
Multimodal In Vivo and Post-mortem Assessments of Tau in 
Lewy Body Disorders

David G. Coughlin, MD MTR1,2,3,*, Jeffrey S. Phillips, PhD1,4, Emily Roll, BSc1,4, Claire 
Peterson, BSc2, Rebecca Lobrovich, MA2, Katya Rascovsky, PhD1,4, Molly Ungrady, BSc1,4, 
David A. Wolk, MD1,5, Sandhitsu Das, PhD1,5, Daniel Weintraub, MD1,6, Edward B. Lee, MD 
PhD5,7, John Q. Trojanowski, MD PhD1,5,7,8, Leslie M. Shaw, PhD7, Sanjeev Vaishnavi, 
MD1,3, Andrew Siderowf, MD MSCE1,3, Ilya M. Nasrallah, MD PhD9, David J. Irwin, MD 
MSTR**,1,2,3, Corey T. McMillan, PhD**,1,4 Alzheimer’s Disease Neuroimaging Initiative***

1Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, USA 
19104

2Digital Neuropathology Laboratory, at Perelman School of Medicine at the University of 
Pennsylvania 19104

3Lewy Body Disease Center of Excellence, at Perelman School of Medicine at the University of 
Pennsylvania 19104

4Frontotemporal Degeneration Center, at Perelman School of Medicine at the University of 
Pennsylvania 19104

5Alzheimer’s Disease Center, at Perelman School of Medicine at the University of Pennsylvania 
19104

6Michael J. Crescenz VA Medical Center, Parkinson’s disease Research, Education, and Clinical 
Center, Philadelphia PA, USA 19104

Corresponding authors: Corey McMillan PhD, 3400 Spruce St, Department of Neurology, 3W Gates Building, Philadelphia, PA 
19104, mcmillac@pennmedicine.upenn.edu; David Irwin MD MSTR, 3400 Spruce St, Department of Neurology, 3W Gates Building, 
Philadelphia, PA 19104, dirwin@pennmedicine.upenn.edu.
*Currently at Department of Neurosciences, University California San Diego, La Jolla, CA, 92093
**These authors contributed equally
***Data used in preparation of this article were obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Author Contributions
DGC: conceptualization, formal analysis, data curation, investigation, writing-original draft, writing-reviewing and editing, 
visualization. DJI: conceptualization, formal analysis, resources, writing-reviewing and editing, visualization, supervision, 
methodology, project administration. CTM: formal analysis, data curation, project administration, visualization, writing-reviewing and 
editing. JSP: formal analysis, investigation, data curation, visualization, writing-reviewing and editing. ER: data curation, 
visualization. CP: data curation, investigation, visualization, software, methodology. RL: data curation, investigation, visualization. 
KR: investigation. MU: investigation. DAW: investigation, visualization, funding acquisition. SD: investigation, visualization. DW: 
investigation. EL: investigation, writing-reviewing and editing. JQT: investigation, writing-reviewing and editing, funding acquisition. 
SV: investigation. AS: investigation. IMN: investigation, visualization, writing-reviewing and editing.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Potential Conflicts of Interest
Andrew Siderowf was a full time employee of AVID radiopharmaceuticals from July 2012 to June 2017.

HHS Public Access
Author manuscript
Neurobiol Aging. Author manuscript; available in PMC 2021 December 01.

Published in final edited form as:
Neurobiol Aging. 2020 December ; 96: 137–147. doi:10.1016/j.neurobiolaging.2020.08.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


7Department of Pathology, Hospital of the University of Pennsylvania, in Philadelphia PA, USA 
19104

8Center for Neurodegenerative Disease Research, Hospital of the University of Pennsylvania, in 
Philadelphia PA, USA 19104

9Department of Radiology, Hospital of the University of Pennsylvania, in Philadelphia PA, USA 
19104

Abstract

We compared the regional retention of 18F-flortaucipir in twenty patients with Lewy Body 

disorders (LBD), twelve matched Alzheimer’s disease patients with positive amyloid PET scans 

(AD+Aβ), and fifteen healthy-controls with negative amyloid PET scans (HC-Aβ) and the 

association in LBD between retention and CSF tau, cognitive performance, and neuropathological 

tau at autopsy. The LBD cohort was stratified using an established Aβ42 cut-off of 192pg/ml to 

enrich for groups likely harboring tau pathology (LBD+Aβ=11, LBD-Aβ=9). 18F-flortaucipir 

retention was higher in LBD+AB than HC-Aβ in five, largely temporal-parietal, cortical regions 

whereas LBD-Aβ had elevations in one cortical region with sparing of medial temporal areas. 

Higher retention was associated with higher CSF total-tau levels (p=0.04), poorer domain-specific 

cognitive performance (p=0.02-0.04), and greater severity of neuropathological tau in 

corresponding regions. We conclude that while 18F-flortaucipir retention in LBD is intermediate 

between healthy-controls and AD, retention relates to cognitive impairment, CSF total-tau, and 

neuropathological tau. Future work in larger autopsy-validated cohorts are needed to define LBD-

specific tau biomarker profiles.
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Introduction

Lewy body disorders (LBD: Dementia with Lewy Bodies (DLB) and Parkinson’s Disease 

(PD)) are characterized pathologically by alpha-synuclein (SYN) inclusions in postmortem 

tissue; however, a significant proportion (>50%) of LBD patients have moderate to severe 

co-occurring Alzheimer’s disease (AD) pathology (Aβ plaques and tau neurofibrillary 

tangles) sufficient for a secondary neuropathological diagnosis of AD(Irwin, D. J. et al., 

