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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a major cause of 

chronic liver disease worldwide.1,2 Recently it has become evident 

that NAFLD not only increases the risk of chronic liver disease and 

primary liver cancer, but NAFLD has important implications for the 

development of diseases beyond the liver, such as type 2 diabetes 

mellitus (T2DM), cardiovascular disease and chronic kidney dis-

ease.3-5 The prevalence of NAFLD is increasing in parallel with the 

global rise in obesity and T2DM.6 NAFLD represents a spectrum of 

liver disease severity, beginning with the accumulation of triacylg-

lycerols in the liver (steatosis). Almost a quarter of individuals with 

steatosis develop liver inflammation and progress to non-alcoholic 

steatohepatitis (NASH). NASH is a potentially progressive liver 

condition and with ongoing liver injury and cell death can result in 

fibrosis and cirrhosis.
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The pathogenesis of NAFLD is complex and multifactorial, in-

volving environmental, genetic and metabolic factors. Given the 

well-known association between obesity and NAFLD, in recent 

years there has been a growing interest in the role of diet and the 

gut microbiome in the pathogenesis of NAFLD. The gut-liver axis 

is defined by the strong anatomical and functional interactions 

between the gastrointestinal tract and the liver. An important ele-

ment of this axis is the gut microbiome, which is involved in host 

nutrient metabolism, maintenance of structural integrity of the 

gut mucosal barrier and immunomodulation.7 Disturbance of the 

gut microbiome has been implicated in many disease processes, 

particularly those in which the gut-liver axis plays an important 

role, such as NAFLD. Similarly, dietary antigens have a major influ-

ence on the gut-liver axis, including modification of the gut micro-

biome, and therefore are implicated in the pathogenesis of 

NAFLD. This review summarises the current evidence supporting 

an association between NAFLD and the gut microbiome and di-

etary factors. The review also explores potential underlying mech-

anisms underpinning these associations and whether manipula-

tion of the gut microbiome is a potential therapeutic strategy to 

prevent or treat NAFLD.

GUT MICROBIOME

The intestinal lumen is naturally colonized by trillions of micro-

organisms from more than 1,000 species including bacteria, pro-

tozoa, archaea, fungi, and viruses.7 Advances in culture‐indepen-

dent microbiologic technology over the last decade have facilitated  

the characterisation of the composition and diversity of the bacte-

rial component of the gut microbiome. Although the profound 

variability between individuals’ gut microbiome complicates at-

tempts to define what is ‘normal’ microbiota, the most common 

bacterial phyla found in the faeces of healthy subjects are; Bacte-

roidetes (65.2%), Firmicutes (29.6%), Proteobacteria (2.9%), and 

Actinobacteria (0.5%).8 Early life plays an important role in estab-

lishing the gut microbiome, with both vaginal delivery (vs. caesar-

ean section) and breastmilk (vs. formula milk) demonstrating ben-

eficial effects on the gut microbiome composition.9,10 Early 

microbiota perturbation can lead to long-term deranged metabol-

ic phenotypes, including NAFLD and obesity.10,11 Later in life, the 

gut microbiome composition is dependent on many factors includ-

ing; genetics, age, diet and medications.12 Ageing is associated 

with alterations in the gut microbiome composition and reduced 

phylogenetic diversity, which has been postulated to partly under-

lie the pathogenesis and progression of various metabolic diseas-

es that are prevalent in old people such as adiposity, insulin resis-

tance, and NAFLD.13 Figure 1 shows the proportions of the 

phylum, class and genus of bacteria commonly found in the health 

gut.8,12,14-16

EVIDENCE FOR A ROLE OF DYSBIOSIS IN THE 
PATHOGENESIS OF NAFLD

The term dysbiosis refers to disruption of the normal gut micro-

biome that is associated with pathology within the host. Dysbiosis 

has been linked to several aspects of the metabolic syndrome, in-

cluding NAFLD.17,18 In NAFLD, early evidence linking gut dysbiosis 

with liver injury came from human studies showing an association 

between NASH and small intestinal bacterial overgrowth.19 More 

recent evidence, from both animal and human studies, indicates 

that microbial populations are altered in patients with NAFLD.

Several animal studies have demonstrated that dysbiosis is as-

sociated with more severe hepatic steatosis and hepatic inflam-

mation; these findings are summarised in Table 1.20-23 Even co-

housing non-dysbiotic mice with dysbiotic mice can lead to 

transfer of gut microbes and a subsequent exacerbation of 

NAFLD.21 Although dysbiosis is harmful, the presence of a healthy 

gut microbiome in animals has been shown to be protective 

against the development of NAFLD. For example, Cano et al.23 

demonstrated that inducing beneficial changes to the gut microbi-

ome with the probiotic Bifidobacterium pseudocatenulatum, re-

duced the risk of developing NAFLD in mice and Mazagova et al.24 

found that germ-free mice developed more severe experimental 

liver fibrosis compared to conventional mice, demonstrating that 

the presence of commensal gut microbes is hepatoprotective.

Several studies have explored the composition of the gut micro-

biome among cohorts of human subjects with varying stages of 

NAFLD.25-34 Table 2 summarises the overall characteristics of these 

studies and provides details regarding the specific microbiologic 

results. Despite the variability in study design, methods, and clini-

cal endpoints, these human studies demonstrate measurable dif-

ferences in the gut microbiome between healthy controls and in-

dividuals with hepatic steatosis and NASH. The gut microbiome 

composition has also be found to vary according to the severity 

and stage of NAFLD.30,35,36 Loomba et al.30 found distinct changes 

in the gut microbiome composition between Individuals with ad-

vanced fibrosis (stage 3 or 4) and those with mild fibrosis (stage 1 

or 2). The authors went on to suggest that a faecal-microbiome-
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derived metagenomic signature could be used as an adjunct tool 

to current invasive approaches to determine the stage of liver dis-

ease in NAFLD.

The findings in both animal and human studies are inconsistent 

and sometimes conflicting, and it is still unclear which specific mi-

croorganisms are harmful or protective. This may in part be due to 

the heterogeneous cohorts used across studies in addition to the 

varying gut microbiome sequencing technologies that were used. 

More work is needed, particularly longitudinal human studies, to 

delve further into the significance of gut microbiome alterations in 

NAFLD, especially if analyses of the gut microbiome is to become 

part of clinical practice. 

POTENTIAL MECHANISMS LINKING DIET, DYS-
BIOSIS AND NAFLD

Role of short chain fatty acids (SCFAs) in metabolic 
and inflammatory pathways

SCFAs, such as acetic, propionic and butyric acid, are generated 

through the fermentation of polysaccharides by gut microbes in 

Figure 1. Represents the proportions of the phylum, class and genus of bacteria commonly found in the health gut.8 Bacteroidetes comprise the ma-
jority phylum of the gut microbiome, of which the majority genus is Bacteroides. Firmicutes consists of predominant genera such as Faecalibacterium, 
Roseburia, and Oscillibacter. The Proteobacteria phylum is proportionally less abundant and mainly represented by the Parasutterella genus. Actinobac-
teria, such as Propionibacterium and Bifidobacterium, are found in small numbers in the healthy gut.
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the large bowel. The diet and composition of the gut microbiome 

impacts the quantity and type of SCFAs synthesized in the gut. 

