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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. 
SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome corona-
virus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical 
possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have 
identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed 
co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human 
anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal 
species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein–receptor interacting residues. In 
conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health labo-
ratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.

INTRODUCTION
A new coronavirus (CoV), severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), emerged in December 2019 
[1]. SARS-CoV-2 evolved from CoVs found in bats [1, 2], 
and closely related viruses have been recently discovered in 
pangolins [3]. Bats have also been identified as reservoirs of 
several other CoVs [4], including CoVs capable of infecting 
human cells [5]. SARS-CoV-2 belongs to the genus Betacoro-
navirus (beta-CoV), which also includes severe acute respira-
tory syndrome coronavirus (SARS-CoV), which caused the 
epidemic of 2003–04 [6] and the Middle East respiratory 
syndrome coronavirus (MERS-CoV), which emerged in 2012 
and continues to cause seasonal outbreaks in the Kingdom of 

Saudi Arabia (KSA) [7, 8]. MERS-CoV causes severe lower 
respiratory tract infections and has a case fatality rate of ~37 % 
[9], which is much higher than the reported 1.38 % mortality 
rate for SARS-CoV-2 in China [10].

The emergence of SARS-CoV-2 and the ongoing circulation 
of MERS-CoV in KSA raises an important question: can 
genetic material from the two viruses recombine? Although 
the case fatality rate of SARS-CoV-2 is lower than those for 
MERS-CoV and SARS-CoV [9, 10], it has infected more indi-
viduals and in a much shorter period of time. To detect any 
potential recombinant virus, it is imperative to identify high-
risk geographical areas for SARS-CoV-2 and MERS-CoV 
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co-infections and develop diagnostic assays for the surveil-
lance of recombinant viruses in these areas.

Earlier studies have demonstrated that coronavirus genomes 
can recombine [11, 12], including within the coding region of 
the receptor-binding domain (RBD) of the spike (S) protein, 
which interacts with host cell receptors [13]. Recombination 
events may give rise to novel CoVs with enhanced or reduced 
ability to cause disease. In addition, since neutralizing anti-
bodies specific for particular CoVs are raised against the spike 
protein [14], the emergence of a novel recombinant CoV may 
bypass existing CoV immunity in a population. Recombina-
tion between species within the genus Betacoronavirus have 
been described, such as those between canine respiratory 
CoV and bovine CoV [15], human CoVs OC43 and HKU1 
[16, 17], and HKU1 and murine hepatitis virus (MHV) [18]. 
SARS-CoV was a product of recombination and MERS-CoV 
has already demonstrated ample capacity for recombination 
between lineages [19–21]. Thus, there is a risk that a recom-
binant CoV may escape SARS-CoV-2 immunity within the 
global population.

In this study, we have analysed the possibility of recombina-
tion between SARS-CoV-2 and MERS-CoV using bioinfor-
matic analysis. We have identified homologous regions within 
SARS-CoV-2 and MERS-CoV genomes that may support 
recombination. We have discussed possible outcomes of a 
recombination event, along with the molecular properties of 
a potential recombinant virus. In addition, we have identi-
fied human tissues that may accommodate a recombination 
event based on receptor distribution for the two viruses. 
Our analyses indicate that although recombination between 
SARS-CoV-2 and MERS-CoV is possible, it is unlikely to 
happen in the respiratory tract and is more likely to occur in 
the gastrointestinal system, where both receptors are strongly 
co-expressed. Furthermore, as we enter periods of high global 
MERS-CoV activity (April to December) [22], we highlight 
the need for public health laboratories in high-risk areas to 
develop diagnostic capability for the detection of recombined 
CoVs in patient samples.

METHODS
Alignment of SARS-CoV-2 and MERS-CoV genomes 
and analysis of similarity
SARS-CoV-2 (NCBI accession: NC_045512.2) and MERS-
CoV (NCBI accession: NC_019843.3) genome sequences and 
annotations were downloaded from GenBank. Alignment 
and visualization of homologous regions were performed 
using the ‘FindSynteny’ function of the DECIPHER Biocon-
ductor R package [23], using the settings ‘maxSep=200’ and 
‘maxGap=600’. Sliding window analysis was done by first 
aligning the two genomes with clustal Omega [24] using 
default settings. From this alignment the percentage identity 
between the two sequences was calculated with a sliding 
window of 30 nucleotides using the R statistical program-
ming environment [25]. Structural visualization of the SARS-
CoV-2 RNA-dependent RNA polymerase (PDB ID: 6M71 
[26]) was performed using PyMol (​pymol.​org).