2017). These levels of AD co-pathology are clinically relevant and associated with faster 

time to dementia, decreased overall survival(Irwin, D. J. et al., 2017; Jellinger et al., 2002) 

and contribute to specific cognitive and motor features in LBD (Coughlin, D. et al., 2019; 

Peavy et al., 2016). Molecular PET imaging provides important in vivo information on the 

regional distribution of proteinopathies that otherwise has only previously been assessable at 

autopsy. 18F-flortaucipir is a PET tracer with affinity for paired helical 3R/4R tau (Marquié 

et al., 2015) that shows increased retention in AD, with binding patterns consistent with 

pathologic distributions of tau in amnestic and non-amnestic variants (Nasrallah et al., 2018; 

Pontecorvo et al., 2017), and has recently been approved for use in evaluation for suspected 

Alzheimer’s disease based on post-mortem studies (Fleisher et al., 2020) based on 
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postmortem work but limited data exists in LBD. In LBD, paired helical 3R/4R tau 

accumulations are similar to that which is seen in AD(Iseki et al., 2003) and reports of 18F-

flortaucipir in LBD find increased retention in temporal, occipital, and parietal lobes, with 

lower SUVR values than typically seen in AD patients(Gomperts et al., 2016; Kantarci et al., 

2017; Lee et al., 2018; Smith et al., 2018). In multimodal PET imaging studies, LBD 

patients with increased 18F-flortaucipir often show evidence of co-occurring cerebral 

amyloidosis(Kantarci et al., 2017; Lee et al., 2018) but relationships between 18F-

flortaucipir retention and other biomarkers, including CSF, are understudied.

We previously found that postmortem tau in LBD has a distinct regional distribution 

compared to AD, with relatively more tau present in temporal neocortex. Tau pathology was 

also associated with region-specific cognitive deficits across multiple domains(Coughlin, D. 

et al., 2019). Here we use a multimodal approach to examine in vivo tau biomarker profiles 

in a deeply phenotyped cohort of twenty LBD patients 18F-flortaucipir PET scanning, 

cerebrospinal fluid (CSF) sampling, and neuropsychological testing in close temporal 

proximity with the hypotheses that LBD patients with abnormal CSF Aβ would show 

regions of increased 18F-flortaucipir compared to healthy controls and that 18F-flortaucipir 

retention would correlate with CSF tau measures, region-specific neuropsychological 

performance, and neuropathological tau at autopsy..

Methods

Patients

Twenty patients with LBD (DLB: N=15, PD-MCI: N=4, PDD: N=1) were enrolled from the 

University of Pennsylvania’s Movement Disorder Clinic, Frontotemporal Degeneration 

Center, and/or Alzheimer’s Disease Core Center (ADCC). All met clinical criteria for 

probable DLB(McKeith et al., 2017), PD-MCI(Litvan et al., 2011) or PDD(Emre et al., 

2007). 5/20 patients had 123l-loflupane SPECT scans, all of which showed evidence of 

dopamine transporter deficits. An additional two patients went to autopsy and had 

pathological confirmation of neocortical Lewy body disease. A local reference group of 15 

healthy controls (HC-Aβ) who had undergone 18F-flortaucipir PET scans was selected from 

the Penn ADCC who 1) had Mini-Mental Status Exam (MMSE) or converted Montreal 

Cognitive Assessment (MoCA) scores ≥27 (Roalf et al., 2013), 2) negative amyloid PET 

scans (18F-florbetaben N=13, 18F-florbetapir N=2) determined by visual inspection by 

expert neuroradiologist (IMN), and 3) had no history of neurologic or psychiatric disease.. A 

disease reference group was obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu) (AD+Aβ: N=12. MCI: N=5, Dementia: N=7). AD+Aβ 
cases were matched for age and cognitive impairment (assessed by MMSE) to the full LBD 

cohort (LBD-A² and LBD+Aβ together) and had positive 18F-florbetapir PET scans with 

mean cortical SUVRs of >1.11 using a whole cerebellar reference (Mean=1.39, SD=0.14) 

using published methods(Landau et al., 2013). At the time when data was downloaded from 

the ADNI database, August 30, 2018, there were 41 individuals with a diagnosis of mild 

cognitive impairment or dementia, who had both a 18F-flortaucipir PET scan and a positive 

florbetaben PET scan with mean cortical SUVR >1.11(Jagust et al., 2015). From that cohort, 

ADNI cases with greater age and lower MMSE were sequentially removed for the matching 
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process until the ADNI cohort had group average MMSE and age at PET scan that was 

statistically similar to the LBD cohort (see supplemental figure for flow chart of case 

selection). Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). All subjects provided 

written informed consent and all study procedures were approved by the University of 

Pennsylvania’s institutional review board.

Neuroimaging

MRI—T1-weighted MR images for LBD and HC-Aβ participants were acquired axially 

with 0.98mm x 0.98mm x 1mm voxels, a 256x192 matrix, repetition time of 1620 ms, 

inversion time of 950 ms, and a flip angle of 15° on a 3T Siemens scanner. Scans were 

visually inspected for quality (JP and ER) to rule out motion artifact or other distortions. 

Advanced Normalization Tools (ANTs)(Avants et al., 2011) was used to process and 

symmetrically and diffeomorphically register each image to a healthy control template, as 

reported(McMillan and Wolk, 2016), (Klein et al., 2017). We used a joint label fusion 

approach to align the Mindboggle-101 “Brain Color” labels (based on the Desikan-Killainy-

Tourville label scheme) with each image using pseudo-geodesic registration, also as 

reported(Wang et al., 2013).