Diets high in fibre, particularly from plant-based foods or a Medi-

terranean diet, are associated with increased levels of faecal SC-

FAs.37,38 Altering the gut microbiome with prebiotics and probiot-

ics that promote the growth of beneficial microbiota can induce 

changes in SCFA production.39,40 SCFAs have a role in inflamma-

tion, lipid and glucose metabolism and regulation of energy har-

vested from the diet.41 As the effects of SCFAs are so diverse and 

widespread, elucidating the overall impact has been difficult. 

While animal studies have shown diets high in SCFAs to have fa-

vorable metabolic affects (reduced hepatic cholesterol and fatty 

acid synthesis and increased lipid oxidation), human studies have 

not been so clear.42,43

SCFAs are a major source of energy, although most SCFAs are 

utilized in the gut, some are transported through the portal vein 

and channelled into the tricarboxylic acid cycle or utilised for he-

patic gluconeogenesis or lipogenesis. Thus, changes in the gut 

microbiome that favor SCFA production can increase energy deliv-

ery to the liver and reduce faecal energy loss. The first evidence to 

support this was provided by Turnbaugh et al.44 who found that, 

compared to their lean littermates, obese mice had more carbohy-

drate metabolising genes in their gut microbiome, increased con-

centration of SCFAs in their caecum, and less energy in their stool. 

Table 1. The design and main findings of animal studies investigating the role of the gut microbiome in the pathogenesis of NAFLD

Author Study design Main findings

Bacteria in the gut microbiota of mice 
with NAFLD

↓ concentration 
(protective)

↑ concentration 
(potentially 

harmful)

Le Roy et al.20 Germ-free mice received a faecal transplant 
from two different groups of mice; 
either mice that demonstrated weight 
gain, systemic inflammation & insulin 
resistance on a high fat diet, or mice 
that demonstrated weight gain but no 
inflammation or insulin resistance on a 
high fat diet.

Germ‐free mice took on the 
phenotype of their faecal 
donors. The mice that 
developed the inflammatory & 
insulin resistance phenotype 
also developed hepatic 
steatosis. 

Genus: 
Allobaculum

Species: 
Bacteroides 
vulgatus

Phylum: Firmicutes
Genus: Barnesiella, 

Roseburia
Species: Lachnospi-

raceae bacterium, 
Barnesiella intestini-
hominis

Henao-Mejia et 
al.21

NAFLD mouse models were used in 
dysbiotic (inflammasome deficient) & 
non-dysbotic (wild type) mice to examine 
the effect of inflammasome deficient 
changes in the gut microbiome (increased 
Bacteroidetes) on the development of 
NAFLD. NAFLD mouse models used were; 
methionine choline‐deficient diet model, 
leptin receptor deficiency steatosis model, 
& the high fat diet model. 

Inflammasome deficiency 
changes in the gut microbiome 
were associated with: 

· ↑ hepatic steatosis
· ↑ hepatic inflammation
· Co‐housing dysbiotic & non 

dysbiotic mice exacerbated 
NAFLD in both groups of mice

Genus: 
Lactobacillus

Phylum: Bacteroidetes
Family: Prevotellaceae

Zeng et al.22 Obese mice (C57BL/6 model) were fed a 
high fat (45% energy) or low-fat (10% 
energy) diet for 10 weeks.

Mice on a high fat diet had:
· ↑ body weight (by 34%)
· ↑ hepatic fat & inflammation
· ↑ levels of lactobacillus in faeces 

which correlated positively 
with the severity of hepatic 
steatosis

Species: Lactobacillus 
gasseri, Lactobacillus 
taiwanensis

Cano et al.23 Obese (high fat diet‐induced) & lean 
mice were given either placebo or a 
probiotic consisting of Bifidobacterium 
pseudocatenulatum for 7 weeks.

Obese mice taking probiotic 
showed: 

· ↓ food intake & body weight 
· ↓ insulin resistance
· ↓ hepatic fat 
· ↓ serum inflammatory markers 

Genus: 
Bifidobacteria 

Family: 
Enterobacteriaceae 

NAFLD, non-alcoholic fatty liver disease.
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Table 2. The design and main findings of human studies investigating the role of the gut microbiome in the pathogenesis of NAFLD

Author Study design Main findings

Bacteria in the gut microbiota of  
patients with NAFLD

↓ concentration 
(Protective)

↑ concentration 
(potentially 

harmful)

Spencer et al.25 The gut microbiome of 14 adults 
before & during a 42 day period 
on a choline‐depleted diet was 
analysed. Hepatic steatosis, 
associated with a choline deplete 
diet, was measured by MRI.

The risk of developing hepatic 
steatosis correlated with: 

· ↑ baseline levels of 
Erysipelotrichia 

· ↓ baseline levels of 
Gammaproteobacteria

Class: Gammaproteo-
bacteria

Class: Erysipelotrichia 

Wong et al.26 The gut microbiome composition 
was analysed in a group of 42 
adults: 20 with biopsy proven 
NASH & 22 healthy controls.

Individuals with NASH (compared 
to healthy controls) had:

· ↓ Faecalibacterium & 
Anaerosporobacter 

· ↑ Parabacteroides & Allisonella 

Genus: 
Faecalibacterium, 
Anaerosporobacter

Genus: Parabacte-
roides, Allisonella 

Mouzaki et al.27 The gut microbiome composition 
was analysed in a group of 50 
adults: 11 with biopsy proven 
simple steatosis, 22 with biopsy 
proven NASH, & 17 healthy controls.

Individuals with NASH (compared 
to those with steatosis & healthy 
controls) had:

· ↓ Bacteroidetes 
· ↑ Clostridium coccoides

Phylum: Bacteroidetes Species: Clostridium 
coccoides

Zhu et al.28 The gut microbiome composition 
was analysed in 63 children; 22 
with biopsy proven NASH, 25 
obese children without NASH 
(clinically), & 16 healthy normal 
weight children. 

The gut microbiome of children 
with NASH (compared to healthy 
controls) had:

·	 ↓ Firmicutes & Actinobacteria
·	 ↑ Bacteroidetes 
·	 ↓ Bifidobacterium 

Phylum: Firmicutes, 
Actinobacteria

Genus: Blautia, 
Faecalibacterium, 
Bifidobacterium

Phylum: Bacteroidetes 
Genus: Prevotella

Raman et al.29 The gut microbiome composition 
was analysed in a group of 60 
adults: 30 obese with clinically 
defined NAFLD (no biopsy) & 30 
non‐obese controls.

The gut microbiome of individuals 
with NAFLD (compared with 
non‐obese controls) had:

·	 ↑ Firmicutes (specifically 
Lactobacillus)

Phylum Firmicutes 
Genus: Lactobacillus

Loomba et al.30 The gut microbiome composition 
was analysed in a group of 86 
adults with biopsy proven NAFLD, 
72 with mild hepatic fibrosis (stage 
1 or 2), 14 with advanced hepatic 
fibrosis (stage 3 or 4).