Co-expression analysis
ACE2 (ensembl ID: ENSG00000130234.10) and DPP4 
(ensembl ID: ENSG00000197635.9) expression levels across 
human tissues were extracted on 26 April 2020 from GTEx 
Analysis Release v8 (dbGaP Accession phs000424.v8.p2) 
available at https://​gtexportal.​org/ [27, 28]. Microarray data 
from GEO dataset GSE75214 were retrieved and adjusted for 
batch correction using COMBAT [29] as implemented in the 
Bioconductor R package sva. Microarray analysis involved 
analysis of distinct samples and P-values were computed 
using two-tailed tests with ​cor.​test() in R. Co-expression 
analysis was performed in R, and the top 100 co-expressed 
genes were identified based on Pearson correlation r scores. 
Function enrichment analysis was performed by analysis of 
the top 100 ACE2-correlated genes using enrichR with default 
settings [30].

Phylogenetic and comparative analysis of virus 
receptors
Sets of orthologous ACE2 and DPP4 proteins were retrieved 
from the National Center for Biotechnology Information 
(NCBI) Gene database on 22 April 2020. The original set of 
ACE2 orthologues consisted of 300 sequences, DPP4 consisted 
of 235 sequences, and the union of the 2 sets consisted of 218 
sequences. These sequences were aligned using the l-INS-i 
algorithm of the MAFFT package (v7.407) [31, 32], and a 
maximum-likelihood tree was estimated using RAxML 
(v8.2.4) with four gamma-distributed categories of rate heter-
ogeneity, and automatic evolutionary model selection (v8.2.4; 
the JTT model was automatically selected for both the ACE2 
and DPP4 alignments) [33, 34]. Phylogenies were visualized 
using Jalview (v2.11.0) [35] and the ape R package (v5.3) [36]. 
Bootstrapping was performed the number of times required 
to converge the bootstrap support signal using the extended 
majority rule consensus bootstrapping algorithm (autoMRE) 
implemented in RAxML, converging after 250 and 200 boot-
straps for the ACE2 and DPP4 phylogenies, respectively. Each 
ACE2 and DPP4 orthologue was also directly compared to its 
human orthologue using the needle program of the EMBOSS 
package (v6.5.7.0) [37, 38]. The percentage identities for these 
alignments are available in Table S1 (available in the online 
version of this article). Human receptor residues within 3.5 Å 
of the virus–receptor complex structures were retrieved using 
PyMol (v2.3.5; https://​pymol.​org/​2/) and the conservation of 
these homologous sites was visualized with ggseqlogo (v0.1) 
in R [39]. All raw data files and scripts have been deposited on 
Github and can be accessed at https://​github.​com/​mjmansfi/​
BanerjeeEtAl_​CoV-​recomb.

RESULTS
SARS-CoV-2 and MERS-CoV genomic sequences 
contain regions that can facilitate homologous 
recombination
During CoV replication and transcription, viral RNA forms 
double-stranded RNA intermediates [40–42], facilitating the 
possibility of homologous recombination [43, 44]. To examine 
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the genomic potential for recombination between SARS-
CoV-2 and MERS-CoV, we aligned the reference genomes of 
SARS-CoV-2 and MERS-CoV, and identified syntenic regions 
of high pairwise sequence similarity. The largest detected block 
of similarity occurs in the region between 12 944 and 19 922 bp 
in SARS-CoV-2, and region between 12 909 and 19 875 bp in 
MERS-CoV (Fig. 1a). This region corresponds to the majority 
of the C-terminal portion of the ORF1ab protein, encoding 
the viral RNA polymerase (Fig. 1b). The overall nucleotide 
sequence identity across this entire region is relatively low 
at 64.73 %, which decreases the probability of homologous 
recombination. However, homologous recombination events 
in mammalian cells can occur at low frequencies in regions 
with as few as 14 bp in common [45]. Therefore, we searched 
for shorter segments of high sequence identity by performing 
a sliding window analysis, which plots the percentage identity 
of all 30 base pair segments (Fig. 1c). Consistent with the 
analysis in Fig. 1a, the most similar segments between the 
two genomes occur within an overlapping region of ORF1ab 