18F-flortaucipir PET Scans—LBD and HC-Aβ scans were performed on a Phillips 

Ingenuity TF PET scanner. 6x5min frames were acquired 75-105 minutes after injection of 

approximately 10mCi of 18F-flortaucipir. AD+Aβ cases were acquired on a variety of 

scanners using similar protocols(Jagust et al., 2015; Weiner et al., 2017). Regional SUVR 

was assessed using MindBoggle-101 “Brain Color” labels(Klein and Tourville, 2012), with 

cerebellar gray matter reference after partial volume correction (PVC) using the reblurred 

Van-Cittert method(Thomas et al., 2016a). PVC data was highly correlated with non-

corrected data (R2=0.98, p<0.001). Regional SUVR measurements were averaged across 

hemispheres for leaving 58 regions for comparison. PVC and non-PVC values for the 

hippocampus were significantly correlated (R2=0.97, β=0.99, t(46)=40.7, p<0.001). Baker et 

al. (2019) suggested that PVC alone may not be sufficient to account for off-target binding 

effects in the hippocampus. To further address this issue, we conducted a supplementary 

analysis examining hippocampal signal independent of tracer uptake in the choroid plexus, 

thalamus, and putamen, which are known sources of off-target binding(Baker et al., 2019). 

The choroid plexus was localized using the corresponding label from the aparc.a2009s+aseg 

parcellation image generated by the FreeSurfer recon-all pipeline. We then removed voxels 

that overlapped with this structure from the BrainColor labels used in the main analysis and 

performed PVC on the modified labels using the geometric transfer matrix (GTM) 

method(Rousset et al., 1998; Thomas et al., 2016b). From the hippocampal signal we 

subtracted SUVRs in the thalamus, putamen, and choroid plexus, weighted by the regression 

coefficients for Braak stage II regions calculated by Baker et al. (2019)(Baker et al., 2019) in 

Coughlin et al. Page 4

Neurobiol Aging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu


their analysis of amyloid-negative control participants. This procedure yielded an estimate of 

hippocampal retention independent of known markers of off-target binding.

Cerebrospinal fluid measurements—CSF Aβ42, p-tau, and t-tau were acquired using 

ADNI standard operating procedures and analyzed using a Luminex platform and AlzBio3 

immunoassay reagents (AlzBio3®, Innogenetics NV, Gent, Belgium), as previously 

reported(Irwin et al., 2018). Median time between CSF sampling and 18F-flortaucipir 

scanning was 58 days (interquartile range: 28 to 217 days). We used an established 

biomarker independent of tau, CSF Aβ42, to divide the LBD cohort into those likely 

harboring cerebral amyloidosis (LBD+Aβ, Aβ42 ≤192pg/ml, N=11) and those unlikely to 

have cerebral amyloidosis (LBD-Aβ, Aβ42>192pg/ml, N=9)(Shaw et al., 2009).

Neuropathology—As of May 16th, 2019, two LBD subjects had died and participated in 

brain donation. Autopsies were performed at the Penn Center for Neurodegenerative Disease 

Research using validated neuropathological criteria(McKeith et al., 2017; Montine et al., 

2012). Tissue was fixed overnight in 10% neutral-buffered formalin processed, and 

immunohistochemically using described procedures(Irwin et al., 2016b; Toledo et al., 2014). 

Expert neuropathologists (EBL, JQT) applied current diagnostic criteria and assigned Thal 

phases, Braak tau stages, CERAD neuritic plaque stages(Montine et al., 2012), and SYN 

Lewy body stages(McKeith et al., 2017). Sections were immunostained for tau (AT8, 

Thermo-Scientific), Aβ (NAB228, Santa-Cruz), and SYN (MJF-R13, Abcam) for digital 

pathology experiments. Images of histology slides at 20x magnification were obtained using 

a Lamina slide scanning system (Perkin Elmer, Waltham MA) and Halo digital image 

software v1.90 (Indica Labs, Albuquerque NM) calculated %area occupied (%AO) of 

reactivity for tau, Aβ, and SYN in regions of interest after color deconvolution intensity 

thresholds were optimized for each stain as previously published(Coughlin, D. et al., 2019; 

Irwin et al., 2015). We also performed an analysis using object detection to detect %AO of 

tau tangles alone(Irwin et al., 2016b).

Neuropsychological Testing—Neuropsychological testing was administered by trained 

research personnel(Watson et al., 2013) near the time of 18F-flortaucipir PET (median time 

from testing to PET: 41 days. Interquartile range: 9-100 days) including Mini-Mental State 

Examination (MMSE), Clinical dementia rating scale sum of boxes (CDR-SOB), Multi-

lingual naming test (MINT), letter fluency (F-words), Benson figure copy and delayed recall 

(Beekly et al., 2007).

Statistical Analysis: Demographic differences were assessed using χ2, Fisher’s exact 

test, or ANOVA as appropriate. 18F-flortaucipir mean cortical SUVR and regional SUVR, 

which were averaged across hemispheres, were compared across groups using linear 

regression controlling for age and sex. Regional SUVR analysis used the pre-specified 

threshold of p=0.01 for significance. Neuropsychological performance was compared to 

regional SUVR values in pre-specified targeted analyses using linear regression also 

controlling for age and sex. Specifically, MMSE and CDR-SOB, which are global measures 

of cognition, were compared to mean cortical SUVR and the composite value derived from 

Braak Tau associated regions. MINT tests naming associated with left temporal cortex 
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function and therefore was compared to left middle temporal gyrus retention(Abel et al., 

2015; Emerton et al., 2014; Hamberger et al., 2016; Hamberger et al., 2003). Letter fluency 

is a frontally-mediated cognitive task and was compared to middle frontal gyrus retention 

(Baldo and Shimamura, 1998; Moscovitch, 1994; Quinn et al., 2012). Benson figure copy is 

a parietal lobe-mediated visuospatial task that was compared to right angular gyrus retention 

(Chen et al., 2016; Han et al., 2015), and Benson figure recall relies on medial temporal 

process so was compared to hippocampus retention (PVC and non-PVC values) (McConley 

et al., 2008; Xu et al., 2019; Zammit et al., 2017a; Zammit et al., 2017b).