The gut microbiome in individuals 
with advanced hepatic fibrosis 
(compared with mild hepatic 
fibrosis) had:

·	 ↑ Proteobacteria
·	 ↓ Firmicutes 
·	 ↑ Escherichia coli & Bacteroides 

vulgatus

Phylum: Firmicutes Phylum: 
Proteobacteria

Species: Escherichia 
coli, Bacteroides 
vulgatus

Schwimmer et al.31 The gut microbiome composition 
was analysed in a group of 87 
children with biopsy proven NAFLD 
& 37 obese children without 
NAFLD.

The gut microbiome in children 
with NAFLD (compared to obese 
children without NAFLD) had:

·	 ↓ α diversity 
·	 ↑ Prevotella copri

Species: Prevotella 
copri

Tsai et al.32 The gut microbiome composition 
was analysed in a group of 75 
adults; 25 with biopsy proven 
steatosis, 25 with biopsy proven 
NASH, & 25 healthy controls.

The gut microbiome in individuals 
with NAFLD (compared to 
individuals without NAFLD) had:

·	 ↓ Diversity 
·	 ↑ Bacteroidetes
·	 ↓ Firmicutes
·	 ↓ Clostridia

Phyla: Firmicutes
Class: Clostridia 

Phyla: Bacteroidetes
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Furthermore, faecal microbial transplant (FMT) from obese mice 

to germ free mice caused greater fat gain than FMT from lean ani-

mals. In humans, increased production of SCFAs by the gut micro-

biome was also observed in obese people, compared to lean sub-

jects.45

SCFAs can alter lipid and glucose metabolic pathways through 

activation of G-coupled receptors. Kimura et al.46 showed that 

through activation of G-protein receptor-43, SCFAs suppress insu-

lin signalling in adipocytes, which inhibits fat accumulation in adi-

pose tissue and promotes the metabolism of unincorporated lipids 

and glucose in the liver and other tissues. The intestinotrophic ef-

fects of SCFA were first proposed by Koruda et al.47 who found 

that SCFA supplementation to rats having parenteral nutrition 

prevented associated mucosal atrophy. Beneficial effects of SCFA 

on the intestinal mucosa are thought to be mediated through glu-

cagon-like-peptide-2 (GLP-2), as SCFA supplementation induces 

the expression of ileal proglucagon mRNA and plasma GLP-2.48 In 

mice, increasing GLP-2 levels, by microbial intervention or subcu-

taneous GLP-2 administration, reduces intestinal permeability, 

which leads to lower plasma lipopolysaccharide (LPS) and cyto-

kines levels, and consequently reduced hepatic oxidative stress 

and inflammation.49

SCFA supplementation has shown beneficial effects on several 

inflammatory conditions including asthma, arthritis and colitis.50,51 

The anti-inflammatory effects of SCFA are thought to be mediated 

through activation of G-protein coupled receptor-43. Maslowski 

et al.50 induced colitis in mice and demonstrated that inflamma-

tion is more severe in germ-free mice than in those conventionally 

raised. The colitis was ameliorated by acetate supplementation, a 

finding that was absent in G-protein coupled receptor-43 knock 

out mice.50 By suppressing colitis, SCFAs can improve gut permea-

bility and therefore reduce hepatic delivery of harmful microbial 

cell components and metabolites. Conversely, Rau et al.52 found 

that patients with NAFLD had higher concentrations of intestinal 

Author Study design Main findings

Bacteria in the gut microbiota of  
patients with NAFLD

↓ concentration 
(Protective)

↑ concentration 
(potentially 

harmful)

Del Chierico et al.33 The gut microbiome composition 
was analysed in a group of 61 
children with NAFLD or obesity & 
54 healthy controls.

The gut microbiome in children 
with NAFLD (compared to 
healthy controls) had:

·	 ↓ α & β diversity
·	 ↑ Actinobacteria
·	 ↓ Bacteroidetes

Phyla: Bacteroidetes
Family: Rikenellaceae
Genus: Oscillospira

Phyla: Actinobacteria
Genus: 

Bradyrhizobium, 
Anaerococcus, 
Peptoniphilus, Dorea, 
Ruminococcus

Species: 
Propionibacterium 
acnes

Wang et al.34 The gut microbiome composition 
was analysed in a group of 126 
nonobese adults; 43 with NAFLD 
on ultrasound & 83 healthy 
controls.

The gut microbiome in individuals 
with NAFLD (compared to 
individuals without NAFLD) had:

·	 ↓ Diversity 
·	 ↑ Bacteroidetes
·	 ↓ Firmicutes
·	 ↑ Gram negative species

Phyla: Firmicutes Phyla: Bacteroidetes

Shen et al.35 The gut microbiome composition 
was analysed in a group of 47 
adults; 25 with NAFLD & 22 healthy 
controls.

The gut microbiome in individuals 
with NAFLD (compared to 
individuals without NAFLD) had:

·	 ↓ Diversity 
·	 ↑ Proteobacteria
·	 ↑ Fusobacteria
·	 ↓ Prevotella

Genus: Prevotella Phyla: Proteobacteria, 
Fusobacteria

Family: 
Lachnospiraceae, 
Enterobacteriaceae, 
Erysipelotrichaceae, 
Streptococcaceae

Genus: Shigella

NAFLD, non-alcoholic fatty liver disease; MRI, magnetic resonance imaging; NASH, non-alcoholic steatohepatitis.

Table 2. Continued
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acetate and propionate, which correlated with peripheral levels of 

pro-inflammatory T-cells. Therefore the role on SCFAs in inflam-

matory pathways within NAFLD is still controversial. 

Bacteria-derived ethanol

Histologically, NAFLD and alcohol-induced liver injury are re-

markably similar, and are therefore likely to share common patho-

genic pathways.53 Some microbiota harbour genes that can fer-

ment dietary sugars into ethanol. The amount of alcohol produced 

depends on the availability of carbohydrates from the diet and the 

composition of the gut microbiome, particularly the presence of 

Proteobacteria (especially Klebsiella pneumoniae and Escherichia 
coli ).28,54 Animal studies have demonstrated that obese mice with 

