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Early detection of diabetic 
retinopathy based on deep learning 
and ultra‑wide‑field fundus images
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Visually impaired and blind people due to diabetic retinopathy were 2.6 million in 2015 and estimated 
to be 3.2 million in 2020 globally. Though the incidence of diabetic retinopathy is expected to 
decrease for high-income countries, detection and treatment of it in the early stages are crucial 
for low-income and middle-income countries. Due to the recent advancement of deep learning 
technologies, researchers showed that automated screening and grading of diabetic retinopathy 
are efficient in saving time and workforce. However, most automatic systems utilize conventional 
fundus photography, despite ultra-wide-field fundus photography provides up to 82% of the retinal 
surface. In this study, we present a diabetic retinopathy detection system based on ultra-wide-field 
fundus photography and deep learning. In experiments, we show that the use of early treatment 
diabetic retinopathy study 7-standard field image extracted from ultra-wide-field fundus photography 
outperforms that of the optic disc and macula centered image in a statistical sense.

Diabetic retinopathy (DR) is responsible for 0.8 million blind and 3.7 million visually impaired people globally 
in 20101. Due to the increasing number of diabetes patients, the number of DR patients has been estimated to be 
191.0 million by 20302,3. Though the global prevalence of any DR was 27.0% for the period 2015 to 20194, there 
are no distinct symptoms at the early stages of DR, including the referable DR. Since DR can be fairly advanced 
before affecting vision2, timely diagnosis and treatment can reduce the risk of visual loss by approximately 57%5. 
Therefore, routine screening and regular follow-up are essential for patients with diabetes, especially middle age 
and aged people. However, several studies6–8 have indicated that a significant amount of patients with diabetes 
failed to have recommended annual eye examination due to long examination time, lack of symptoms, and 
limited access to retinal specialists.

One of the efforts to resolve these barriers is the application of artificial intelligence (AI)9 techniques for DR 
detection and diagnosis. In 2016, Gulshan et al.10 developed a deep learning (DL) algorithm for DR evaluation. 
In the study, they trained their model using approximately 0.13 million training images. As a result, area under 
the receiver operating characteristic curve (AUC) values of 0.97–0.99 were obtained from tests using two separate 
data sets for detecting referable DR. Abramoff et al.11 developed an automated system using convolutional neural 
networks (CNNs) for DR detection on a publicly available dataset. Since these pioneering studies, several research 
works focused on adopting DL technology for DR detection12 and grading13,14. Furthermore, Gulshan et al.15 
prospectively validated the performance of a DR grading system comparing to that of manual grading across 
two sites in India. A deep learning system (DLS) considering glaucoma and age-related macular degeneration 
(AMD), as well as DR, was studied for multiethnic populations with diabetes by Ting et al.16. These representa-
tive studies utilized conventional fundus photography, which captures the optic nerve and macula with a field 
of view (FOV) between 20◦ and 50◦ . Though conventional fundus photography contains the most crucial region 
for DR detection and diagnosis, there is a large portion of the uncaptured retinal surface.

Takahashi et al.17 utilized non-mydriatic 45◦ fundus photographs of four-field to capture a wide retinal area 
for DR staging based on a DL algorithm. In the study, the use of four-field fundus photography showed better 
grading performance than a single field fundus photography for DR grading. However, the acquisition of four-
field fundus photography can be time-consuming and require considerable effort. With the advancement in 
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retinal imaging technology, ultra-wide-field (UWF) fundus photography provides 200◦ of retinal surface images 
in a single shot18, providing both posterior pole and peripheral retinal images. UWF retinal images including 
UWF fluorescein angiography are now widely accepted for DR diagnosis and treatment, providing peripheral 
neovascularization and ischemic areas19. Nagasawa et al.20 investigated proliferative diabetic retinopathy (PDR) 
detection based on UWF fundus photography and deep learning algorithm. In the study, they acquired high 
sensitivity, specificity, and AUC on a relatively small in-house dataset. To our knowledge, the automated DR 
detection and grading system based on deep learning technology is not investigated thoroughly. In this study, 
we present the development and validation of a DLS for DR detection based on UWF fundus photography col-
lected during routine DR evaluation from clinical settings in a hospital located in South Korea. Our study is a 
feasibility study based on single-center, single-ethnicity, and single-device data.

