Table 2.
MRI and CT images registration performance (when the existing DNNs are used as feature extraction and coupled with a regression ANN).
| Methodology | DSC | JSC | CMS | SSIM | |||
|---|---|---|---|---|---|---|---|
| Chee and Wu20 | 0.9835 | 0.9780 | 0.9820 | 0.9815 | 0.9870 | 0.9685 | 9.50 |
| Zheng et al.37 | 0.9865 | 0.9650 | 0.9630 | 0.9825 | 0.9730 | 0.9650 | 7.50 |
| Miao et al.26 | 0.9790 | 0.9700 | 0.9610 | 0.9710 | 0.9730 | 0.9550 | 35.00 |
| Sloan et al.33 (CNN) | 0.9785 | 0.9780 | 0.9765 | 0.9850 | 0.9890 | 0.9530 | 07.35 |
| Sloan et al.33 (FCN) | 0.9895 | 0.9650 | 0.9835 | 0.9870 | 0.9855 | 0.9660 | 08.85 |
| Liu et al.29 | 0.9610 | 0.9385 | 0.9670 | 0.9790 | 0.9700 | 0.9385 | 38.50 |
| Zou et al.27 | 0.9680 | 0.9565 | 0.9835 | 0.9880 | 0.9785 | 0.9500 | 12.80 |
| Proposed | 0.9910 | 0.9820 | 0.9903 | 0.9890 | 0.9930 | 0.9700 | 02.50 |
Best result for each metric is shown in bold.