NASH have higher early-morning breath alcohol content com-

pared with lean mice without NASH; which is eliminated by neo-

mycin treatment.55 In human studies, patients with NAFLD, partic-

ularly children, have been shown to have increased blood ethanol 

levels.28,56,57 Yuan et al.54 found high-alcohol-producing Klebsiella 
pneumoniae in the gut microbiome of up to 60% of individuals 

with NAFLD in a Chinese cohort. The study went on to show that 

transfer of high-alcohol-producing Klebsiella pneumoniae, by oral 

gavage or FMT, into healthy mice induced NAFLD.54 Gut-derived 

ethanol is not only directly hepatotoxic but it may alter the gut-

liver axis, by increasing intestinal permeability and endotoxemia, 

to compound hepatic damage.58

Role of choline deficiency in lipid metabolism and 
inflammation

Choline is an essential nutrient sourced from foods such as 

meat and eggs. Choline deficiency induces many features of 

NAFLD and is often utilized in studies to create animal models of 

NAFLD. Choline deficiency leads to impaired synthesis of phos-

phatidylcholine resulting in diminished very low density lipopro-

tein assembly and secretion and consequently reduced hepatic tri-

glyceride clearance.59 In addition to hepatic steatosis, choline 

deficient mice also develop hepatic inflammation and fibrosis, 

which is thought to be caused by impaired mitochondrial 

β-oxidation and increased oxidative stress.60,61

The gut microbiome plays an important role in choline metabo-

lism and therefore regulates the concentration that is delivered to 

the liver via the portal circulation. Dysbiosis, and in particular an 

excess of the class Erysipelotrichia, has been associated with cho-

line depletion in both animal and human studies.25,62,63 Choline is 

metabolised by the gut microbiome to generate methylamines 

such as trimethylamine (TMA), which is converted in the liver to 

TMA-N-oxide (TMAO) by flavin-containing monooxygenase-3 

(FMO3). TMAO has adverse effects on glucose homeostasis and is 

implicated in atherosclerosis.62 NAFLD is associated with lower 

levels of choline and higher levels of TMA in the blood, implicat-

ing the role of gut microbiota in the imbalance of choline metabo-

lism.63 Around 10–15% of bacterial species require choline to syn-

thesize phosphatidylcholine, a component of their membrane; 

therefore in the context of bacterial overgrowth, the demand for 

choline may increase and contribute to choline deficiency.64,65

Lipopolysaccharide-induced hepatic inflammation

LPS, a constituent of gram negative bacteria, are found in the 

systemic circulation of individuals with NAFLD, and correlate with 

the severity of steatohepatitis in both human and animal stud-

ies.66-69 The concentration of LPS in the gut microbiome and plas-

ma is increased by the consumption of a western diet, high in sat-

urated fat and low in fibre.70,71 It has been hypothesised that a 

high-fat diet may facilitate LPS uptake through elevated chylomi-

cron production in intestinal epithelial cells.72 In mice on a stan-

dard diet, continuous subcutaneous infusion of low-dose LPS re-

sults in hepatic steatosis and hepatic insulin resistance.73,74 LPS 

interact with toll-like receptors (TLRs), particularly TLR-4, on he-

patic Kupffer cells and stellate cells to stimulate pro-inflammatory 

and profibrotic pathways via a range of cytokines, including inter-

leukin (IL)-1, IL-6, and tumour necrosis factor (TNF).75-78 TLR-4‐de-

ficient mice display decreased liver injury, inflammation, and lipid 

accumulation in comparison with wild‐type mice in NAFLD mod-

els.79,80 TLR signalling in the mucosa also lead to the production of 

inflammasomes (cytosolic multiprotein oligomers of the innate im-

mune system) which initiate a variety of pathways to produce pro-

inflammatory and pro-fibrotic mediators such as caspase-1, IL-1β, 

and IL-18.81,82 In support of a role for inflammasomes in the devel-

opment of more severe liver disease in NAFLD, Wree et al.83 found 

significantly higher levels of the inflammasome NLRP3 (NOD-, 

LRR- and pyrin domain-containing protein 3) in the livers of indi-

viduals with NASH compared to those with simple steatosis. Con-

versely, other studies have shown that the absence of inflamma-

somes is associated with more aggressive disease. Pierantonelli et 

al.84 demonstrated that, in a Western lifestyle model, the combi-

nation between high-fat and high-carbohydrate diet and the lack 

of the NLRP3-inflammasome increased the degree of liver injury 

and was associated with an abundance of gram-negative Proteo-



29

Erica Jennison, et al. 
Gut microbiome, diet, intestinal function & NAFLD

http://www.e-cmh.org https://doi.org/10.3350/cmh.2020.0129

bacteria and Verrucomicrobia (mucus-degrading bacteria that 

promote bacterial translocation), higher intestinal bacterial trans-

location, increased TLR activation and a more severe degree of 

liver injury. 

The role of bile acids (Bas) in lipid metabolism and 
gut microbiome modulation

BAs have been implicated in the pathogenesis of NAFLD 

through their role in lipid metabolism and as signalling molecules 

via the farnesoid X receptor (FXR). By binding to the FXR, BAs can 

increase insulin sensitivity and decrease hepatic gluconeogenesis 

and circulating triglyceride concentrations.85 Obeticholic acid, an 

FXR agonist, has been shown to improve hepatic histology in ‘The 

Farnesoid X nuclear receptor ligand obeticholic acid for non-cir-

rhotic, non-alcoholic steatohepatitis (FLINT)’ trial.86 However, re-

sults with this FXR agonist were less promising in a planned inter-

im analysis of a further large trial in patients with NASH, where 

treatment with obeticholic acid failed to produce resolution of 

NASH (compared to placebo), although treatment with obeticholic 

acid 25 mg/day significantly improved liver fibrosis.87

BAs and the gut microbiome have a bi-directional relationship 

and are both highly influenced by the diet. Dietary fat content 

regulates BA synthesis; in particular a high-fat diet increases pro-

duction, while a low-fat diet reduces production.88,89 The gut mi-

crobiome regulates BA homeostasis through a number of mecha-

nisms including dihydroxylation of primary BAs to secondary BAs. 

BAs reciprocally regulate the gut microbiome, both directly via 

antibacterial activity (particularly deoxycholic acid) and indirectly 

via FXR induced antimicrobial peptides. The gut microbiome and 

BAs indirectly interact through TMAO, a product of gut microbi-

ome choline metabolism. TMAO inhibits two key enzymes in-

volved in BA metabolism: CYP7A1 and CYP27A1, therefore reduc-

ing the overall BA pool size.90 Furthermore, FXR activation can 

regulate FMO3 activity and therefore TMAO production. Bennet 

et al.91 demonstrated that FXR ligands administered to wild-type 

mice could induce FMO3 expression and increase TMAO levels, 

but this effect was abrogated in FXR knock out mice.

Several studies have demonstrated that the interaction of BAs 

with the gut microbiome plays an important role in NAFLD patho-

genesis. Parséus et al.92 fed germ-free and conventionally raised 

wild-type and FXR knock-out mice a high-fat diet for 10 weeks. 

The gut microbiome promoted weight gain and hepatic steatosis 

in an FXR-dependent manner, and the BA profiles and gut micro-

biome composition differed between FXR knock-out and wild-

type mice.92 These findings were supported by Jiang et al.93 who 

found that improvements in hepatic steatosis related to antibiotic 

treatment were dependent on FXR signalling.