The purpose of our study is to investigate the effectiveness of UWF fundus photography in DR detection. 
However, the UWF fundus photography contains artifacts such as periocular regions placed mostly outside the 
early treatment of diabetic retinopathy study (ETDRS) 7-standard field (7SF). Besides, ETDRS 7SF is the most 
prevalent region for DR detection and diagnosis tasks. For these reasons, we limit the region of interest (ROI) 
to the ETDRS 7SF for the DR detection task based on UWF fundus photography. In this study, we develop and 
investigate a DR detection system based on ETDRS 7SF, which is the most significant region of UWF fundus 
photography. Furthermore, we segment ETDRS Field 1 and Field 2 (F1–F2) regions for comparison purposes. 
We note here that the ETDRS F1–F2 image is a reasonable alternative to the standard fundus image.

Methods
The proposed DR detection system requires an automatic segmentation of the ETDRS 7SF to remove undesir-
able components such as eyelashes and skin. Using the segmented ROI image, we employ the deep learning 
architecture, the residual network with 34-layer (ResNet-34) model21 as a classifier for the DR detection task. 
Figure 1 shows an overview of the proposed DR detection system. To evaluate the DR detection performance, 
we compare our system with the one based on the ROI containing only the ETDRS Field 1 and Field 2 (F1–F2) 
in terms of several metrics. We note here that the ETDRS F1–F2 image is an alternative of the conventional 
single or two non-mydriatic 45-degree fundus photography under a condition that the UWF and conventional 
fundus images are not coexisting.

Ultra‑wide‑field fundus photography acquisition.  For evaluation of the system performance, we have 
acquired a set of UWF fundus images from the Catholic Kwandong University International St. Mary’s Hospital, 
South Korea. Catholic Kwandong University International St. Mary’s Hospital institutional board reviewed and 
approved this study (IS19RISI0005). All research was performed in accordance with relevant guidelines and 
regulations. Informed consent was obtained from all subjects or if subjects are under 18, from a patient and/or 
legal guardian. We also note that informed consent was obtained from the participants/patients to publish the 
information/images in an online open access publication. The capturing device for the UWF fundus photogra-
phy is Optos Daytona UWF retinal imaging system. The obtained image size is 3072× 3900 pixels. The in-house 
dataset consists of 11,734 and 1537 UWF fundus photographs of DR patients and healthy subjects. The total 
number of patients is 1308, where their ages are ranging from 8 to 89, and the average age is 50.76. The percentile 
of patients whose ages are between 40 and 70 is 72.1% . The proportion of males to the total patients is 50.75% . An 
ophthalmologist and a certified grader have participated in grading based on the ETDRS protocols. The acquired 
in-house dataset is a binary class (healthy and DR) data of which DR severity level is in the moderate and severe 
non-proliferative diabetic retinopathy (NPDR) stages. The ophthalmologist with more than ten years of experi-
ence and the certified grader with two years of experience have performed the grading independently. Further-
more, they have checked an image twice with concealing the previously made grading outcomes. We exploit the 
UWF fundus images with concurrent intra-observer and inter-observer grading outcomes for our experiments.

Figure 1.   An overview of the proposed DR detection system.
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Optic disc and macula detection.  UWF fundus images may contain periocular regions such as eyelids 
and eyelashes that are undesirable for DR detection. To exclude these regions in DR detection, we extract the ROI 
based on the optic disc and macula centers. Figure 2 illustrates the optic disc and macula detection process. In 
our system, optic disc and macula center positions are the reference points for UWF fundus photography align-
ment. Our system utilizes the U-Net model22 with the pre-trained residual network with 18-layer (ResNet-18) 
model21 as the encoder for optic disc detection. The ImageNet dataset23 is utilized for the pre-training. To train 
the U-Net model, we employ the publicly available Refuge dataset. As image pre-processing, contrast-limited 
adaptive histogram equalization (CLAHE)24 and bicubic interpolation25 based image resize are adopted. Sub-
sequently, we train and test the U-Net model using the processed images with a size of 512× 512 to estimate 
the optic disc region. Consequently, the optic disc center position and axes length is obtained by employing an 
ellipse fitting methodology. We utilize the trained U-Net model for estimating the optic disc region in UWF 
fundus images.