located between 13 798 and 20 788 bp. Examples of high-
scoring pairs within ORF1ab (labelled regions 1 and 2) are 
shown in Fig. 1d; after extension, these regions have sequence 
identities of 31/34 bp (91 %) and 38/41 bp (93 %). Notably, 
region 2 includes a 32 bp segment with only one mismatch 
(underlined in Fig. 1d). Outside of ORF1ab, there are very 
few regions of similarity, with the exception of one segment 
(labelled region 3; sequence identity of 29/32 bp) that occurs 
in a 3′ region of the S gene encoding the S2 domain (Fig. 1d).

Although our analysis identified high-identity segments 
containing few mismatches, even smaller segments with 
100 % identity also exist, including the 20 bp segment 5′-​
TTTAAATATTGGGATCAGAC-3′ (region 14299–14318 
bp in SARS-CoV-2 and region 14 270–14 289 bp in MERS-
CoV). Furthermore, we must consider the possibility of future 
mutations in these genomic locations that could increase the 
identity and potential for homologous recombination. Ulti-
mately, this analysis suggests that although there is limited 

Fig. 1. Recombination potential of SARS-CoV-2 and MERS-CoV. (a) Pairwise alignment of the reference genomes of SARS-CoV-2 and 
MERS-CoV. The gene locations for both viral genomes are plotted on the x- and y-axes. Detected syntenic blocks are shown in the plot. 
The largest synteny block detected occurs between region 12 944–19 922 in SARS-CoV-2 and region 12909–19875 in MERS-CoV. (b) 
Structure of SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 6M71 [26]), with the region of similarity with MERS-CoV from (a) 
highlighted in red. (c) Sliding window analysis of SARS-CoV-2 : MERS-CoV genome alignment, displaying the percentage identity of all 30 
length nucleotide segments. The axis numbering corresponds to alignment position. (d) Alignments of three selected regions of sequence 
similarity between SARS-CoV-2 and MERS-CoV. Alignments from (c) were extended in the 5′ and 3′ direction if additional matching 
positions were present. Region 2 includes a 32 bp segment with only one mismatch (underlined). The axis numbering corresponds to 
the position within the SARS-CoV-2 genome.
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sequence identity across the full SARS-CoV-2 and MERS-
CoV genomes, there are segments with sufficient sequence 
similarity to support potential recombination mediated by 
homologous base pairing.

Human tissues co-express receptors for SARS-
CoV-2 and MERS-CoV
For a recombination event to occur, SARS-CoV-2 and 
MERS-CoV would need to infect the same cell, which 
will facilitate close proximity interaction of RNA from 
the two viruses. As identified recently, SARS-CoV-2 uses 
angiotensin-converting enzyme 2 (ACE2) as a receptor to 
enter mammalian cells [46]. MERS-CoV uses dipeptidyl 
peptidase 4 (DPP4) as a cell receptor [47]. To identify tissues 
with ACE2 and DPP4 co-expression, we analysed publicly 
available gene expression data from the GTEx portal, which 
include tissue samples collected from ~1000 individuals 
across 54 non-diseased tissues [27]. Based on normalized 
expression levels (transcripts per million, t.p.m.) from 
RNA-seq experiments, we identified that ACE2 and DPP4 
were co-expressed in numerous tissues including adipose 
tissue, mammary tissue, colon, kidney and small intestine 
(terminal ileum) (Fig. 2a). Among these tissues, we detected 
the highest levels of ACE2 and DPP4 co-expression in the 
small intestine.

In our analysis, we did not detect high levels of co-expression 
of ACE2 and DPP4 in human lung tissue; however, both 
SARS-CoV-2 and MERS-CoV cause respiratory infections 
and associated disease symptoms in humans [48, 49]. Thus, 
the possibility of recombination in human lung tissue or cells 
within the respiratory tract cannot be ruled out. As ongoing 
research identifies susceptible cell populations within the 
human respiratory tract at single-cell resolution, we shall be 
able to pinpoint cell types within the upper and lower respira-
tory tracts that may facilitate co-infections with SARS-CoV-2 
and MERS-CoV.