Intestinal permeability induced hepatic 
inflammation

The portal vein exposes the liver to potentially harmful sub-

stances derived from the gut, including translocated bacteria and 

toxic bacterial products such as LPS. Dysbiosis can disrupt the in-

tegrity of the mucosal wall, increasing mucosal permeability. Di-

etary factors have an important role in the maintenance of the in-

testinal mucosal barrier, and not just through their role in altering 

the gut microbiome composition. Dietary depletion of glutamine, 

tryptophan and zinc or excess ingestion of fat, alcohol and food 

additives, have been directly associated with increased intestinal 

permeability.94-98

Animal studies have shown convincing evidence that increased 

intestinal permeability leads to translocation of bacteria and bac-

terial toxins, such as LPS, that worsen the severity of NASH.66,73 

Miele et al.99 found that patients with NAFLD had significantly in-

creased gut permeability (as measured by urinary excretion of 51 

chromium-radiolabeled ethylenediaminetetraacetic acid) com-

pared to healthy volunteers. Furthermore, in patients with NAFLD 

both gut permeability and the prevalence of small intestinal bac-

terial overgrowth correlated with severity of steatosis, although 

not with steatohepatitis.99 Verdam et al.100 found plasma immuno-

globulin G levels against endotoxin were increased in biopsy-

proven human NASH and positively correlated with the severity of 

inflammation. Conversely, Yuan et al.101 found that in paediatric 

patients with NASH, serum endotoxin levels were not correlated 

with disease severity, however peripheral endotoxin levels may 

not represent the concentration in the portal system, and the 

pathogenesis of NAFLD in children may be different to adults. 

Adipose tissue metabolism and inflammation

Adipose tissue expansion, dysfunction, and inflammation are 

hallmarks of obesity and play a critical role in the development of 

NAFLD. Through several mechanisms the composition of the gut 

microbiome is thought to alter the metabolism and function of 

adipose tissue. LPS and other gut microbiome derived TLR ligands 

have been shown to contribute to adipose tissue inflammation. 

Caesar et al.102 showed that mice fed a lard diet had increased 

TLR signalling and white adipose tissue inflammation compared 
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with mice fed an isocaloric fish oil diet. In addition, mice geneti-

cally deficient in various components of the TLR signalling path-

way were protected against white adipose tissue inflammation. 

de Groot et al.103 demonstrated that FMT from a donor after Roux-

en-Y bariatric surgery, to a host with metabolic syndrome led to a 

reduction in the adipocyte inflammatory marker chemokine li-

gand-2 gene expression in adipose tissue and circulating levels in 

plasma.

SCFAs, in particular propionate, have been demonstrated to 

regulate adipose tissue metabolism, both directly through modu-

lation of the transcription factor peroxisome proliferator-activated 

receptor-γ, and indirectly through activation of the sympathetic 

nervous system.43,104 The gut microbiome composition alters adi-

pose tissue thermogenesis, including brown adipose tissue activi-

ty and browning of white adipose tissue. Schugar et al.105 demon-

strated that in mice the genetic deletion of the TMAO-producing 

enzyme FMO3 protected against high-fat diet induced obesity, in 

part by stimulating the beiging and enhanced thermogenesis of 

white adipose tissue. 

DIET AND NAFLD

Dietary factors can impact the development of NAFLD via their 

critical role in the gut-liver axis. A consistent finding from studies 

that have examined the link between diet and NAFLD is that a hy-

percaloric diet, regardless of whether the excess calories have 

been provided either as fat, sugar, or both, increases liver fat con-

Figure 2. A summary of the effect of dietary factors on the gut microbiome and their effects on hepatic pathways leading to the development of 
hepatic steatosis, inflammation and fibrosis. Green tea, caffeine, coffee, a Mediterranean diet and some polyunsaturated fatty acids, such as omega-3, 
have favorable effects on the composition of the gut microbiome. Consumption of saturated fatty acids, fructose and advanced glycated end prod-
ucts cause harmful changes to the gut microbiome composition. Dysbiosis is associated with altered production of SCFA, altered choline and bile acid 
metabolism, higher abundance of LPS containing bacteria, increased bacterial derived ethanol, increased intestinal permeability and upregulation of 
inflammatory processes. The harmful consequences of dysbiosis affect normal liver physiology, particularly given the close relationship between the 
gut and liver. Hepatic lipogenesis and triglyceride storage are upregulated whilst lipid oxidation is reduced, leading to hepatic steatosis. Activation of 
hepatic TLR (e.g., TLR-4) and the generation of ROS drives hepatic inflammation and fibrosis. LPS, lower plasma lipopolysaccharide; SCFA, short chain 
fatty acid; TMA, trimethylamine; TG, triglycerides; TLR, toll-like receptor; ROS, reactive oxygen species.
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tent.106 Figure 2 summarises the effects of dietary factors on the 

gut microbiome and their effects on hepatic pathways leading to 

the development of hepatic steatosis, inflammation and fibrosis.