Since the UWF fundus images in our in-house dataset have a relatively bigger size and capture different 
areas comparing to standard fundus images, our system searches for image sub-regions before applying the 
trained U-Net model. Firstly, pixel-wise Gaussian weighting is applied to the green channel of the original 
UWF fundus images to exclude pixels with large intensity values near image boundaries (e.g., skin). Using the 
Gaussian-weighted images, threshold operation is performed based on pixel intensity. For the threshold value, 
we calculate mean ( µ ) and standard deviation ( σ ) values from the optic disc regions of 50 UWF fundus images. 
The threshold τ is set as τ = µ− σ . After the threshold operation, there can be multiple detected areas that 
are candidates of the optic disc region. To exclude the erroneously detected regions, we apply a size threshold 
operation and merge adjacent regions within 150 pixels. Additionally, from the circular region around each 
center of the remaining candidates, the center position of pixels with intensity values larger than 50 in the red 
channel of the original UWF fundus image is detected. The weighted average of the pixel positions from the red 
and green channels (0.75 for the green channel and 0.25 for the red channel) is calculated and utilized as the 
centers of candidates for the optic disc region. Eventually, we segment 614× 614 circular area focused at each 
center of the optic disc candidates and resize the image to 512× 512 . Figure 3 shows sample images from the 
aforementioned processing stages.

The model outputs of the segmented candidate images are generated by the U-Net model trained using the 
Refuge dataset. For optimization, we utilize Adam optimizer26 with a learning rate of 0.0001. The number of 
epochs is set to 30, and dice loss is utilized. Among the multiple segmented candidate images, we choose the 
one with the highest model outputs. As a result, the system estimates pixels that belong to the optic disc region. 
Subsequently, the optic disc center position and its axes length are extracted based on an ellipse fitting for further 
processing. To detect the macula center, the system transforms the color space of the image from RGB to CMYK. 
Subsequently, the system searches for a pixel with the smallest intensity in the K channel. The search range is 
defined as a rectangular region that is 500 pixels horizontally and 30 vertically away from the optic disc center. 
We define the detected pixel as the macula center in our system. The detected optic disc and macula centers 
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Figure 2.   The overall flow of the optic disc and macular detection process.

Figure 3.   Sample images at each processing stages.
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are the reference points for further image alignment. We note that we obtained successful optic disc detection 
results for 10,442 images from DR patients and 1442 images from normal subjects among 13,271 UWF fundus 
images in the in-house dataset.

ETDRS 7 standard fields image segmentation.  As an image alignment, we segment the ETDRS 7SF 
image from the original UWF fundus photography using the optic disc and macula centers. For convenience at 
the training phase, the system transforms OS images to OD-like ones based on image flipping in the horizontal 
direction. As a consequence, the optic disc region is always on the right side of the macula. Since the optic disc 
and macula centers are located at different row indices of an image, it is necessary to rotate the image to arrange 
those centers evenly. Hence, we rotate the image around the optic disc center. From the rotated image, we seg-
ment the ETDRS 7SF based on the optic disc and macula centers. The segmented ETDRS 7SF and F1–F2 images 
are resized to the size of 896× 1024 and 448× 640 , respectively. Figure 4a illustrates the ETDRS 7SF image 
segmentation process and Fig. 4b shows images with unwanted components such as eyelashes and eyelids. We 
note here that the segmented images with these components are excluded in the evaluation process. Finally, we 
obtained successful ETDRS 7SF segmentation results for 7282 images from DR patients and 1101 images from 
normal subjects.

