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Abstract

Purpose of review—Several types of Escherichia coli cause acute diarrhea in humans and are 

responsible for a large burden of disease globally. The purpose of this review is to summarize 

diarrheagenic Escherichia coli (DEC) pathotype definitions and discuss existing and emerging 

molecular, genomic, and gut microbiome methods to detect, define, and study DEC pathotypes.

Recent findings—DEC pathotypes are currently diagnosed by molecular detection of unique 

virulence genes. However, some pathotypes have defied coherent molecular definitions because of 

imperfect gene targets, and pathotype categories are complicated by hybrid strains and isolation of 

pathotypes from asymptomatic individuals. Recent progress toward more efficient, sensitive, and 

multiplex DEC pathotype detection has been made using emerging PCR-based technologies. 

Genomics and gut microbiome detection methods continue to advance rapidly and are contributing 

to a better understanding of DEC pathotype diversity and functional potential.

Summary—DEC pathotype categorizations and detection methods are useful but imperfect. The 

implementation of molecular and sequence-based methods and well-designed epidemiological 

studies will continue to advance understanding of DEC pathotypes. Additional emphasis is needed 

on sequencing DEC genomes from regions of the world where they cause the most disease and 

from the pathotypes that cause the greatest burden of disease globally.
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INTRODUCTION

Escherichia coli is one of the most important and widely studied etiologic agents of diarrhea 

worldwide [1-4]. Though usually a benign member of the commensal gut microbiota [5], 

some E. coli strains have horizontally acquired virulence characteristics that enable them to 

cause diarrheagenic and extraintestinal illness in humans and other animals [6]. Human 

diarrheagenic E. coli (DEC) with specific combinations of virulence traits are grouped into 

pathotypes, each with unique host preferences, global prevalence, disease burdens, and 
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modes of transmission [7]. DEC pathotypes include the enterotoxigenic E. coli (ETEC), 

enteropathogenic E. coli (EPEC), Shiga toxin producing E. coli (STEC), enteroinvasive E. 
coli (EIEC), enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC).

Precise definitions for each pathotype are important to effectively diagnose and treat DEC 

infections, design vaccines, and understand pathotype-specific disease burdens. However, E. 
coli strains within each pathotype are genetically heterogenous, and some have defied 

coherent molecular definitions of pathogenicity [8-10]. Pathotype definitions are 

complicated by the frequent isolation of pathogenic E. coli from individuals who are 

asymptomatic for acute diarrhea [11], and the existence of hybrid strains [12]. It is critical 

that DEC detection methods are as sensitive and specific as possible, which requires 

accurate and comprehensive characterization of each pathotype. Several excellent reviews 

have summarized research efforts for DEC pathotypes [e.g. 2,7,12,13]. Here we provide a 

brief overview of DEC pathotype definitions and provide updates on current and emerging 

technologies used to detect and define DEC.

DEC PATHOTYPES

In this section we provide a brief overview of the gene targets most commonly used to detect 

the six DEC pathotypes and discuss hybrid pathotypes. Additional pathotype characteristics 

are summarized in Table 1.

ETEC

ETEC causes loose, watery stools in children in low- and middle-income countries (LMICs) 

and travelers to endemic regions. Diagnosis relies on the presence of colonization factors or 

enterotoxin genes, usually the heat-labile (lt) and heat-stable (sta) enterotoxins [14]. The 

presence of either or both the lt and sta toxin genes defines ETEC strains [14,15], and the 

contribution of both hemolysins to ETEC pathogenicity has been demonstrated in 

epidemiological and volunteer studies [e.g. 16-18].

EPEC

Like ETEC and most other DEC pathotypes, EPEC is often associated with watery diarrhea 

in children in LMICs. EPEC virulence genes are encoded on the chromosomal locus of 

enterocyte effacement (LEE) pathogenicity island [19], and detection centers on the LEE-

encoded intimin gene eae [20]. Some EPEC strains also carry the EPEC adherence factor 

plasmid (pEAF), which encodes the bundle-forming pilus gene bfp [13]. Strains that are bfp
+ are termed typical EPEC (tEPEC), and strains that are bfp− are defined as atypical EPEC 

(aEPEC) [21].