Mean cortical SUVR was compared to natural log transformed values of CSF Aβ42, t-tau 

and p-tau using linear regression adjusting for age and sex. Because the use of cortical 

SUVR values may obscure meaningful analyses of regions with elevated tau pathology, we 

also compared CSF measurements to a composite measure of the average SUVR values of 

regions with significantly higher retention in LBD over HC- as well as a composite measure 

average SUVR regions implicated in traditional Braak tau staging (hippocampus, entorhinal 

cortex, inferior temporal gyrus, middle temporal gyrus, angular gyrus, middle frontal gyrus, 

and calcarine cortex). Sub-analyses were performed after the removal of outlier values 

defined as > ±2 SD from the mean. P<0.05 was observed as the statistical threshold for the 

hypothesis driven CSF and neuropsychological analyses. Statistical analysis was performed 

using STATA v15.1 (College Station, TX). All procedures were performed under protocols 

approved by the University of Pennsylvania Institutional Review Board.

Results:

Patient Characteristics:

Patient characteristics are described in Table 1. There were more female participants in the 

AD+Aβ and HC-Aβ group than in the LBD cohort (χ2(1)= 11.5, 5.8, p=0.001, 0.03 

respectively), and therefore we covary for sex in all subsequent analyses. LBD+Aβ 
participants performed worse than LBD-Aβ on MMSE testing (t(18)=2.4, p=0.03) and had 

fewer years of education (t(18)=3.4, p=0.004) but otherwise there were no differences in 

characteristics. There were no significant differences in age at PET scan or MMSE testing 

between AD+Aβ and the full LBD cohort as designed.

Comparative 18F-flortaucipir Retention

Group 18F-flortaucipir retention patterns in HC-Aβ, LBD, and AD+Aβ are shown in Figure 

1 and individual values are shown in Figure 2. The total LBD group showed mild 18F-

flortaucipir retention in posterior temporal-parietal regions with total SUVR significantly 

elevated compared to HC-Aβ (HC-Aβ mean cortical SUVR 1.09, SD 0.07. LBD total cohort 

mean cortical SUVR 1.16, SD 0.12 β=0.43, t(34)=2.3, p=0.03). Next, we examined 

biomarker-defined subgroups of LBD and found higher total mean cortical 18F-flortaucipir 

SUVR in LBD+Aβ relative to HC-Aβ (LBD+Aβ mean cortical SUVR 1.19, SD 0.15. 

β=0.55, t(25)=2.4, p=0.02) and only a trend towards significance between LBD-Aβ and HC-

Aβ (LBD-Aβ mean cortical SUVR: 1.11, SD 0.06. p=0.07). We observed two cases with 

high SUVR in the LBD+Aβ group; when these cases were removed from analysis, there was 

still significantly higher mean cortical SUVR in LBD+Aβ over HC-Aβ (β=0.53, t(23)=2.5, 
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p=0.02). In regional analyses, 18F-flortaucipir retention was higher in LBD+Aβ than HC-Aβ 
in five regions (angular gyrus, lingual gyrus, calcarine cortex, occipital fusiform gyrus, 

middle frontal gyrus; p<0.01) and did not show increased retention in the medial temporal 

areas (see Figure 2 and Figure 3; similar results were observed without hemispheric 

averaging, Supplemental Table 1). LBD-Aβ had higher uptake than HC-Aβ in the superior 

frontal gyrus alone (p=0.002). In the matched AD+Aβ group, we found higher mean cortical 
18F-flortaucipir retention (AD+Aβ mean cortical SUVR 1.40, SD 0.42. β=0.24, t(26)=2.4, 

p=0.03) and regionally higher retention in six regions (angular gyrus, basal forebrain, 

entorhinal cortex, fusiform gyrus, hippocampus, parahippocampal gyrus) compared to HC-

Aβ (Figure 4). The AD+Aβ group had similar average cortical 18F-flortaucipir SUVR to 

LBD patients (versus LBD-Aβ: p=0.20. Versus LBD+Aβ: p=0.40). AD+Aβ had 

significantly higher unadjusted hippocampal retention mean SUVR 1.46 SD 0.25) than LBD

+Aβ and trended towards increase over LBD-Aβ (versus LBD+Aβ: mean SUVR 1.15 SD 

0.11 p=0.008. Versus LBD-Aβ: mean SUVR 1.15 SD 0.19 p=0.07) (Figure 4). We did not 

observe any regions of higher retention in LBD+Aβ than AD+Aβ, LBD-Aβ than LBD+Aβ 
or AD+Aβ, or in HC-Aβ relative to AD+Aβ, LBD+Aβ or LBD-Aβ.

Regarding the hippocampus specifically, when using the methods described in Baker et al. 

2019 was utilized to account for off-target choroid plexus binding, AD+Aβ had higher 

hippocampal retention than both LBD-Aβ and LBD+Aβ (AD+Aβ mean 1.31 SD 0.23 

versus LBD-Aβ mean 0.96 SD 0.17, p=0.02. Versus LBD-Aβ mean 0.95 SD 0.10, p=0.001) 

(Baker et al., 2019) (β=0.33, t(20)=2.7, p=0.02) (see Supplemental Table 2). While there 

was a modest but significant correlation between choroid plexus and hippocampal retention 

using non-PVC values (R2=0.06 p=0.02), this was not observed when PVC was employed 

(R2=0.01, p=0.27). There were no differences in choroid plexus binding between groups 

using either non-PVC or off-target corrected values (Supplemental Table 3).