ResNet‑34 model training.  Our DR detection system utilizes the ResNet-34 model21 for the classification 
task since our dataset is relatively small and it is binary class data. The ResNet-34 model utilized in our system 
is pre-trained on ImageNet23, and finetuned on the in-house dataset. Figure 5 illustrates the ResNet-34 model. 
The ResNet architecture provides advantages in an easier optimization and accuracy gain for deep networks21. 
To handle data imbalance between classes, we utilize weighted loss based on the number of training samples 
in the minority class (N). Weight for each class is obtained by dividing N by the number of training samples in 
each class. For optimization, the stochastic gradient descent with 0.001 learning rate and 0.9 momenta is utilized 
while the learning rate is set to decay by a factor of 0.1 for every 7 epochs. The number of epochs is set at 25.

Results
Evaluation protocols.  In our experiments, automated DR detection systems using the two segmentation 
images are assessed. To set the single field size identical between two types of images, the ETDRS 7SF and F1–
F2 images are normalized to 896× 1024 and 448× 640 pixels respectively. For detection system performance 
evaluation, ten runs of ten-fold stratified cross-validation tests are performed using the acquired in-house UWF 
fundus images dataset since there is no publicly available data. At the validation phase, a single run of ten-fold 
hold-out validation is performed using the training set only. Consequently, 90% and 10% of images in the train-
ing set are utilized for training and validation tasks, respectively.

As for performance indicators, we employ the accuracy, AUC, sensitivity, and specificity, where average and 
standard deviation values are reported for each metric. We note that the operating threshold value for sensitivity, 
specificity and accuracy measures is set when the sensitivity and specificity performances are the most similar. 
Additionally, a paired-sample t test is performed to verify whether the performance gap between systems based 
on ETDRS 7SF and F1–F2 images is meaningful in a statistical sense. For analysis purpose, we also visualize the 
class activation maps (CAM) to indicate the discriminative image regions which contribute to decision making 
according to a technique based on the global average pooling layer27. Furthermore, we report the repeatability 
of the test model outputs regarding the relative standard deviation (RSD)28. We measure image-wise RSD values 

Figure 4.   The ETDRS 7SF image segmentation process and sample images with noise.
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using the test model outputs from the ten runs of cross-validation tests. Consequently, average RSD values for 
both DR detection systems based on ETDRS 7SF and F1–F2 images are reported.

Detection performance assessment.  To provide a comprehensive detection performance throughout 
the overall range of decision thresholds, the ROC curves are plotted in Fig. 6. Across the entire range, the DR 
detection system based on ETDRS 7SF images outperform that based on ETDRS F1–F2 due to the exploitation 
of supplementary information at the peripheral region which is not visible in ETDRS F1–F2 images. Figure 7 
shows the mean and deviations of accuracy, AUC, sensitivity, and specificity which are acquired from ten runs 
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Figure 5.   The ResNet-34 model.

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
P

os
iti

ve
 R

at
e

ROC Curves: ETDRS 7SF VS F1-F2

ETDRS 7SF

ETDRS F1-F2

Figure 6.   The ROC curves of the DR detection system using ETDRS 7SF and F1–F2 fundus images. Here, we 
note that the true positive rate and the false positive rate for plotting are obtained from a single running fold 
experiment among the entire cross-validation tests.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1897  | https://doi.org/10.1038/s41598-021-81539-3

www.nature.com/scientificreports/

of ten-fold stratified cross-validation tests. In terms of all metrics, the DR detection system using ETDRS 7SF 
images tends to perform better than that using ETDRS F1–F2 images.

The mean and standard deviation values of accuracy, AUC, sensitivity, and specificity metrics are provided 
in Table 1. Both systems perform tolerably in terms of accuracy, AUC, and sensitivity. For specificity, the DR 
detection system based on ETDRS 7SF images performs significantly better than that based on ETDRS F1–F2 
images. This means that the regions outside ETDRS F1–F2 provide supplementary information that is useful for 
discrimination between DR and normal class. To support this, we present CAM images acquired by the systems 
using ETDRS 7SF and F1–F2 images in Fig. 8.