STEC/EHEC

STEC cause mild or bloody diarrhea, often accompanied by fever and vomiting. Infections 

are usually self-limiting, but the STEC subtype enterohemorrhagic E. coli (EHEC) is 

frequently linked to life-threatening foodborne disease outbreaks. STEC strains are defined 

by the presence of the phage-encoded Shiga toxin, and EHEC strains have additional 
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virulence factors whose expression results in hemorrhagic colitis (bloody diarrhea) and, in 

some cases, life-threatening hemolytic uremic syndrome (HUS). All EHEC are STEC but 

not all STEC are EHEC. STEC diagnosis relies on the molecular detection of Shiga toxin 

variants (stx genes) and accessory virulence genes, including markers encoded by the LEE 

pathogenicity island also present in EPEC. Diagnostic methods for EHEC strains often 

target plasmid-encoded hemolysin genes [22,23]. Serotyping is used for the identification of 

E. coli O157:H7 and other EHEC strains that often cause food-related outbreaks [24,25].”

EIEC

Diarrhea caused by EIEC occurs worldwide but is especially common in children in LMICs 

[22-24]. The clinical presentation and virulence mechanisms of EIEC are indistinguishable 

from those initiated by closely-related Shigella spp. and both EIEC and Shigella carry the 

pINV F-type plasmid which encodes the genes necessary for enteroinvasive pathogenesis 

[22,25]. Molecular detection of the pINV-encoded gene ipaH, a type-III effector protein, is 

used to differentiate Shigella and EIEC from other pathotypes [26,27]. EIEC isolates are 

distinguished from Shigella using biochemical characteristics [27] or molecular assays, 

many of which detect the E. coli-specific lacY gene [22,28,29].

EAEC

EAEC is an emerging diarrheagenic and extraintestinal pathogen that affects all age groups 

and is prevalent in industrialized and LMIC settings. The pathogenicity and clinical 

relevance of EAEC are questionable because asymptomatic carriage is common and 

volunteer studies have inconsistently linked ingestion to diarrhea [30,31]. EAEC cells adhere 

to each other and host intestinal epithelial cells during infection, forming a characteristic 

stacked-brick or honeycomb formation when cultured on HEp-2 cells [9,32]. The 

microscopic HEp-2 cell assay is considered the gold standard for EAEC diagnosis [13]. 

Several molecular targets have also been used for detection, but there is significant diversity 

within the EAEC pathotype and a coherent molecular definition of EAEC does not yet exist 

[33]. Frequently used marker genes for EAEC include aatA, a plasmid-encoded gene 

important for biofilm formation, aggR, a plasmid-encoded transcriptional activator, and 

aaiC, a gene located on a genomic island with a type-VI secretion system [34-36]. To date 

the best definition of EAEC may be the presence of the aggregative pattern in the HEp-2 

assay and the lack of markers associated with other pathotypes [13,37]. Whole genome 

studies of EAEC isolates are needed in order to further define gene targets and the molecular 

epidemiology of EAEC.

DAEC

There is epidemiological evidence linking DAEC to diarrhea in children in LMICs, but, like 

EAEC, its status as a diarrheal disease agent is uncertain due to inconclusive challenge 

studies and high rates of asymptomatic carriage [38-40]. Methodologies for DAEC detection 

are not well-defined because strains are heterogenous and DAEC-specific molecular 

characteristics have not been established. DAEC were first defined by their distinctive 

pattern of diffuse adherence to cells in culture [32,41]. However, this pattern of cell adhesion 
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is not suitable for diagnosis because some aEPEC strains also have this phenotype [42]. 

DAEC strains have also been defined based on the presence of adhesin genes encoded by the 

afa, dra, or daa operons, which are structurally and functionally similar to one another 

[8,43]. Molecular assays to detect daaC, daaE, afaB, afaC, and other genes in the afa, dra, 

and daa operons have been developed, but are cross-reactive with well-characterized EAEC 

genes [8]. As with EAEC, whole-genome sequencing studies coupled with epidemiological 

data are needed to better characterize DAEC.