To further examine possible co-expression of ACE2 and 
DPP4 in the ileum, we explored a microarray dataset (GEO 
accession GSE75214) of ileum samples from healthy indi-
viduals, as well as individuals with inflammatory bowel 
disease and Crohn’s disease [28] (Fig. 2b, left). ACE2 and 
DPP4 show a significant pattern of co-expression across 
these samples (Pearson correlation r=0.9, P=1.2e-29) 
(Fig. 2b, right). Furthermore, DPP4 is among the top 100 
ACE2-correlated genes in this dataset. Function enrich-
ment analysis of the top 100 ACE2 co-expressed genes 
revealed a significant association with the hepatocyte 
nuclear factor 4 (HNF4) family of transcription factors, 
including HNF4A/G (Fig. 2b, left and right). Therefore, 
HNF4A- or HNF4G-dependent gene expression patterns 
in the gastrointestinal system, which are regulated by 
host–microbiome interactions during inflammation [50] 
appear to drive upregulation of both ACE2 and DPP4 
and may therefore be an important factor underlying the 
potential for SARS-CoV-2 and MERS-CoV gastrointestinal 
co-infection and recombination.

Risk of SARS-CoV-2 and MERS-CoV recombination 
in other mammals
To identify animals that may be susceptible to both viruses 
and thereby represent potential reservoirs where recombi-
nation might occur between SARS-CoV-2 and MERS-CoV, 
we performed a phylogenetic analysis of their receptor 
proteins across amphibians, reptiles, birds and mammals 
(Fig.  3a, b). In general, ACE2 orthologues from other 
animals are less similar to human ACE2 (74.8 % amino 
acid identify, +/−12.4 %, minimum 31.3 %; Table S1) than 
DPP4 orthologues (77.0 % amino acid identity, +/−13.8 %, 
minimum 50.1 %; Table S1). We also examined patterns of 
sequence conservation among residues that participate in 
the human–viral spike protein interfaces from complexed 
structures of ACE2 with SARS-CoV-2 and DPP4 with 
MERS-CoV, respectively [51, 52] (Fig. 3c, d). In general, 
these residues are more strongly conserved between 
humans and mammals compared to more distantly related 
animals. Notably, this includes the dromedary camel, which 
is identical at 12/15 ACE2 and 9/12 DPP4 virus-contacting 
residues (yielding full-length alignments with human ACE2 
at 83.6 % and human DPP4 at 85.5 % identity; Table S1). 
Based on our analysis, we believe that recombination is 
most likely to happen in susceptible mammals with recep-
tors that are more similar to human ACE2 and DPP4. Thus, 
it is important to identify whether known reservoirs of 
MERS-CoV, such as dromedary camels, can also be infected 
with SARS-CoV-2. Recent studies have identified that cats 
and dogs can be productively infected with SARS-CoV-2 
[53, 54]. Thus, it may also be useful to identify if cats and 
dogs can be infected with MERS-CoV.