Statistical significance tests.  To verify whether the performance gap between the DR detection systems 
based on the ETDRS 7SF and F1–F2 images is meaningful in a statistical sense, we adopt a paired-sample t test29 
using test sensitivity, specificity, accuracy, and AUC measures from ten runs of ten-fold stratified cross-valida-
tion tests. From the paired-sample t test, we investigate the impact of including peripheral regions outside the 
F1–F2 in the DR detection process. The test outcome H = 0 stands for retaining a null hypothesis that the DR 
detection based on the ETDRS 7SF and F1–F2 images perform equivalently. On the other hand, H = 1 means 
that performance enhancement by the inclusion of peripheral regions in the DR detection process is statistically 
significant. The confidence level α is set at α = 0.001 . Table 2 shows results from the paired-sample t test using 
the four performance metrics. As shown in the table, the performance enhancement for all metrics is statistically 
significant. From the repeatability test, average RSD values of 12.85% and 15.10% are reported for DR detection 
systems based on the ETDRS 7SF and F1–F2 images, respectively. The DR detection system based on the ETDRS 
7SF images shows relatively more precise results than the system based on the ETDRS F1–F2 images.
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Figure 7.   The DR detection performances of the system using ETDRS 7SF and F1–F2 fundus images in terms 
of accuracy, AUC, sensitivity, and specificity. For each metric, plots show the mean (marked with blue circle) 
and deviations (marked with blue bar).

Table 1.   The sensitivity, specificity, accuracy, and AUC results of the DR detection system using ETDRS 7SF 
and F1–F2 fundus images. The values are represented as the form of µ± σ , where µ and σ denote the mean 
and standard deviation, respectively.

Performance metric Accuracy AUC​ Sensitivity Specificity

ETDRS 7SF 0.8338± 0.0047 0.9150± 0.0048 0.8338± 0.0048 0.8341± 0.0042

ETDRS F1–F2 0.8060± 0.0054 0.8867± 0.0037 0.8060± 0.0053 0.8061± 0.0069



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1897  | https://doi.org/10.1038/s41598-021-81539-3

www.nature.com/scientificreports/

Discussion
Conventional fundus cameras capture the optic nerve and macula with a FOV between 20◦ and 50◦30. Despite 
the resulting single-field fundus photography contains the most significant area, a large portion of the retina 
is still not captured. The ETDRS 7SF photography5 was developed by combining 30◦ field images to resolve the 
limitation. It captures approximately 90◦ of the retina that is around 30% of the retinal surface31. Since 1991, 
the ETDRS 7SF photography has been the gold standard for the classification and severity evaluation of DR32. 
However, acquisition of the ETDRS 7SF images is not as convenient as that of the single-field fundus images 
since it requires skilled photographers and is time-consuming30.

With the recent advancement of the high-resolution UWF imaging, up to 82% of the retinal surface can 
be captured in a single image33. Several study groups obtained a high level of agreement from a comparison 
between the UWF photography and the ETDRS 7SF photography for DR evaluation33–36. Furthermore, Silva 
et al. demonstrated that peripheral lesions identified on UWF imaging are associated with the increased risk of 
DR progression37. Those pioneering studies33–37 regarding the UWF imaging for DR severity evaluation utilized 
capturing devices from Optos. The wide-field scanning laser ophthalmoscopy (SLO) by Optos provides a single 
image covering nearly 200◦ of the retina18. During transforming the wide-field image of the spherical eye into 
the 2-D image, small lesions may be inconspicuous due to distortion18. Furthermore, eyelashes and eyelids cover 
the superior and inferior periphery of the retina in some cases32. Aiello et al.33 demonstrated that the ETDRS 
7SF photography and corresponding fields in the UWF photography have moderate to substantial agreements 
for DR severity evaluation.