Hybrid strains

Several studies have identified hybrid strains that carry genes associated with multiple DEC 

pathotypes. These include Shiga toxin-producing EAEC strains, which have caused disease 

outbreaks in Europe [44,45], as well as Shiga toxin-producing ETEC in livestock [46,47], 

EPEC strains that carry the ETEC lt hemolysin gene [48], and aEPEC strains that encode 

genes typically found in extraintestinal pathogenic E. coli (ExPEC) [49]. Hybrid strains are 

relatively rare, which is perhaps surprising given the mobile nature of DEC virulence genes 

[50], but are important examples of the limitations of DEC pathotype designations.

RECENT ADVANCES IN DIAGNOSTIC METHODS

We focus here on research efforts to detect and define DEC pathotypes, citing recent studies 

that have used established and novel applications of PCR- and sequence-based assays.

Molecular methods

PCR-based molecular methods are widely used to detect and study DEC because they are 

sensitive, specific, and relatively rapid and easy to use. Both conventional and real-time 

quantitative PCR (qPCR) are widely used for molecular detection of DEC virulence factors. 

In contrast to conventional PCR, in which PCR products are visualized using gel 

electrophoresis, qPCR amplification is measured via fluorescent reporter molecules and 

targets are quantified relative to a standard curve. Recent qPCR-based DEC research efforts 

include the development of multiplex qPCR assays for DEC and other enteropathogens 

[51,52] and new assays to detect all known subtypes of Shiga toxin genes [53].

Newer tools are also being used for DEC pathotype detection. These include Luminex and 

BioFire panels designed to detect and diagnose an array of gastrointestinal pathogens. Both 

the Luminex and BioFire platforms take advantage of known DEC pathotype targets to 

deliver fast diagnostic results in clinical settings [54]. In addition to other common 

diarrheagenic pathogens, the Luminex panel detects ETEC, STEC, EHEC O157:H7, and 

Shigella/EIEC. The BioFire panel also detects ETEC, STEC, EHEC O157:H7, and Shigella/

EIEC, and has additional gene targets for EAEC and EPEC [55]. Other emerging methods 

such as digital droplet PCR (ddPCR) and Taqman Array Card technologies have contributed 

to improved amplification, detection, multiplexing, and automation capabilities for DEC 

pathotypes. In ddPCR, qPCR reactions are partitioned into thousands of oil droplets, 

enabling absolute target quantification and reducing sample inhibition. A comparison of 

ddPCR to conventional and qPCR methods for detecting the EIEC/Shigella gene target ipaH 
found that ddPCR shortened detection time and was 10X and 100X more sensitive than 
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conventional PCR and qPCR, respectively [56]. TAC relies on a microfluidic card to run 

qPCR assays for multiple gene targets simultaneously, effectively eliminating variability 

between methods, requiring less labor and time, and, most importantly, contributing to a 

better and more complete understanding of the prevalence and clinical relevance of diarrheal 

disease agents. TAC has most recently been used to identify DEC and other enteropathogens 

in travelers [57], U.S. military personnel [58], and children in LMICs [59,60], and studies 

have confirmed that TAC methods have good sensitivity and specificity for DEC gene targets 

[61-63]. The utility of TAC to study childhood diarrhea in LMIC settings has been 

demonstrated by its use in the GEMS (Global Enteric Multicenter Study) and MAL-ED 

(Malnutrition and Enteric Disease) studies [62-66], as well as its recent implementation in 

CHAMPS (Child Health and Mortality Prevention Surveillance) study sites in Asia and 

Africa [67].

Unfortunately, molecular diagnostics do not work well for all DEC pathotypes, in particular 

due to issues defining molecular targets for EAEC and DAEC. In addition, high rates of 

asymptomatic carriage in epidemiological studies indicate inconsistent relationships 

between marker gene presence and diarrhea symptoms [4,65]. qPCR and ddPCR are 

extremely sensitive, allowing for the detection of very small amounts of pathogen, which 

may or may not represent biologically or clinically relevant infections [11,65]. Also, while 

molecular methods have been increasingly implemented in LMICs, access to appropriate 

training, supplies, and equipment may be limited. Nonetheless, both established and 

emerging PCR-based methods are critical for detecting and diagnosing DEC pathotypes in 

both clinical and research settings.