DISCUSSION
SARS-CoV-2 and MERS-CoV outbreaks are currently 
occurring simultaneously in KSA, which raises concerns 
about recombination between two highly pathogenic CoVs. 
Multiple studies have shown that CoVs can recombine 
[13, 15, 16, 18, 20, 21, 55–57], but there are currently no 
studies that have predicted recombination events between 
SARS-CoV-2 and MERS-CoV. Experimental validation 
of potential recombination between SARS-CoV-2 and 
MERS-CoV poses clear gain-of-function risks that must 
be carefully weighed. Our computational analyses shed 
light on possible recombination breakpoints and the likely 
tissues that may support co-infection and recombination 
between SARS-CoV-2 and MERS-CoV. In our analysis, 
we have identified several genomic regions, including 
segments predominantly within the ORF1ab gene, that 
could support homologous recombination between SARS-
CoV-2 and MERS-CoV (Fig. 1). In theory, a recombina-
tion event involving a breakpoint at this region could be 
capable of producing two recombinant viruses [1], a virus 
with a genome consisting of ORF1ab from SARS-CoV-
2+MERS CoV along with remaining ORFs from SARS-
CoV-2 [2] and a virus with a genome consisting of ORF1ab 
from SARS-CoV-2+MERS CoV along with remaining ORFs 
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Fig. 2. Co-expression profile of angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase 4 (DPP4). (a) RNA-seq based expression 
profile of ACE2 and DPP4 across 54 tissues. Expression data are derived from the GTEx database [27]. ‘Small intestine – terminal ileum’ 
is highlighted as a key tissue of interest since ACE2 and DPP4 are co-expressed at high relative expression levels compared to other 
tissues. The centre line denotes per-sample median expression level. (b) Analysis of ACE2 and DPP4 co-expression in GEO dataset 
GSE75214, including microarray expression profiles of ileum samples from healthy individuals, and individuals with inflammatory bowel 
disease and Crohn’s disease [28]. Left: a heatmap of the top 100 ACE2 co-expressed genes. For the heatmap, the x-axis includes all 
samples in the microarray dataset, while the y-axis includes represented genes. Values in each cell represent gene expression levels. 
Horizontal lines on the right indicate ACE2 and DPP4. Right: ACE2/HNF4A and ACE2/DPP4 co-regulation. t.p.m., transcripts per million.
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from MERS-CoV. CoV ORF1ab codes for non-structural 
proteins (nsps) that are essential in forming the replicase 
and transcriptional complexes, along with proteases that 
are required to cleave polyproteins pp1a and pp1ab into 
respective nsps [42]. A critical step in the generation of a 
replication-competent recombinant virus is the compat-
ibility of proteins from the two viruses. The compatibility 
of nsps in ORF1a and ORF1ab is critical to facilitate the 
replication and transcription of the viral genome [58]. 
Compatibility between structural proteins is important for 
virus packaging, maturation and egress [42]. Mini-replicon 

assays can be performed using nsps from SARS-CoV-2 and 
MERS-CoV to determine what combinations, if any, are 
compatible [59].

The recombination frequency of CoVs can be as high as 25 % 
for the entire genome [55]. Currently, we do not know if RNA 
recombination of SARS-CoV-2 and MERS-CoV can produce 
replication-competent viruses, but studies with murine 
beta-CoVs, such as MHV, have demonstrated the ability of 
CoV RNA to recombine and produce replication-competent 
viruses [60]. Furthermore, recombination sites at the 5′-end 

Fig. 3. Evolutionary relationships of ACE2 and DPP4 proteins across various animal species. (a, b) Phylogenetic relationships of ACE2 
and DPP4 orthologues across various animal species. Species that are known or suspected to be infected by either virus are indicated, 
namely cats, bats and the dromedary camel. Each tip in the tree represents a sequence from a different animal species, and the tips are 
annotated by coloured circles representing percentage identity to their human orthologue. Node labels represent bootstrap support as a 
fraction of a circle, where a greater proportion of the circle being black indicates a greater proportion of bootstrap support. The full list 
of sequences and their identities are available in Table S1. (c, d) Conservation of residues within the virus spike–receptor interfaces for 
ACE2 and DPP4 across animal species.
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of murine CoV RNA have been identified, along with the 
isolation of recombinant CoVs containing single and double 
crossovers in 5′-end genes [61]. Keck et al. also identified a 
third class of recombinants that contained crossovers within 
the leader sequence located at the 5′-end of the genome, along 
with one recombinant that contained a triple crossover [61]. 
Homologous CoV RNA recombination was also demon-
strated in a study where MHV-A59 and defective interfering 
(DI) RNA containing MHV-RI spike gene were shown to 
recombine to produce a series of recombinant MHV genomes 
with chimeric S gene [62]. In our analysis, we were able to 
identify short homologous segments with high sequence 
identity within SARS-CoV-2 and MERS-CoV ORF1ab that 
may facilitate homologous recombination (Fig. 1). Multiple 
studies have proposed that RNA recombination is a frequent 
event during MHV replication, but similar recombination 
events remain to be identified in SARS-CoV-2. Furthermore, 
recombination events in mammalian cells can occur at low 
frequencies with as little as 14 bp in common [45]. In our 
analyses, we detected three segments >14 bp that aligned with 
high sequence identity between SARS-CoV-2 and MERS-
CoV genomes (Fig. 1).