Fat 

Increased dietary fat intake, particularly saturated fat, is associ-

ated with the development of hepatic steatosis.107-109 A high fat 

diet can alter the gut microbiome rapidly, decreasing the microbial 

diversity and favoring gut bacteria associated with the develop-

ment of NAFLD.110 Changes associated with a high fat diet include 

reduced levels of the Bifidobacterium genus and an increase in 

the ratio of Firmicutes to Bacteroidetes phyla.73 Ingestion of long-

chained saturated fats, compared to short-chained unsaturated 

fats, are associated with a more pronounced reduction in phylo-

genetic diversity and beneficial bacteria.102 The mechanisms by 

which dietary fatty acids affect the gut microbiome are not well 

defined. Only a minority of fatty acids will pass through the gas-

trointestinal tract and directly modulate gut microbiome composi-

tion. Fatty acids have a broad spectrum of antibacterial activity 

including lysis of bacterial cell membranes and inhibition of bacte-

rial adenosine triphosphate (ATP) production,111,112 and the anti-

bacterial action of fatty acids is affected by carbon chain length, 

saturation and double bond position.113

Changes in the gut microbiome caused by a high fat diet are as-

sociated with; increased energy harvest from the gut, upregula-

tion of genes related to lipid metabolism in the distal small bowel 

and the production of SCFAs favoring the development of 

NASH.73,102 High fat diets in animals, particularly those involving 

long-chained saturated fatty acids, are accompanied by increased 

intestinal permeability, resulting in bacterial translocation and el-

evated LPS levels.73 Inflammatory processes are also upregulated, 

with increased hepatic TLR-4 activation and a rise in inflammatory 

mediators including TNF-α, IL-1, and plasminogen activator inhibi-

tor-1.73,102

Despite the association between a high fat diet and the devel-

opment of NAFLD and dysbiosis, some fatty acids have demon-

strated favorable effects on the gut microbiome and the develop-

ment of hepatic steatosis. In a randomized controlled trial (RCT), 

Scorletti et al.114 demonstrated that consumption of the omega-3 

polyunsaturated fatty acid, docosahexaenoic acid, was indepen-

dently associated with a decrease in liver fat percentage in pa-

tients with NAFLD. The ingestion of omega-3 polyunsaturated 

fatty acids and oleic acid have been shown to protect against 

high-fat diet induced dysbiosis and improve the composition of 

the gut microbiome; including increased abundance of butyrate-

producing bacteria and the Bifidobacterium genus.115-117

Fructose 

Dietary fructose has been strongly implicated in the pathogene-

sis of NAFLD. A large association study demonstrated an in-

creased risk of NAFLD in those consuming regular sugary drinks, 

especially if overweight.118 Fructose is both a substrate and an in-

ducer of hepatic de novo lipogenesis. In individuals with NAFLD, 

26% of hepatic triglycerides are produced by de novo lipogenesis 

using fructose and other dietary sugars as substrates.119 Fructose 

increases hepatic lipogenesis by activating several key transcrip-

tion factors such as sterol response element-binding protein-1c 

and carbohydrate-responsive element-binding protein.120 Dietary 

fructose can induce rapid and harmful changes in the gut microbi-

ome composition, including a reduction in the phylogenetic diver-

sity and a lower concentration of Bifidobacterium genus.121 Fruc-

tose induced dysbiosis has been demonstrated to increase 

intestinal macrophage counts and lower tight junction occludin 

protein expression, associated with worse endotoxaemia, more 

bacterial translocation and increased hepatic TLR expression.122

During hepatic fructose metabolism by fructokinase, ATP is rap-

idly consumed, which results in the breakdown of adenosine mo-

nophosphate (AMP) to inosine monophosphate and the genera-

tion of uric acid. Uric acid therefore increases in the plasma and 

liver with fructose consumption, and may mediate some of the 

adverse effects associated with fructose.123 Uric acid can exacer-

bate hepatic insulin resistance through activation of retinol bind-

ing protein-4,123 impair hepatic fatty acid oxidation through inhibi-

tion of AMP-activated protein kinase, and induce hepatic 

oxidative stress through NADPH oxidase activation.124 Xanthine 

oxidase inhibitors that block uric acid generation, have been 

shown to inhibit fructose induced hepatic steatosis,125 and serum 

uric acid concentrations and a high dietary fructose consumption 

are both independently associated with NASH in children.126

Advanced glycated end products (AGEs)

AGEs are formed in food when reducing sugars react non-enzy-

matically with the amino groups on proteins. The concentration of 

AGEs is high in western diets and contributes to tissue injury via 

activation of receptor for AGEs (RAGEs) and generation of reac-

tive oxygen species. RAGEs have been found on hepatic stellate 

cells and stimulation has been shown to exacerbated liver inflam-
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mation and increase hepatic proliferation and expression of colla-

gen in animal models of NAFLD.127 The absorption of dietary AGEs 

is limited, the majority pass through the gastrointestinal tract to 

the colon, where they can act as substrates for the gut microbi-

ome.128 Several animal and human studies have shown that the 

consumption of AGEs is associated with a compositional change 

in the gut microbiome and altered production of SCFAs, however 

there is a lack of agreement between studies on the specific mi-

crobial changes, which may be due to the different glycated sub-

strates used.128

Mediterranean diet

A Mediterranean diet is characterised by increased consumption 

of vegetables, legumes, fruits, nuts, olive oil and fish and low 

consumption of red meat, dairy products and saturated fats. A 

weight neutral Mediterranean diet can reduce liver steatosis and 

may improve insulin sensitivity.129,130 A Mediterranean diet con-

tains a high concentration of monounsaturated fatty acids and a 

balanced polyunsaturated fatty acid omega-6 to omega-3 ratio, 

which has favorable effects on hepatic lipid metabolism.131 The 

high levels of polyphenols, carotenoids, vitamin E and vitamin D 

are protective against the development of NAFLD through their 

antioxidant and immunomodulatory properties.132-135 Some of the 

hepatoprotective effects of a Mediterranean diet may be mediat-

ed through beneficial changes in the gut microbiome composition, 

including; increased levels of the Bifidobacterium genus, reduced 

levels of gram-negative LPS containing bacteria, altered SCFA 

production and reduced toxic metabolites such as TMAO.37,136

Noncaloric artificial sweeteners (NCS)

NCS are widely used by patients with the metabolic syndrome; 

however their safety and side effect profile remains a topic of 

controversy. The use of NCS have been linked to the pathogenesis 

of obesity, T2DM and NAFLD through a number of postulated 

mechanisms. In an animal study the use of NCS weakened the 

ability of sweet taste to predict energy and evoke autonomic and 

endocrine learned responses, such as the cephalic response, that 

prepares the digestive tract to optimally deal with ingested 

food.137 Other animal studies have shown that NCS interact with 

sweet taste receptors expressed in enteroendocrine cells and in-

crease intestinal glucose absorption (through sodium-dependent 

glucose transporter isoform 1 and GLUT-2) leading to obesity, hy-

perinsulinemia and insulin resistance.138,139

Many NCS are associated with changes in the composition of 

the gut microbiome, while others have shown no effect.140 Suez et 

al.141 found that saccharin intake in mice was associated with re-

ductions in intestinal Akkermansia muciniphila, a commensal bac-

terium that exhibits probiotic properties. These mice developed 

impaired glucose tolerance, an effect that was abrogated by anti-

biotic treatment, and fully transferrable by FMT. Trocho et al.142 

found that aspartame accumulates in the liver of both healthy and 

cirrhotic rats and might increase the risk of NAFLD via mitochon-

drial dysfunction and ATP depletion in the liver. Conversely, other 

animal studies have shown that NCS are not associated with he-

patic steatosis, and some, such as xylooligosaccaride, may actual-

ly be protective.143

Green tea

Green tea and its polyphenols, such as epigallocatechin gallate, 

have demonstrated protective effects against the development of 

NAFLD. The consumption of green tea in mouse models of NAFLD 

has led to reductions in; hepatic steatosis, hepatic inflammation, 

hepatic fibrosis and insulin resistance.144-147 There are various 

mechanisms by which green tea may exert these beneficial ef-

fects. Consumption of green tea has been found to restore the 

changes in gut microbiome composition, such as the Firmicutes to 

Bacteroidetes ratio, which are associated with the development of 

obesity, hepatic steatosis and insulin resistance.148 Several studies 

have also demonstrated that green tea has anti-inflammatory ef-

fects, possibly through interaction with the 67-kDa laminin recep-

tor.149 Green tea can also act as an anti-oxidant, directly by scav-

enging reactive oxygen and nitrogen species,150 and indirectly by 

upregulating the transcription of genes related to the cellular anti-

oxidant defence.151 In a placebo-controlled RCT, green tea con-

sumption was associated with significantly reduced alanine trans-

aminase and aspartate transaminase levels after 12 weeks, in 

individuals with NAFLD.152 In contrast, a cross-sectional study of 

1,024 Japanese men did not find an association between green 

tea consumption (≥3 cups of green tea a day) and hepatic steato-

sis diagnosed by ultrasonography.153

Caffeine and coffee 

There is evidence suggesting that caffeine and coffee may be 

protective against the development of several elements of the 

metabolic syndrome, including NAFLD.154,155 A large meta-analysis 

found both caffeinated and decaffeinated coffee consumption to 
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be inversely associated with the risk of T2DM in a dose-response 