In vivo Tau and Neuropsychological Performance

In domain-specific analyses within the LBD cohort, reduced MINT confrontation naming, 

was inversely related to increased left middle temporal gyrus retention (β=−0.45, t(19)=

−2.14, p<0.05). Additionally, reduced performance on the Benson figure copy, was inversely 

related to increased right angular gyrus retention (β=−0.52, t(19)=−2.61, p=0.02). We 

observed a trend toward increased mean cortical 18F-flortaucipir retention with increased 

CDR-SOB (β=0.51, t(14)=1.96, p=0.08) and a significant association of 18F-flortauripir 

retention in the Braak tau pathology associated regions and CDR-SOB scores (β=0.71, 

t(14)=3.10, p=0.01). We did not find associations of mean cortical retention and MMSE, 

letter fluency and middle frontal gyri retention or between Benson figure delayed recall and 

hippocampal retention (p>0.05 with either PVC or non-PVC values).

18F-flortaucipir Retention and CSF Tau Biomarkers

In the LBD cohort elevated mean cortical 18F-flortaucipir uptake was associated with 

increased CSF t-tau levels (β=0.40, t(19)=2.2, p=0.045), but was not with CSF p-tau 

(β=0.28, t(19)=1.3, p=0.20). Increased 18F-flortaucipir retention was inversely associated 

with CSF Aβ42 (β=−0.59, t(19)=−2.9, p=0.01) (Figure 5). Next, because total SUVR values 

may obscure associations with focal regions of retention, we performed a focused analysis 
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using the average SUVR values of the six regions with elevated retention in LBD over HC-

Aβ and observed similar associations (t-tau: β=0.41, t(19)=2.2, p=0.04. p-tau: β=0.29, 

t(19)=1.3, p=0.2. Aβ42: β=−0.56, t(19)=−2.6, p=0.02). Finally, we tested the association of 

CSF and 18F-flortaucipir retention in the LBD+Aβ subgroup alone and found associations in 

t-tau (β=0.63, t(10)=2.8, p=0.03), but not p-tau (β=0.37, t(10)=1.2, p=0.3) or Aβ42 (β=

−0.61, t(10)=−2.1, p=0.08). To exclude the possibility that outlier cases with high 18F-

flortaucipir or CSF values are driving these associations we performed similar analyses after 

excluding data >±2.0 SD from the mean of each and found similar results (t-tau: β=0.62, 

t(17)=2.7, p=0.02, p-tau: β=0.50, t(17)=1.8, p=0.09, Aβ42: β=−0.68, t(16)=−2.8, p=0.02). 

We additionally observed similar associations when comparing SUVR values from regions 

implicated in traditional Braak tau staging (t-tau: β=0.48, t(19)=2.7, p=0.02. p-tau: β=0.37, 

t(19)=1.77, p=0.10. Aβ42: β=−0.66, t(19)=−3.31, p=0.004).

18F-flortaucipir Retention and Neuropathologic Tau

Both autopsy cases had diffuse/neocortical Lewy body pathology(McKeith et al., 2017). β-

amyloid Thal phasing and CERAD scoring are found in Figure 6. Case 1 had neurofibrillary 

tau restricted to the hippocampal cornu ammonis and entorhinal cortex (Braak stage II: B1) 

with mean cortical 18F-flortaucipir SUVR of 1.05. Case 2 had neurofibrillary tau pathology 

in the gray matter of limbic and all neocortical areas except visual cortex (Braak stage V: 

B3) with mean cortical 18F-flortaucipir uptake of 1.48. Digital histological measurements 

showed that regions with higher total tau%AO and higher neurofibrillary tangle%AO 

generally had higher 18F-flortaucipir retention whereas such patterns were not observed for 

Aβ or SYN (Figure 6).

Discussion

We examined 18F-flortaucipir retention patterns in LBD patients with cognitive impairment 

compared to amyloid PET-negative healthy controls and amyloid PETpositive AD patients 

from the ADNI study matched on age and cognitive impairment. This is a unique 

multimodal study of 18F-flortaucipir PET imaging, biofluid tau markers, and 

neuropathological tau in LBD. We find several regions of increased 18F-flortaucipir retention 

in LBD patients with CSF measurements consistent with cerebral amyloidosis (LBD+Aβ) 

while LBD patients with normal CSF measurements (LBD-Aβ) had fewer compared to 

healthy controls. Areas of increased retention were of intermediate degree and largely in 

temporal, parietal, and occipital lobes with sparing of medial temporal lobe structures, which 

are more heavily affected in AD. 18F-flortaucipir retention correlated with region-specific 

cognitive measures, suggesting that tau pathology in LBD is clinically relevant. There were 

moderate correlations of global and regional SUVR with CSF t-tau levels and in two autopsy 

cases, regional neuropathological tau burden measured by digital histology appeared to be 

higher in areas with increased 18F-flortaucipir retention. These data provide novel insights 

into the in vivo clinical correlates of tau pathology in LBD, and while the clinical utility of 
18F-flortaucipir remains to be determined, our observations have important research 

implications for the biomarker classification of LBD patients.
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While it has recently been established that 18F-Flortaucipir retention relates to 

neuropathological deposition of tau in Alzheimer’s disease(Fleisher et al., 2020), its use in 

other disease states is still investigational (Ossenkoppele et al., 2018; Tsai et al., 2019; 

Whitwell et al., 2017; Whitwell et al., 2020). Previous investigations of 18F-flortaupcipir in 

LBD show retention values that are typically intermediate between healthy controls and AD 

with retention being most commonly elevated in temporo-parietal regions (Gomperts et al., 

2016; Kantarci et al., 2017; Lee et al., 2018; Smith et al., 2018). We similarly found that 

temporo-parietal and occipital regions in the LBD+Aβ cohort exhibited increased 18F-

flortaucipir retention in our data-driven approach to selecting LBD specific regions for 

further correlative analyses with CSF markers. Additionally, these findings mirror our recent 

digital histology post-mortem work where LBD patients with moderate/severe levels of AD 

neuropathologic change showed intermediate density of tau pathology compared with AD 

with relatively increased concentrations in the temporal lobe(Coughlin, D. et al., 2019). 

