effectively allow for us to smooth the tradeoff surface between the single-

organ-sparing plans, and easily interpolate in between, making the total set of 12,000 plans 

representative of the different obtainable dose distribution.

The low prediction errors on the test patients signify that the model is capable of reliably 

generating Pareto optimal dose distributions with high accuracy. In addition, the raw 

prediction time of the neural network, including data movement to and from the GPU, is at 

0.052 seconds. Realistically, with data loading, prediction, DVH calculation, and displaying 

the dose wash to a user, it takes approximately 0.6 seconds. This is still fast enough for real 

time interaction with the model to quickly explore the tradeoff space for a patient. The 

optimization based approach is much slower, first requiring, on average, 32 minutes for dose 

influence matrix calculation, and then 2 seconds for the optimization of the each Pareto 

optimal dose. This allows for us to focus this tool towards empowering physicians. 

Immediately after segmentation of the cancer patient, the physician can immediately begin 

to generate a dose distribution with realistic and patient-specific tradeoffs between the PTV 

and various OARs. Not only does this give the physician a sense of the available and 

achievable tradeoffs, the resulting dose can then be given to a dosimetrist as a tangible and 

physician-preferred endpoint, alongside the other typical planning information provided by 

the physician. Usage of such a model is expected to drastically reduce the treatment 

planning time by reducing the number of feedback loops between the physician and 

dosimetrist, as well as how much the dosimetrist has to iterate through tuning 
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hyperparameters in the fluence map optimization. The clinical relevance regarding the 

predictive improvement of the model—using MSE+DVH+ADV loses versus using only 

MSE—on the dosimetric constraints still require assessment through a clinical study to be 

properly quantified.

The addition of the adversarial loss increases the training time the most for training, since 

the discriminator has to be trained concurrently. The additional DVH loss does slow down 

the training as well, but has a much smaller effect than the adversarial loss. While the 

training times were wildly different, the final trained neural networks all yield the same 

exact prediction time, due to the fact that they have identical network architectures. The 

network that took the longest training time, MSE+DVH+ADV, took just under 4 days to 

train, which is still a very reasonable training time to prepare a model.

When training the multiple models, the weights λDVH and λADV, were chosen to be 0.1 and 

0.001, respectively, in order to keep the losses at a similar order of magnitude until 

convergence. In general, this technique of assigning the human and learned domain 

knowledge weightings can be performed similarly. First the general loss model—for 

example, our MSE model—can be run first until convergence. The predictions of the general 

model can be used to assess its current loss value and the human domain knowledge metric 

to obtain orders of magnitude in the error. The adversarial model may have different orders 

of magnitude in its loss depending on the exact loss function used, but this may be estimated 

by bound evaluation of when the discriminator is able to perfectly distinguish the real data 

vs the predicted data and when it is unable to. The human and learned domain knowledge 

weightings can then be assigned by orders of magnitude, but some fine-tuning may be 

necessary depending on the problem to solve. From the clinical perspective, by setting the 

weights λDVH and λADV, such that the losses operate in a similar order of magnitude, we 

are setting equal importance to the overall general dose distribution (e.g. MSE), domain 

relevant metrics (e.g. DVH), and letting the network itself decide what is important (e.g. 

ADV). However, it may be necessary to fine tune the weightings, putting even more 

emphasis on a particular aspect for tackling a particular problem.

Since the invention and adoption of intensity modulated radiation therapy, optimization has 

become the backbone of radiation therapy systems. The user will place their ideal dose 

constraints in the system, and an inverse optimization process occurs to solve for the best 

treatment parameters to realize the dose distribution. While today’s cost functions used 

commercially may be different than what is used in this study, the core concepts remain. We 

have our dose constraints, which is simplified in this study to have the PTV treated to 

prescription dose, and to minimize the dose to any organs-at risk. We also have structure 

importance weightings, ws, where increasing this value for particular structure means to 

more heavily weight the imposed dose constraint. Typically, this means to further improve 

the dose coverage or homogeneity for the target, or to further reduce the dose for a particular 

critical structure. This study can be further extended in a future investigation where the 

optimization problem is replaced with a more complex formulation.

While this study was primarily focused on the evaluation of the DVH, ADV, and MSE 

losses, the final trained models do have their limitations. While these models are capable of 
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generating dose distributions on the Pareto surface, it is currently limited to prostate cancer 

patients with 7 beam IMRT. In addition, the predicted dose distributions are not guaranteed 

to be deliverable, hence the current need for heavier dosimetrist involvement in the treatment 

planning. As a future study, we plan to broaden our Pareto optimal dose prediction work by 

improving our models to predict on different cancer sites, to handle a different number and 

orientation of beams for IMRT, and to work on the VMAT modality. In addition we plan to 

investigate the development of a fully automated treatment planning pipeline, starting with 

the implementation of a robust dose mimicking optimization engine, as the threshold-driven 

optimization for reference-based auto-planning (TORA) algorithm25, which can be capable 

of generating a deliverable plan given a dose distribution or constraints. We expect such a 

pipeline would radically reduce the entire treatment planning time, especially for simple 

cases, allowing for the physician and dosimetrist to focus their efforts on more challenging 

patients.