Genomics

In contrast to molecular approaches that detect specific gene targets, genomic methods 

sequence all of the genetic material encoded in the bacterial genome. Genomics can be used 

to understand the structure, function, and relatedness of DEC pathotype strains, and genome-

based analyses can reliably predict DEC pathotypes, serotype, multilocus sequence type, and 

other characteristics [68,69]. Comparative genome analyses have been used to find new 

pathotype-specific and diarrhea-associated genes, investigate antibiotic resistance, and 

examine transmission pathways [70-75]. Results of whole-genome sequencing can be 

entered into disease surveillance database resources such as the CDC’s PulseNet [76] and 

FDA’s GenomeTrakr [77] to track disease outbreaks. Recent research efforts have identified 

unique plasmids, diverse colonization factors, pathotype and strain-specific gene 

duplications [17,78-80]. Comparative genomics studies are also used to investigate the 

virulence potential and origins of hybrid DEC pathotypes [49,81,82].

Microbial genomics continues to advance rapidly, but important limitations remain. Most 

genomic sequencing approaches require isolation of the microorganism of interest on culture 

media before sequencing. This culture-based step requires additional effort and time-to-

result. However, exceptions to the culture-based step of strain isolation have been 

demonstrated by studies in which high-quality bacterial genomes have been recovered 

directly from shotgun metagenomes [83,84] or using single cell sequencing [85]. Also, 

despite the ongoing rapid development and implementation of user-friendly sequencing 
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technologies and analysis pipelines, genome sequencing usually necessitates complex 

library preparation methods and data processing requires bioinformatics skills.

Perhaps the largest limitation of genomics is that taxonomic and functional annotation of 

sequence-based datasets relies on large public databases that have high levels of 

misannotation and uneven coverage of taxonomic groups [86]. While E. coli is the most 

widely studied organism in the world, DEC pathotypes are not evenly represented in 

sequencing databases. We demonstrated this by performing a blastn analysis of DEC 

pathotype genes against all complete and draft E. coli genomes in the NCBI Genome 

Database (Table 2). This exploration of DEC pathotype marker gene presence in published 

E. coli genomes indicates that some pathotypes (especially STEC/EHEC) may have higher 

representation in NCBI than others. STEC/EHEC prevalence in the NCBI Genome Database 

is perhaps unsurprising given their importance as foodborne pathogens in industrialized 

nations. However, EPEC and ETEC are the DEC pathotypes with the highest global burden 

of disease, and are closely linked to childhood mortality in LMICs [3,87], and additional 

sequencing efforts are needed for these pathotypes. Importantly, the global prevalence of 

DAEC and EAEC has been difficult to determine because the gene targets used to detect 

these pathotypes are not specific. Additional genome sequencing efforts are warranted in 

order to better define molecular targets for DAEC and EAEC.

DEC and the gut microbiome

Sequence-based gut microbiome studies of DEC infection can characterize pathogen-

induced shifts in the composition of the complex microbial communities of the gut. The two 

most widely used approaches for analyzing the gut microbiome are marker-based amplicon 

sequencing and whole-metagenome shotgun sequencing. Amplicon sequencing studies 

usually target the 16S ribosomal RNA (rRNA gene) and are used to characterize the 

taxonomic composition and diversity of microbial communities in the gut [88]. 16S rRNA 

sequencing has been used to investigate shifts in the gut microbiome during ETEC infection 

[89], but 16S gene studies generally do not have sufficient resolution to identify bacteria to 

the species level.

Shotgun metagenomes are obtained by sequencing the genome content of all microbes 

present in a sample and provide both taxonomic and functional gene information. In contrast 

to 16S rRNA marker-based sequencing, strain-level taxonomic resolution can be inferred 

using metagenomic data [90]. Recent studies demonstrate how metagenomic methods can be 

used to understand the implications of DEC infections. For example, a study that relied on 

shotgun metagenomes and PCR-pathotyped DEC isolates from an epidemiological study of 

DEC-associated diarrhea in Ecuador assembled high-quality E. coli genomes from 

metagenome data and used these to directly measure the population diversity of E. coli in the 

gut and the functional and virulence characteristics of DEC [84]. The potential and power of 

shotgun metagenome-based DEC pathotype detection has also been demonstrated in food 

and water samples [91,92].