Since standard neuropathological sampling is relatively sparse compared to whole-brain in 

vivo analyses, there is scant histopathological data to further guide the definition of LBD-

associated regions for tau uptake. Future work in larger datasets will examine the 

relationship between CSF tau analytes and regional distribution of tau between AD and 

LBD-associated cortical regions. It is important to note that patients with PD and PD-MCI 

are most frequently cited as having similar 18F-flortaucipir retention as healthy controls and 

only some of those with PDD and DLB have elevated retention (Gomperts et al., 2016; 

Hansen et al., 2017; Kantarci et al., 2017; Lee et al., 2018; Winer et al., 2018). This is not 

unexpected given the known associations of greater likelihood of more significant tau 

burdens in PDD and DLB (Coughlin, D.G. et al., 2019; Irwin, D. J. et al., 2017). Thus, the 

use of 18F-flortaucipir in LBD may be relegated to detection of co-pathology in patients with 

cognitive impairment, such as the subjects included in this study. In this study, we employed 

a novel biomarker classification approach using a CSF Aβ42 cut point to enrich the LBD

+Aβ group for cases likely harboring tau pathology. While our approach to use CSF 

delineation is unique, others have used amyloid-PET in a similar manner and find that 

most(Lee et al., 2018), but not all (Gomperts et al., 2016; Kantarci et al., 2017) LBD patients 

with positive amyloid-PET scans also have increased 18F-flortaupcipir retention. It is unclear 

if this dissonance is due to decreased sensitivity of amyloid-PET for diffuse plaques(Burack 

et al., 2010) commonly seen in LBD, or if tau deposition could occur independently of 

amyloidosis in LBD. Further longitudinal work is needed to resolve the dynamic profiles of 

tau and Aβ in LBD. Our study, in contrast to previous, uses biomarker-defined reference 

cohorts and matching of an AD group by cognitive impairment in an attempt to control for 

disease severity, which may explain the more modest differences between the AD+Aβ group 

vs LBD patients documented elsewhere.

In LBD, AD co-pathology is related to decreased survival(Coughlin, D. et al., 2019; Irwin, 

D. J. et al., 2017; Irwin et al., 2012; Jellinger et al., 2002; Wakisaka et al., 2003) and to 

specific cognitive and motor features(Coughlin, D. et al., 2019; Jellinger et al., 2002; 

Kraybill et al., 2005; Peavy et al., 2016). Confrontation naming has been previously linked 

to AD co-pathology in LBD(Coughlin, D. et al., 2019; Peavy et al., 2016) and visuospatial 

dysfunction is considered a core clinical feature of dementia in LBD(Emre et al., 2007; 

McKeith et al., 2017). In DLB, higher levels of tau pathology are associated with a lower 
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likelihood of visual hallucinations and cognitive fluctuations, which has led to the 

incorporation of tau pathology into the neuropathological assessment of DLB(McKeith et 

al., 2005). In our recent study using digital histologic methods in LBD with dementia, we 

found that pathologic tau was the strongest correlate of global and domain-specific cognitive 

dysfunction(Coughlin, D. et al., 2019). Here we find regional 18F-flortaupcipir retention 

correlated with domain-specific measures of cognition, including confrontation naming with 

temporal lobe retention and visuospatial functioning with angular gyrus retention. A prior 

study in LBD found parietal lobe retention associated with verbal fluency(Smith et al., 

2018). We did not find an association of hippocampal SUVR and episodic memory, which 

may be due to sample size, heterogeneity, or imaging methods in this initial report. These 

findings add to the growing literature of detrimental influence of tau co-pathology on 

cognition in LBD.

We find here novel evidence for higher 18F-flortaucipir retention in LBD patients with an 

amyloid CSF biomarker profile. The interpretation of AD CSF biomarkers in LBD is not 

fully clear and, in some instances low CSF Aβ may be associated with pure synucleinopathy 

without postmortem plaques(Irwin et al., 2018). Our group previously found an association 

of CSF t-tau, but not p-tau with postmortem tau pathology in autopsy-confirmed LBD 

patients(Irwin et al., 2018). The relationship between CSF tau and 18F-flortaucipir imaging 

in LBD is understudied; although, an association has been suggested in AD(La Joie et al., 

2018; Mattsson et al., 2018). We find novel evidence for a potential linear relationship of 

CSF t-tau levels but not p-tau with 18F-flortaucipir retention. The distinction between CSF t-

tau and p-tau in LBD may be due to methodological issues with CSF assays and further 

work is needed to fully resolve the relationship between these biomarkers in LBD.