V. Conclusion

In this study, we proposed a novel domain specific loss function, the dose volume histogram 

(DVH) loss, and evaluated its efficacy alongside two other losses, mean squared error (MSE) 

loss and adversarial (ADV) loss. We trained and evaluated four instances of the models with 

varying loss combinations, which included 1) MSE, 2) MSE+ADV, 3) MSE+DVH, 4) MSE

+DVH+ADV. We found that the models that included the domain specific DVH loss 

outperformed the models without the DVH loss in most of the categories, particularly on the 

evaluations of conformity, heterogeneity, high dose spillage, and planning target volume 

(PTV) dose coverage. The MSE+DVH+ADV model performed the best in these categories, 

illustrating the importance of both human and learned domain knowledge. Expert human 

domain specific knowledge can be the largest driver in the performance improvement, but it 

is difficult to capture nuanced aspects of the problem in an explicit formulation. Adversarial 

learning can be used to further capture these particular subtle attributes as part of the loss. 

The prediction of Pareto optimal doses can be performed in real-time, allowing for a 

physician to quickly navigate the tradeoff space for a patient, and produce a dose distribution 

as a tangible endpoint for the dosimetrist to use for planning. Eventually we plan to develop 

a fully automated treatment planning system. This is expected to considerably reduce the 

treatment planning time, while improving the treatment planning quality, allowing for 

clinicians to focus their efforts on the difficult and demanding cases.
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Figure 1: 
DVH and approximated DVH calculations using varying steepness values of m = {1,2,4,8} 

for an example prostate patient.
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Figure 2: 
DVH and approximated DVH calculations of toy example for D = (1,2).
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Figure 3: 

Objective value map of the loss function DV H 1, 2 , M − DV H i, j , M 2
2 ∀i, j ∈ 0, 3  for 

M = [1,1]. All versions with varying values of m exhibit the same minima.
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Figure 4: 
Deep learning models used in the study. The same U-net architecture is utilized in each 

comparison of MSE, MSE+ADV, MSE+DVH, and MSE+DVH+ADV models. The same 

discriminator architecture is utilized for training the MSE+ADV and MSE+DVH+ADV 

models. Black numbers to the left of the feature blocks represent the current data shape. Red 

numbers above the feature blocks represents the number of features.
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Figure 5: 
Top row: Total validation loss (all relevant losses and loss weightings for a specific model 

are summed are displayed). Bottom row: MSE validation loss (only mean squared error is 

displayed). Left Column: Raw validation losses at each training iteration. Right Column: 

Smoothed validation loss using Savitzky–Golay filter74.
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Figure 6: 
Inputs, optimized dose, and predicted doses for a test patient and a rectum sparing plan. Top 

row: Inputs of the U-net neural network, which include the PTV assigned to its weight 

(wPTV = 1 in this example), a binary mask of the body, and the avoidance map containing 

the remaining organs-at-risk assigned to their respective tradeoff weight. Bottom two rows: 

Optimized and predicted dose washes of the Pareto optimal dose. The colorbar shows the 

doses between 5% and 110% of the prescription dose.
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Figure 7: 
Dose volume histograms (DVH) of optimized dose distribution (black) and predicted dose 

distributions (various colors) for the same test patient as in Figure 6. Note the x-axis scale 

for the PTV DVH is different.
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Figure 8: 
Predicion errors for conformation, homogeneity, high dose spillage (R50) and dose coverage 

on the test data. Error bar represents the 99% confidence interval x ± 2.576 * σ
n , taken 

overall all test patients and plans.
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Figure 9: 
Average error in the mean dose for the PTV and the organs at risk. Error bar represents the 

99% confidence interval x ± 2.576 * σ
n , taken overall all test patients and plans.
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Figure 10: 
Average error in the max dose for the PTV and the organs at risk. Error bar represents the 

99% confidence interval x ± 2.576 * σ
n , taken overall all test patients and plans.
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Table 1:

Weight assignment categories for the organs at risk. The function rand(lb, ub) represents a uniform random 

number between a lower bound, lb, and an upper bound, ub. In the high, medium, low, extra low, and 

controlled weights category, the PTV had a 0.05 probability of being assigned rand(0,1) instead of 1.

Category Description

Single organ spare

Bladder
wbladder = rand(0,1)
wOAR\bladder = rand(0,0.1)

Rectum
wrectum = rand(0,1)
wOAR\rectum = rand(0,0.1)

Lt Fem Head
wlt femhead = rand(0,1)
wOAR\lt femhead = rand(0,0.1)

Rt Fem Head
wrt femhead = rand(0,1)
wOAR\rt femhead = rand(0,0.1)

Shell
wshell = rand(0,1)
wOAR\shell = rand(0,0.1)

Skin
wskin = rand(0,1)
wOAR\skin = rand(0,0.1)

High weights ws = rand(0,1) ∀s ∈ OAR

Medium weights ws = rand(0,0.5) ∀s ∈ OAR

Low weights ws = rand(0,0.1) ∀s ∈ OAR

Extra low weights ws = rand(0,0.05) ∀s ∈ OAR

Controlled weights

wbladder = rand(0,0.2)
wrectum = rand(0,0.2)
wlt femhead = rand(0,0.1)
wrt femhead = rand(0,0.1)
wshell = rand(0,0.1)
wskin = rand(0,0.3)

Med Phys. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 30

Table 2:

Choices of λDVH and λADV for the loss function shown in Equation 10.

λDVH λADV

MSE 0 0

MSE+ADV 0 0.001

MSE+DVH 0.1 0

MSE+DVH+ADV 0.1 0.001
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