In addition to homologous recombination, CoVs are also 
capable of non-homologous recombination [56, 57] due to 
the ability of CoV RNA-dependent RNA polymerase (RdRp) 
to switch RNA strands during sub-genomic RNA synthesis 
[13, 57, 63]. During synthesis of sub-genomic RNA, CoV 
RdRp stops at transcriptional regulatory sequences (TRSs) 
that are at the beginning of each structural and accessory gene 
and switches its template to continue amplifying the leader 
sequence at the 5′-end to generate full-length sub-genomic 
RNA [64, 65]. This ability to switch templates may allow 
CoV RdRp to switch between the genomes of SARS-CoV-2 
and MERS-CoV to generate chimeric sub-genomic RNAs. 
Emerging data suggest that RNA from beta-CoVs, such as 
MHV, MERS-CoV and SARS-CoV-2, perform extensive 
recombination in culture and these recombination events are 
facilitated by the CoV proofreading non-structural protein, 
nsp14 [66]. In theory, RNA recombination may produce 
hybrid SARS-CoV-2 and MERS-CoV sub-genomic RNAs and 
subsequently mRNA transcripts and proteins. More experi-
mental work is required to identify whether these chimeric 
proteins will be more or less functional compared to their 
native counterparts in their respective viruses.

The potential ability of SARS-CoV-2 and MERS-CoV 
genomes to recombine raises many concerns, including the 
role of accessory proteins in modulating human immune 
responses. MERS-CoV accessory proteins are very efficient in 
counteracting human innate antiviral responses by blocking 
interferon (IFN) production and signalling [67–70]. A recent 
study identified that SARS-CoV-2 can inhibit antiviral IFN 
production; however, interestingly, downstream expression 
of IFN stimulated genes (ISGs) were observed in cells that 
were experimentally infected with SARS-CoV-2 [71]. Thus, 
any recombination between SARS-CoV-2 and MERS-CoV 
genomes may generate viruses with unpredictable pathogenic 
potential. Furthermore, CoVs may also recombine with other 

RNA viruses in rare cases, such as the recently reported recom-
bination between a bat coronavirus (Ro-BatCoV GCCDC1) 
and a segment of the p10 gene from a bat orthoreovirus [72]. 
Thus, in addition to the possible recombination potential of 
SARS-CoV-2 and MERS-CoV that we have analysed here, 
other possibilities and opportunities for recombination of 
SARS-CoV-2 and other RNA viruses, including seasonal 
beta-coronaviruses, such as HKU1 and OC43, may exist.

RNA recombination between SARS-CoV-2 and MERS-CoV 
genomes may produce chimeric proteins, which in turn may 
affect the efficacy of drug interactions. Thus, it is important 
to identify potential recombination breakpoints and develop 
pan-CoV drugs that are effective in inhibiting the replication 
of diverse CoVs.

To facilitate RNA recombination, SARS-CoV-2 and MERS-
CoV infections need to coincide in common human tissues 
and cells. A recent study identified a strong correlation 
between ACE2 and DPP4 expression using data from single-
cell RNA sequencing [73]. In our analysis, we identified tissues 
including human kidneys and intestinal ileum as sites of ACE2 
and DPP4 co-expression (Fig. 2). MERS-CoV is known to 
infect kidneys to cause kidney damage (acute renal failure) and 
multiple organ dysfunction in acute cases [74–76]. Recent data 
suggest that SARS-CoV-2 can infect kidney cells and tissues 
[77]. Emerging data from experimental infection of primary 
human intestinal epithelial cells suggest that SARS-CoV-2 is 
capable of infecting and generating replication-competent 
viruses in these cells [78]. In our analysis, we did not detect 
high levels of co-expression of ACE2 and DPP4 in human lung 
tissue; however, both SARS-CoV-2 and MERS-CoV cause 
respiratory infections in humans [48, 49]. Thus, the possibility 
of recombination in human lung tissue or cells within the 
respiratory tract cannot be ruled out. Ongoing research will 
shed more light on the full range of SARS-CoV-2 receptors and 
co-receptors, optimal levels of receptor expression required to 
facilitate CoV entry, and respiratory tract tissues and cell types 
that are susceptible to SARS-CoV-2 and MERS-CoV.