In the two patients with autopsies we found higher mean cortical SUVR in the patient with 

advanced Braak tau stage V (1.48) compared to the patient with low level Braak tau stage II 

(1.05). Using digital analysis we found overall greater regional microscopic tau pathology in 

postmortem tissue obtained from regional measurements of higher 18F-flortaucipir retention 

during life, as have others(Lowe et al., 2019). There was some discrepancy in the anterior 

cingulate cortex of case 2, which had low retention despite high tau burden. Region-specific 

areas of the brain may have different retention rates. Regional standardization, while beyond 

the scope of the current study, may resolve these discrepancies(Vemuri et al., 2017). It 

remains to be determined whether 18F-flortaucipir provides a continuous marker of tau 

severity or a categorical marker. Indeed a recent clinico-pathological study suggested that 

visual reads have a high sensitivity and specificity for B3 pathology, but quantitative SUVR 

analyses were only exploratory (Fleisher et al., 2020). Likewise, while amyloid approaches 

like florbetapir are typically also interpreted categorically based on validated visual reads 

(Clark et al., 2012) there is mounting evidence that continuous measurements of sub-

threshold amyloid may have clinical utility (McMillan and Chételat, 2018). Thus, while two 

cases in our series appear to have categorically elevated 18F-flortaucipir retention relative to 

the remainder of the cohort, our continuous analyses excluding these cases still appears to 

support a linear association between 18F-flortaucipir tau measurements of tau load and 

clinical features of LBD (Figure 4).
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There are limitations to this study. While we had rare multimodal in vivo imaging and 

biofluid assessments and used a unique biomarker-based approach to classify subjects, we 

had relatively small numbers of participants which limited complex statistical modelling. 

Not all of the LBD participants had DaT SPECT scans or autopsies to aid in the 

confirmation clinical diagnosis; however, the criteria of probable PD and DLB are currently 

felt to be highly specific(Rizzo et al., 2018; Rizzo et al., 2016). We used AD+Aβ patients 

from the ADNI study, which introduces variability in imaging protocols. In spite of this 

variability, we found biologically relevant regional elevations in AD+Aβ group. We sought 

to compare 18F-flortaucipir retention between LBD subjects and AD which necessitated an 

attempt to control for the effects of both age and disease severity. Given that the LBD cohort 

was generally younger with relatively preserved MMSE, there were a low number of ADNI 

subjects who had underwent 18F-flortaucipir PET scans and met our criteria at the time this 

dataset was downloaded. While the difference in MMSE between AD and LBD groups was 

statistically non-significant, a larger standard deviation in the AD+Aβ group is noted. By 

using these strict criteria that selected for younger and less impaired ADNI cases, some of 

the AD+Aβ cases had low levels of 18F-flortaucipir retention and likely A+/T−/N− or A+/T

−/N+ patients (Jack et al., 2016). In spite this stringent approach, we still saw higher global 

retention in the AD+Aβ group than LBD-Aβ and HC-Aβ subjects and robust differences in 

regional 18F-flortaucipir retention in areas known to be affected by AD tau pathology as 

others have using patient cohorts with greater cognitive impairment (Fleisher et al., 2020; 

Lee et al., 2018; Nasrallah et al., 2018; Ossenkoppele et al., 2018; Ossenkoppele et al., 2016; 

Pontecorvo et al., 2017; Whitwell et al., 2017). Thus, more permissive inclusion will likely 

only strengthen the findings seen here, but studies larger cohorts of patients with multi-

modal characterization will still be necessary to confirm these findings. 18F-flortaucipir is 

known to have off-target binding affecting the choroid plexus, and while we attempt to 

correct for this using PVC values in our primary analysis, some effect on our findings cannot 

be fully ruled out. We did not observe any significant differences in our analyses when using 

PVC or non-PVC values from either method described here, suggesting a minimal effect of 

off-target binding on the observed results (Supplemental Table 2). While we observe 

differential retention in hippocampus between AD and LBD, and interpretation of 

hippocampus retention requires caution due to well established off-target choroid plexus 

retention, we have no reason to expect that this off-target retention would be different across 

groups. While there are unavoidable time delays between in vivo imaging and postmortem 

assessments, we had a short PET-autopsy interval in these patients (5 and 8 months) and our 

regional ROI measures approximate postmortem sampling to enhance imaging-path 

correlations(Giannini et al., 2019; Irwin et al., 2016a; Irwin, David J et al., 2017; McMillan 

et al., 2013; McMillan et al., 2016). At this time, neuropathologic results should be viewed 

as preliminary and larger post-mortem validation studies in LBD are needed to confirm our 

observations.(Lowe et al., 2019). Finally, the accumulation of these pathologies in the brain 

are dynamic processes and longitudinal data in patients followed to autopsy are necessary to 

clarify the progression of plaque and tangle pathology in LBD. As current efforts in AD 

focus on biologically-driven subgroups (i.e. Amyloid/Tau/Neurodegeneration; A/T/N 

framework(Jack et al., 2016)) to facilitate homogeneity in clinical trials, a similar research 

approach in LBD may help identify patients with mixed pathology and worse prognosis. 

This report provides new data suggesting 18F-flortaucipir may have a role in detecting tau 
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co-pathology in LBD with cognitive impairment and subsequent studies are warranted to 

address its clinical relevance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• LBD has moderate intensity 18F-Flortaucipir retention in temporo-parietal 

regions

• LBD with low CSF Aβ42 has more regions of elevated 18F-Flortaucipir 

retention

• In LBD, 18F-Flortaucipir retention relates to CSF total-tau

• In LBD, regional 18F-Flortaucipir retention relates to cognitive dysfunction

• In LBD, neuropathologic tau is higher in regions with greater retention
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Figure 1: Heatmap of 18F-flortaucipir Retention
Average 18F-flortaucipir uptake for each group is shown in coronal sections. LBD+Aβ has 

higher uptake than HC-Aβ in posterior regions, indicated by white arrows. LBD-Aβ is very 

similar to HC-Aβ. LBD uptake in both LBD-Aβ and LBD+Aβ is less than AD+Aβ.
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Figure 2: 18F-flortaucipir Retention Values
Box-plots depict median, interquartile range and range of 18F-flortaucipir retention for A) 

average cortical regions b) average SUVR from those regions with elevated retention in 

LBD versus healthy controls, c) average SUVR from regions associated with traditional 

Braak tau staging. Brackets indicate ANOVA results while lines indicate significant 

differences between groups. * p<0.05, ** p<0.01.
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Figure 3: 18F-flortaucipir Retention Patterns in LBD versus HC-Aβ
Surface projections and representative coronal sections show t-values associated with the 

following comparisons in each region of interest: A) HC-Aβ versus LBD-Aβ, B) HC-Aβ 
versus LBD+Aβ, C) LBD-Aβ versus LBD+Aβ, with positive t-values corresponding the 

latter group in each comparison. LBD+Aβ has increased uptake over HC-Aβ in frontal, 

parietal, temporal, and occipital regions with relative sparing of the medial temporal lobes. 