As with genomics, annotation of gut microbiome data relies on database comparisons, and, 

though E. coli are well represented in reference databases, it is important to consider the 

implications of database biases and misannotations. Gut microbiome methods are not 
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currently practical in many LMIC settings due to significant equipment and training 

requirements, and are usually more time- and computationally-intensive than PCR-based 

detection methods. In addition, both marker-based and shotgun metagenome sequencing are 

considered only semi-quantitative. Thus, pathogen detection and quantification usually rely 

on quantitative PCR-based methods. However, emerging approaches for sequencing and 

analysis are contributing to faster and more quantitative gut microbiome methods [93-95]. 

Gut microbiome methods are helping to untangle the complex relationships between 

commensal and pathogenic bacteria in the host, and these efforts have important 

implications for future development of diagnostics, therapeutics, and vaccines.

CONCLUSIONS

Grouping DEC into pathotypes based on shared characteristics is useful in order to 

understand differences in the virulence mechanisms, prevalence, modes of transmission, and 

other characteristics associated with various subtypes. However, pathotype designations have 

limited capacity to accommodate DEC strains that do not neatly fit pathotype definitions, 

and genomics and metagenomics have and will continue to highlight the imperfections in 

classic DEC pathotype definitions while concurrently providing new information to help 

improve diagnostic methods and definitions. E. coli virulence determinants are horizontally 

acquired, and it is likely that gene losses and gains will continue to result in emerging 

pathogenic strains of DEC that do not align with current pathotype definitions. It is 

important to acknowledge and understand exceptions to DEC pathotype definitions and to 

continue to use molecular and sequence-based tools to understand the breadth of DEC 

diversity at both the strain and population levels. Continuing to do this in combination with 

well-designed epidemiological studies will help us to better understand DEC-associated 

disease outcomes and design treatment and intervention strategies to improve health 

outcomes.
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KEY POINTS

• Current diarrheagenic E. coli (DEC) pathotype definitions are based on 

molecular detection of pathotype-specific virulence genes, but these have not 

been well defined for all pathotypes.

• Existing and emerging PCR and sequence-based technologies continue to 

move forward efforts to diagnose and study DEC pathotypes.

• Additional sequencing efforts are needed for DEC pathotypes of global 

importance.

• Pathotype categorization is imperfect but useful for understanding differences 

in DEC pathogenicity, transmission, clinical presentation, and epidemiology.
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Table 2.

Blastn results for DEC pathotype-specific genes against all complete E. coli genomes (n=1,060) and all E. coli 
draft assemblies (n=18,195) in the NCBI Genome Database (accessed March 9, 2020).

Pathotype
Marker

gene
a Gene description

Number of
complete E.coli
genomes with

blastn hits
b

Number of E.
coli draft
genomes

with blastn

hits
b

Number of total
diarrheal deaths

in children <5

(%)
c

ETEC

eltA
Heat-labile enterotoxin, subunits A and B

24 474

23,649.8 (4.7)eltB 24 465

sta Heat-stable enterotoxin 27 279

EPEC
eaeA LEE-encoded intimin protein 9 159

11,284.3 (2.3)
bfpAd Plasmid-encoded bundle-forming pilus 1 91

EAEC
aggR Plasmid-encoded transcriptional activator 17 216

Not measured
aaiC Pathogenicity island-encoded secreted protein 2 127

DAEC
afaE-I

Afimbrial adhesin subunit, human-specific variants
7 70

Not measured
afaE-III 0 17

EIEC/Shigella ipaH pINV plasmid-encoded type-III effector protein 2 128 54,905.5 (11)
e

STEC/EHEC

stx1A

Shiga-like toxin variants, subunits A and B

126 2104

Not measured
stx1B 126 2095

stx2A 202 2970

stx2B 202 2438

a
Reference sequences downloaded from the Virulence Factors Database [96]

b
>90% query coverage and >90% sequence identity

c
From Global Burden of Disease Study 2015 [3], only reports values for ETEC, EPEC and Shigella

d
present in typical EPEC (tEPEC), absent in atypical EPEC (aEPEC)

e
for Shigella only
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