manner.156 The mechanism of action is thought to be largely medi-

ated by an ester of caffeic acid named chlorogenic acid, which im-

proves glucose metabolism by inhibiting gut absorption of glucose 

and hepatic gluconeogenesis.157 Although chlorogenic acid is not 

specific to coffee and occurs in other food stuffs another meta-

analysis found a significantly decreased risk of both developing 

NAFLD and it progressing to fibrosis in individuals who drank cof-

fee on a regular basis.158  Caffeine is thought to have antifibrotic 

properties, through antagonism of adenosine receptor A2a, which 

inhibits hepatic stellate cells.159 Caffeine also leads to more rapid 

gut transit and decreased energy harvest from the diet, in part 

through reducing the expression of aquaportin-8, a water channel 

protein expressed in the intestinal mucosa.160 Consumption of cof-

fee can alter the gut microbiome composition, in healthy volun-

teers and consumption of three cups of instant coffee per day was 

associated with an increase in the quantity and metabolic activity 

of Bifidobacterium, a genus of bacteria thought to be protective 

against the development of NALFD.161

LINKING SEX DIFFERENCES IN NAFLD TO THE 
GUT MICROBIOME 

The prevalence and severity of NAFLD is higher in men than in 

women during the reproductive age. After the menopause, NAFLD 

occurs at a higher rate in women, suggesting that oestrogen is 

protective.162-166 Several possible mechanisms for sexual dimor-

phism in NAFLD have been proposed, including; altered distribu-

tion of fat, differences in mitochondria functioning and variation 

of gene expression in key organs that determine insulin sensitivi-

ty.167,168 Variation in several aspects of the gut-liver axis between 

men and women may also be responsible. The physiological differ-

ences in the gut microbiome composition between sexes are mod-

est, but some researchers have found variations in gut microbiome 

metabolic activity and in several of the pathways by which the gut 

microbiome is thought to influence NAFLD pathogenesis.

Oestrogen has an influence on the composition of the gut mi-

crobiome. Dietary administration of oestrogen-like compounds 

can promote the proliferation and growth of certain types of gut 

bacteria, for example the consumption of soy phytoestrogen can 

increase the concentration of Bifidobacterium.169,170 Some bacteria 

can metabolise oestrogen-like compounds to produce more bio-

logically active forms that have high affinity for human oestrogen 

receptors.171 For example, some gut bacteria can metabolize phy-

toestrogens into O-desmethylangolensin (ODMA) and equol, 

which are structurally similar to mammalian oestrogen.172 These 

metabolites have beneficial metabolic effects; ODMA producing 

individuals are leaner, and Equol supplementation improves gly-

caemic control and lowers low-density lipoprotein cholester-

ol.170,172,173

Sex hormones strongly affect BA profiles and significant gender-

specific differences become more prominent in response to a 

high-fat high-sugar diet.174 Jena et al.175 demonstrated that male 

mice fed a high-fat western diet, develop more severe hepatic in-

flammation, hepatic steatosis and insulin resistance compared to 

female mice, in an FXR dependent manner. Xie et al.176 investigat-

ed the mechanistic link between the gut microbiome and hepato-

cellular carcinoma (HCC) in NAFLD using a streptozotocin-high fat 

diet (STZ-HFD) induced NASH-HCC murine model and compared 

results for both sexes. STZ-HFD feeding induced a much higher in-

cidence of HCC in male mice with substantially increased intrahe-

patic retention of hydrophobic BAs and decreased hepatic expres-

sion of tumour-suppressive microRNAs. Metagenomic analysis 

showed differences in the gut microbiome involved in BA metabo-

lism between normal male and female mice, and such differences 

were amplified when mice of both sexes were exposed to STZ-

HFD. Treating STZ-HFD male mice with 2% cholestyramine led to 

significant improvement of hepatic BA retention, tumour-suppres-

sive microRNA expressions, microbial gut communities, and pre-

vention of HCC.

THE GUT MICROBIOME AS A THERAPEUTIC 
TARGET IN NAFLD 

Despite the significant rising epidemic of NAFLD, no pharmaco-

logical interventions are currently specifically licensed for its treat-

ment. Modifications in lifestyle such as a low-calorie, low-fat, 

low-glycaemic index diet and increased physical activity, are the 

only reliable treatment options shown to reverse the early histo-

logic damage caused by NAFLD. Pharmacologic options, such as 

metformin, vitamin E, omega-3 fatty acids, ursodeoxycholic acid 

and lipid lowering drugs, have all been studied in patients with 

various stages of NAFLD, with variable results. Due to poor pa-

tient compliance with lifestyle interventions, and given the impor-

tance of the gut-liver axis in the pathogenesis of NAFLD, the  

effect of manipulating the gut microbiome has attracted consider-

able recent research interest. Through altering the gut microbiome 

composition, this therapeutic strategy has been postulated to;  
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Table 3. RCTs addressing the therapeutic modulation of the gut microbiome in NAFLD patients 

Study Study design Bacterial species Condition
Main outcome telated to NAFLD

Biochemistry Imaging/biopsy

Malaguarnera et 
al.185 (2012)

RCT (n=66)
24 weeks

Bifidobacterium+fructo-
oligosaccharide

NASH (↓) AST, endotoxins 
(-) ALT, glucose, 
BMI

Biopsy: steatosis & 
NASH improved

Shavakhi et al.186 
(2013)

Double-blind RCT 
(n=64)

6 months

Lactobacillus, Bifidobacterium, 
Streptococcus

NASH on 
metformin

(↓) ALT, AST US: hepatic steatosis 
improved

Wong et al.187 (2013) RCT (n=20)
6 months

Lactobacillus, Bifidobacterium NASH (↓) AST
(-) BMI, glucose

MRS: hepatic steatosis 
improved 

Alisi et al.188 (2014) Double-blind RCT 
(n=44)

4 months

Lactobacillus, Bifidobacterium, 
Streptococcus 

NAFLD children (↓) BMI
(-) ALT, TG

US: hepatic steatosis 
improved

Eslamparast et al.189 
(2014)

Double-blind RCT 
(n=52)

28 weeks

Lactobacillus, Bifidobacterium, 
Streptococcus+fructo-
oligosaccharide

NAFLD (↓) ALT, AST Transient 
elastography: liver 
stiffness improved

Asgharian et al.190 
(2016)

Double-blind RCT 
(n=80)

8 weeks

Lactobacillus, Bifidobacterium, 
Streptococcus+fructo-
oligosaccharide

NAFLD (-) AST, ALT US: hepatic steatosis 
improved

Ferolla et al.191 (2016) RCT (n=50)
3 months

Lactobacillus+inulin NASH (↓) BMI
(-) AST, ALT, 

LPS, intestinal 
permeability

MRI-PDFF: steatosis 
improved but no 
change in liver 
fibrosis 

Famouri et al.192 
(2017)

Triple-blind RCT (n= 64)
12 weeks

Lactobacillus, Bifidobacterium NAFLD obese 
children

(↓) ALT, AST, 
cholesterol, TG

(-) BMI

US: hepatic steatosis 
improved

Manzhalii et al.193 
(2017)

RCT (n=75)
12 weeks

Lactobacilli, Bifidobacteria, 
Streptococcus 

NASH on a ↓ fat 
diet

(↓) ALT, BMI, 
cholesterol

Transient 
elastography: liver 
stiffness improved

Mofidi et al.194 (2017) Double-blind RCT 
(n=50)