The white broken line on the t-value color scale indicated the t-value relating to p=0.01. No 

negative t-values reached significance. Example coronal slices show regional t-values 

projected onto the standardized brain atlas derived from Montreal Neurological Institute 

(MNI) with labeled y-axis coordinates.
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Figure 4: 18F-flortaucipir Retention Patterns in AD+Aβ versus HC-Aβ and LBD
Surface projections and representative coronal sections show t-values associated with the 

following comparisons in each region of interest: A) C) HC-Aβ versus AD+Aβ, B) LBD-Aβ 
AD+Aβ and C) LBD+Aβ versus AD+Aβ with positive t-values corresponding to the latter 

group in the comparison. AD+Aβ has increased uptake over HC-Aβ in medial temporal lobe 

areas as well as temporal, frontal and parietal regions. AD+Aβ has higher uptake that LBD 

in the hippocampus. A white line on the t-value scale marks the level corresponding to 

p=0.01 in this analysis. No negative t-values reached significance. Example coronal slices 

show regional t-values projected onto the standardized brain atlas derived from Montreal 

Neurological Institute (MNI) with labeled y-axis coordinates.
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Figure 5: Relationship of CSF measurements to 18F-flortaucipir Retention in LBD
A-C): Scatterplots showing relationship between mean cortical 18F-flortaucipir retention, D-

F) average 18F-flortaucipir retention in the six regions with elevations in LBD compared to 

HC-Aβ, G-I) average 18F-flortaucipir retention in regions implicated in traditional Braak tau 

staging, and log transformed values of CSF Aβ42, t-tau, and p-tau. Linear prediction is 

shown in green with 95% confidence intervals shown in gray shaded region. We performed 

similar models after excluding data > ± 2.0 SD from the mean of CSF or PET data (marked 

by asterisks).
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Figure 6: Relationships Between 18F-flortaucipir Retention and Neuropathology
A) Neuropathologic characteristics and staging for Tau, Aβ, and synuclein pathology and 

coronal images from 18F-flortaucipir PET scans from each case.

B) Representative images of slides stained for Tau (AT8), Aβ (Nab228), and SYN (MJF 

R13) and the digital overlay of the detection algorithms used to generate % area occupied 

values.

C) Relationship between 18F-flortaucipir retention and % area occupied of for Tau (AT8), 

Aβ (NAB228), and SYN (MJF R-13). Tau was additionally assessed by neurofibrillary 

tangle counts per mm2 Abbreviations: ACG: anterior cingulate gyrus, AMG: amygdala, 

ANG: angular gyrus, CALC: calcarine cortex, ENT: entorhinal cortex, HIPP: hippocampus, 

NFT: neurofibrillary tangle, MFG: mid frontal gyrus, STG: superior temporal gyrus
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Table 1:

Patient Demographics

HC-Aβ (n=15) LBD Total (n=20) LBD-Aβ (n=9) LBD+Aβ (n=11) AD+Aβ (n=12)

Clinical Phenotype, count NA DLB: 15
PD-MCI: 4

PDD: 1

DLB: 6
PD-MCI: 3

DLB: 9
PD-MCI: 1

PDD: 1

Dementia: 7
MCI: 5

Sex
*
, count

Male: 8
Female: 7

Male: 17
Female: 3

Male: 7
Female: 2

Male: 10
Female: 1

Male: 3
Female: 9

Race, count White: 13
Black: 2

White: 20 White: 9 White:11 White:12

Age of Onset NA 62.8 (6.2) 61.7 (6.4) 63.6 (6.3) 62.0 (9.2)

Disease duration at scan
a NA 5.4 (3.5) 6.2 (3.0) 3.9 (2.9) 9 (4.9)

Age at scan 72.7 (6.0) 67.7 (5.6) 67.9 (6.6) 67.5 (4.9) 71.4 (5.9)

Education# 14.5 (3.1) 15.7 (2.5) 17.3 (1.7) 14.3 (2.3) 15.9 (3.0)

MMSE
b† 29.3 (0.9) 27.0 (2.7) 28.4 (1.1) 25.8 (3.1) 24.3 (5.6)

CDR-Sum of Boxes‡ 0 (0) N=15
4.87 (2.8)

N=7
3.64 (1.5)

N=8
5.94 (3.4)

4.25 (3.1)

Data shown is mean (SD) from the entirety of the group unless otherwise specified.

NA: not applicable. There were no significant differences in age at scan, MMSE, or CDR-Sum of boxes between the AD+Aβ group and the LBD 
total cohort.

*:
Fisher exact Chi2 p=0.005.

#:
ANOVA F(3,43)=3.0, p=0.04.

†
ANOVA F(3,43)=6.1, p=0.002.

‡
ANOVA F(3,37)=10.7, p<0.001

a:
time from MCI onset used for AD+Aβ.

b:
MMSE closest to PET scan was assessed. If a MoCA was performed closer to PET scan, MoCA score was converted to equivalent MMSE score
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