In this study, we configured a deep learning system for DR detection using the ETDRS 7SF image extracted 
from the UWF fundus image. Although the UWF imaging provides a wide captured area, the far periphery of 
the retina in UWF images may contain eyelids and eyelashes. Furthermore, to our knowledge, most of the exist-
ing deep learning systems for DR detection and evaluation adopt conventional single-field fundus photography. 
Hence, we extracted and utilized the ETDRS 7SF from UWF images for the DR detection task. By segmenting the 
ETDRS 7SF from UWF photography, we can save the time and effort for capturing the ETDRS 7SF photography 
using a single-field fundus camera. To demonstrate the effectiveness of the automated DR detection system based 
on the ETDRS 7SF images segmented from the UWF photography, we compared the DR detection performance 
of our system with a system based on the ETDRS F1–F2 images.

From ten runs of ten-fold stratified cross-validation tests with a single run of ten-fold validation, our DR 
detection system based on the ETDRS 7SF images extracted from the UWF photography achieved a sensitivity of 
83.38± 0.48% , a specificity of 83.41± 0.42% , an accuracy of 83.38± 0.47% , and an AUC of 91.50± 0.48% . For 

Figure 8.   Class activation maps generated from ETDRS 7SF and F1–F2 images for DR and normal class.

Table 2.   Results from the paired-sample t test. The significance level ( α ) is set at α = 0.001.

Performance metric Accuracy AUC​ Sensitivity Specificity

Probability Value (p) p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

Hypothesis Test Result (H) 1 1 1 1
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the DR detection system based on ETDRS F1–F2 images, we obtained a sensitivity of 80.60± 0.53% , a specific-
ity of 80.61± 0.69% , an accuracy of 80.60± 0.54% , and an AUC of 88.67± 0.37% . For all adopted performance 
metrics, the DR detection based on the ETDRS 7SF images showed around 3% performance advancement over 
that based on the ETDRS F1–F2 images. Furthermore, we demonstrated that the performance gaps for all adopted 
metrics are statistically significant via a paired-sample t test. As shown in Fig. 8, lesions at the mid-periphery 
of the retina contributed to the DR detection, where the region is not available in the ETDRS F1–F2 images.

One of the limitations of our approach is that we set an ROI for the DR detection to the ETDRS 7SF among 
the entire captured area of the retina in the UWF photography. It is to align the image and reduce the influence 
of obstacles such as eyelids and eyelashes. Automated segmentation of the visible retinal surface without obstruc-
tions can be a solution for the limitation. Our immediate future works are automatic segmentation of a larger 
retinal surface including mid- and far periphery of the retina from the UWF photography and development of 
the DR evaluation system based on it. Additionally, the data acquired in our study is recognized as single-center, 
single-ethnicity, and single-device one. For a thorough investigation, the acquisition of multi-center, multi-
ethnicity, and multi-device data is essential. Collecting and exploiting such data is one of our future works. Lastly, 
our system includes the optic disc and macula detection stage, which is indispensable for ETDRS 7SF segmenta-
tion. Since the ETDRS 7SF segmentation highly relies on the previous landmarks detection results, failure in the 
optic disc and macula detection stage results in subsequent unavailability of the DR detection. We deem it as a 
limitation of our system, where the inclusion of the less restricted image preprocessing is necessary. Probably, a 
whole-image based DR detection with little segmentation task can be a desirable system.

Data availability
The ultra-wide-field fundus image dataset utilized for training, validation, and test was acquired from Catholic 
Kwandong University International St. Mary’s Hospital, South Korea. This dataset is not publicly available, and 
restrictions apply to their use. The refuge dataset may be requested from https​://refug​e.grand​-chall​enge.org/
REFUG​E2018​/.

Code availability
The code for preprocessing and learning includes intellectual property and cannot be released publicly. How-
ever, the ResNet and U-Net algorithms may be acquired from https​://githu​b.com/pytor​ch/visio​n/blob/maste​r/
torch​visio​n/model​s/resne​t.py and https​://githu​b.com/usuya​ma/pytor​ch-unet. The preprocessing and learning 
algorithms can be replicated using the information provided in the “Methods” section.
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