According to our analyses of GTEx data, the highest levels of 
ACE2 and DPP4 co-expression appear to be in the small intes-
tine (Fig. 2a). This ileal co-expression pattern was confirmed 
by our independent analysis of ileum microarray samples 
(Fig. 2b). In the ileum, ACE2 and DPP4 display a significant 
pattern of co-expression, which appears to be driven by the 
HNF4 gene regulatory network [50]. SARS-CoV-2 has been 
detected and isolated from human faeces [79, 80]. Further-
more, a recent study demonstrated that SARS-CoV-2 can 
replicate in human gut enterocytes [81]. MERS-CoV has also 
been detected in human stool specimens. One study reported 
the detection of MERS-CoV RNA in 14.6 % of stool samples 
from infected individuals [82]. In addition, primary intes-
tinal epithelial cells, small intestine explants and intestinal 
organoids have been demonstrated to support MERS-CoV 
replication [83]. Indeed, a co-infection of MERS-CoV and 
SARS-CoV-2 in renal or small intestinal tissues, especially the 
kidney cortex and ileum, may facilitate RNA recombination 
between the two viruses.
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In addition to humans, other mammals may also pose a risk 
of co-infection with SARS-CoV-2 and MERS-CoV, thus 
providing RNA from the two viruses with an environment 
to recombine. Our analyses indicate that the patterns of 
similarity of ACE2 and DPP4 to their human orthologue 
are largely consistent with speciation (Fig. 3a, b). However, 
even distantly related animals can possess conserved residues 
necessary for virus–receptor interaction. A recent study 
identified that ferrets and domestic cats were susceptible to 
SARS-CoV-2, while dogs, pigs, ducks and chickens were not 
efficiently infected by the virus [53]. Similarly, MERS-CoV 
infects and replicates in dromedary camels [84–86]. Thus, 
there is a need to determine if camelids are susceptible to 
SARS-CoV-2 and whether cat species can support MERS-
CoV replication. Further, the contacting residues for our 
structural comparisons (Fig. 3c, d) were identified within 
specific co-crystals, and these contacts may change in the 
context of variant host receptors or mutations within the 
virus. As SARS-CoV-2 spreads in the human population, 
it may produce more divergent viruses, and a new variant 
might facilitate an infection in a different animal host, or 
potentially even the use of a novel receptor, sparking the 
potential for recombination with known or yet unknown 
beta-CoVs. Exploratory studies are required to identify tissue 
level distribution and expression patterns of CoV receptors, 
including ACE2 and DPP4, in other mammalian species. 
Further studies are also required to determine orthologues 
of SARS-CoV-2 and MERS-CoV receptors in animals, along 
with functional studies to determine if cells from a wide range 
of animals can facilitate infection with these CoVs and their 
potential recombination.

Our analyses suggest that recombination between SARS-
CoV-2 and MERS-CoV is possible in endemic areas that 
may facilitate co-infection. Thus, global public health experts 
and frontline physicians and diagnostic laboratories need 
to be prepared for such an occurrence. KSA has reported 
2179 cases of COVID-19, with 29 deaths [87]. Between 1 
December 2019 and 30 January 2020, there have been 19 
cases of MERS-CoV, including 8 associated deaths [88]. 
As we enter periods of high global MERS-CoV activity 
(April to December) [22], it is imperative that surveillance 
programmes are capable of detecting co-infection and 
recombinant CoVs. There is a need to develop ancestrally 
reconstructed pan-CoV bait capture assays [89] to further 
expand upon the efforts of Li et al. [90] to capture and detect 
RNA from SARS-CoV-2/MERS-CoV recombinant viruses. 
Rapid capture and sequencing diagnostics will allow front-
line diagnostic laboratories to enrich patient samples for 
SARS-CoV-2, MERS-CoV and any potential recombinant 
viruses. The bait sets can be deployed in high-risk areas to 
actively survey and monitor circulating SARS-CoV-2 and 
MERS-CoV variants or recombinants, or in response to 
molecular diagnosis of co-infection in individual patients. 
In addition, from a public health perspective, it would be 
strategic to separate COVID-19 and MERS patients in 
hospitals and perhaps have dedicated staff handling cases 
of each disease in high risk areas. Both SARS-CoV-2 and 

MERS-CoV have demonstrated their ability for nosocomial 
spread. Thus, broader public health awareness is necessary 
to manage intake of COVID-19 patients in high-risk MERS-
CoV endemic areas. While continued and serious efforts to 
control the ongoing COVID-19 pandemic are necessary, we 
must also be prepared to identify and curb the spread of any 
antigenically novel SARS-CoV-2/MERS-CoV recombinants.
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