28 weeks

Lactobacillus, Bifidobacterium, 
Streptococcus+fructo-
oligosaccharide

NAFLD (↓) AST, ALT, gluco-
se, TG, cholesterol

Transient elastograp-
hy: hepatic steatosis 
& liver stiffness 
improved

Bakhshimoghaddam 
et al.195 (2018)

RCT (n=102)
24 weeks

Bifidobacterium+inulin NAFLD (↓) AST, ALT, GGT, 
TG, cholesterol

US:  hepatic steatosis 
improved

Kobyliak et al.196 
(2018)

Double-blind RCT 
(n=48)

8 weeks

Bifidobacterium, 
Lactobacillus, Lactococcus, 
Propionibacterium, 
Acetobacter+omega-3 fatty 
acids

NAFLD with 
T2DM

(↓) TG, cholesterol, 
FLI

(-) AST, ALT

SWE: no significant 
change in liver 
stiffness

Kobyliak et al.197 
(2018)

Double-blind RCT 
(n=58)

8 weeks

Bifidobacterium, 
Lactobacillus, Lactococcus, 
Propionibacterium, 
Acetobacter

NAFLD with 
T2DM

(↓) AST, FLI
(-) ALT, TG, chole-

sterol

SWE: no significant 
change in liver 
stiffness

Sayari et al.198 (2018) RCT (n=138)
16 weeks

Lactobacillus, Bifidobacterium, 
Streptococcus+fructo-
oligosaccharide

NAFLD taking 
sitagliptin

(↓) glucose, AST, 
cholesterol 

(-) ALT, TG, BMI

Wang et al.199 (2018) Double-blind RCT 
(n=200)

1 month

Bifidobacterium, Lactobacillus, 
Enterococcus, Bacillus

NAFLD (↓) AST, ALT, TG, 
cholesterol

US: no significant 
change in hepatic 
steatosis
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improve intestinal barrier function, prevent bacterial translocation, 

decrease the prevalence of LPS containing bacteria, decrease the 

production of harmful bacterial products, and reduce overall in-

flammation.177

Mechanisms for altering the gut microbiome include antibiotics, 

FMT or probiotics, pre-biotics and synbiotics (a combined pro-and 

pre-biotic). The use of antibiotics is limited due to their side ef-

fects and the emergence and prevalence of bacterial resistance. 

The therapeutic benefit of FMT has been investigated for several 

aspects of the metabolic syndrome, with variable results.178 Two 

studies reported improved peripheral insulin sensitivity at 6 weeks 

in patients with the metabolic syndrome receiving FMTs from lean 

donors, versus patients receiving the placebo control.179,180 One 

study went on to show that the improvement in insulin sensitivity 

was dependent on the baseline composition of the hosts gut mi-

crobiome.179 FMT from lean donors does not appear to reduce the 

BMI of overweight recipients.181-183 Very limited human data is cur-

rently available regarding the impact of FMT on NAFLD. Craven et 

al.184 found that FMT from slim healthy donors to individuals with 

NAFLD did not affect hepatic steatosis or insulin sensitivity but 

did reduce gut permeability. More work is needed before the 

therapeutic role of FMT in NAFLD can be established.

Table 3 lists the RCTs addressing the potential benefit of gut 

microbiome manipulation with probiotics, prebiotics and synbiot-

ics in patients with NAFLD.185-202 Most of these clinical trials use 

probiotics containing bacteria of the genus Lactobacillus , Bifido-
bacterium, and Streptococcus with or without a prebiotic such as 

fructo-oligosaccharide or inulin. Although studies differ in their 

design and intervention, the outcome of treatment appears posi-

tive, with many of the studies showing that in patients with 

NAFLD, probiotics can significantly improve hepatic steatosis and 

fibrosis as well as other metabolic parameters including glucose 

tolerance and obesity. It is uncertain from the study design of 

these trials whether the probiotics acted to favorably change the 

gut microbiome. Furthermore, other studies have shown that pro-

biotics/prebiotics/synbiotics have no effect on biochemical or ra-

diological end points in NAFLD. Thus, several questions remain 

unanswered. For example, what is the mechanism by which probi-

otics improve NAFLD; what is the most effective probiotic-prebiot-

ic combination; what is the optimal duration of treatment and 

which aspect of the disease process in NAFLD benefits from treat-

ment. Although promising results along with minimal cost and 

side effects make probiotics an exciting treatment option for 

NAFLD that could be extensively used as a health-food supple-

ment to treat early disease, further RCTs with larger sample sizes, 

longer follow-up, and assessments of efficacy based on liver his-

tology (or acceptable alternative diagnostic surrogate markers)203 

are urgently needed.

CONCLUSION

Abundant evidence from animal and human studies show that 

the diet and the gut microbiome play a role in the pathogenesis of 

Study Study design Bacterial species Condition
Main outcome telated to NAFLD

Biochemistry Imaging/biopsy

Ahn et al.200 (2019) Double-blind RCT 
(n=68)

12 weeks

Lactobacillus, Pediococcus, 
Bifidobacterium 

NAFLD with 
obesity

(↓) TG
(-) AST, ALT, LPS, 

cholesterol, 
glucose 

MRI-PDFF: hepatic 
steatosis improved 
transient 
elastography: no 
significant change in 
liver stiffness 

Duseja et al.201 (2019) Double-blind RCT 
(n=30)

1 year

Lactobacillus, Bifidobacterium, 
Streptococcus

NAFLD (↓) ALT, LPS
(-) AST

Biopsy: improved NAS 
score, hepatocyte 
ballooning & fibrosis

Scorletti et al.202 
(2020)

Double-blind RCT 
(n=104)

10–14 months

Bifidobacterium+fructo-
oligosaccharide

NAFLD (-) ELF score MRS: no significant 
change in hepatic 
steatosis

RCT, randomized controlled trials; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; AST, aspartate transaminase; ALT, alanine 
transaminase; BMI, body mass index; US, ultrasound; MRS, magnetic resonance spectroscopy; TG, triglyceride; LPS, lipopolysaccharide; MRI-PDFF, magnetic 
resonance imaging derived proton density fat fraction; GGT, gamma-glutamyl transferase; T2DM, type 2 diabetes mellitus; FLI, fatty liver index; SWE, shear 
wave elastography; NAS, NAFLD activity score; ELF, enhanced liver fibrosis.

Table 3. Continued
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NAFLD. The consumption of long-chained saturated fatty acids, 

fructose and AGEs, all plentiful within the western diet, can cause 

dysbiosis and potentially contribute to the development of hepatic 

steatosis and inflammation. Dysbiosis alters metabolic pathways 

and inflammatory processes through; altered production of SC-

FAs, altered choline and BA metabolism, increased production of 

bacteria-derived ethanol, higher abundance of LPS containing 

gram negative bacteria and increased intestinal permeability. The 

clinical significance of specific gut microbial alterations associated 

with NAFLD still remains unclear and therefore there is currently 

no diagnostic or therapeutic role for analysing the gut microbiome 

or modulating its composition in NAFLD. Further work is required 

to investigate the significance of gut microbiome alterations in 

NAFLD, and to clarify the therapeutic role of probiotics, prebiotics 

and synbiotics in the management of patients at different stages 

of the disease process.
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