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Abstract

The full potential of polyketide discovery has yet to be reached due to a lack of suitable 

technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent 

investigations on the discovery, enhancement, and non-natural utilization of these biosynthetic 

gene clusters via computational biology, metabolic engineering, structural biology, and 

enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we 

discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed 

biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic 

biology, as well as challenges and outlooks for rapidly generating useful target polyketides.

Graphical Abstract

Introduction

Nature has evolved diverse enzymatic machinery for the assembly of highly complex small 

molecule natural products. Biosynthesized by polyketide synthases (PKSs), polyketides are a 
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large class of natural products and represent a significant source of new drugs, molecular 

probes, and bioactive small molecules [1,2]. Many polyketides are blockbuster drugs such as 

erythromycin (antibiotic), epothilone B (antitumor), and lovastatin (anticholesterol), while 

others, such as solithromycin, are currently in clinical development [3].

Within canonical type I PKS assembly lines, each module is responsible for the 

incorporation of a single malonyl-derived extender unit. Minimally, modules are comprised 

of an acyltransferase (AT), acyl carrier protein (ACP), and ketosynthase (KS) catalytic 

domains, which enable extender unit selection and subsequent decarboxylative Claisen 

condensation between the extender unit and the growing chain. Additional in-line tailoring 

domains, including the ketoreductase (KR), dehydratase (DH), enoylreductase (ER), or more 

rarely, methyltransferase (MT), can also further site-selectively modify the alkylation and 

oxidation patterns within the growing polyketide chain. The final elongated chain is then 

cleaved from the PKS and cyclized by a thioesterase (TE) domain to yield a core 

macrolactone, which can be further decorated by post-PKS enzymes [4].

Despite their broad chemical and structural diversity, naturally occurring polyketides often 

require optimization for a given application [5]. For example, the macrolide antibiotic 

erythromycin was synthetically modified to prevent cyclization in the acidic gastric 

environment, for increased bioavailability, and for additional molecular interactions with the 

ribosome, spawning multiple generations of improved antibiotics. While synthetic methods 

have successfully modified polyketide structures, biosynthetic modifications offer a scalable 

and potentially facile approach for regio- and stereoselective scaffold diversification. Herein, 

this review describes the current state-of-the-art in synthetic biology to enable access to 

designer polyketides, leveraging the modularity of PKS machinery. We highlight recent 

works that have expanded the polyketide chemical space through pathway discovery, 

refactoring, and engineering and reflect on the future outlook of synthetic biology 

approaches to polyketide analoging (Figure 1).

Polyketide Biosynthetic Gene Cluster Discovery

Though there are many elucidated polyketide synthases (PKSs), these pathways likely 

represent a portion of the genetic machinery available in Nature [6]. Moreover, high 

rediscovery rates continue to hinder the identification of novel natural compounds. 

Therefore, several “omics-guided” methods such as transcriptomics [7], metabolomics [8], 

and genome mining (metagenomics) [9,10] have been utilized in polyketide biosynthetic 

gene cluster (BGC) discovery. These approaches expand the polyketide engineering toolbox, 

but more significant barriers for accessing non-natural polyketide derivatives including host 

selection, starter and extender unit availability, and pathway design, must be overcome.

Accessing Polyketides via Host Strain Selection and Engineering

Exploring and optimizing polyketide biosynthesis can be completed within native 

production strains given that the BGC and necessary precursors are often already 

functionally expressed and produced. Typically, enhancing polyketide production focuses on 

the redirection and optimization of carbon flux via enhanced precursor availability [11,12], 
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promoter and ribosome engineering [13], removal or overexpression of regulatory elements 

[14,15], deletion of competing biosynthetic pathways, and combinations thereof to 

significantly enhance titers above that of the wild-type pathway. Strategies including 

cooperative induction [9], co-culturing [16], and transcription factor decoys [17] have been 

explored for the activation of cryptic BGCs (cBGCs). The expression of cBGCs has also 

been enabled through the deletion of “primary” PKS pathways [18,19]. While these methods 

have been useful in specific well-studied, genetically tractable hosts, the full potential of 

polyketide cBGCs will not be fully realized until there is a global strategy for pathway 

activation under traditional and industrially relevant fermentation conditions.

Heterologous pathway expression in well-characterized chassis has addressed challenges 

posed by native host expression. Heterologous platforms for the rapid and robust 

biosynthesis of polyketides derived from type I [20,21], II [22,23], and III [24] synthases, 

offer key opportunities for synthetic biology including the expression of cBGC, development 

of chimeric PKSs through “plug and play” modifications, and precursor-directed 

engineering [22]. Usually, the goal of heterologous expression is to decouple secondary and 

primary metabolism to enhance polyketide production. A recent omics-guided approach in 

Streptomyces revealed that primary metabolism derived triacylglycerols can limit polyketide 

biosynthesis. This was overcome by dynamically degrading triacylglycerol and led to 

enhanced titers of actinorhodin, jadomycin B, oxytetracycline and avermectin B1a in various 

Streptomyces strains [25]. However, direct BGC transfer [13] and their expression [22] 

present numerous obstacles including significant cellular burden, resulting in poor 

expression or inefficient cellular maintenance of the BGC [20]. Advances in DNA 

manipulation and genomic integration technologies, including transformation-associated 

recombination (TAR) [26] and direct pathway cloning (DiPaC) [27], continue to make these 

BGC transfers more feasible.

Altered Macrolactone Sidechains through Precursor-Directed Biosynthesis

The AT is often a target of engineering given that it dictates large portions of the 

macrolactone structure. Extender unit specificity of AT domains has been altered through 

domain and motif swaps while targeted mutagenesis strategies have enabled site-selective 

integration of non-natural building blocks. Notably, AT mutagenesis of the final two 

modules of the pikromycin PKS revealed the unprecedented capability to introduce 

consecutive non-natural extender units into a macrolactone [28]. In another recent example, 

mutation of a conserved tryptophan switched specificity of an AT from ACP- to coenzyme A 

(CoA)-linked extenders [29], providing an additional potential route to polyketide 

diversification.

While many of these efforts have had limited utility to in-line, or cis-ATs, opportunities for 

expanding polyketide chemical space also exist via complex free-standing trans-AT 

pathways [30]. Though there are examples of trans-ATs like the orthogonal and promiscuous 

ZmaF whose activities have been probed, their non-natural utility and ability to be leveraged 

by enzyme engineering in general has not been well explored [31]. Non-canonical modular 

junctions within these systems, often between a KS and DH, make their products difficult to 

predict through traditional genome mining [32]. However, programs such as TransATor, 
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which predicts trans-AT containing PKS products by comparing a PKS to KS domains in 

BGCs and their associated downstream modular enzymes, are powerful tools for discovery 

[33].

While native and engineered AT promiscuity facilitates the biosynthesis of novel 

polyketides, the modest diversity of extender units [34] beyond malonyl-CoA (mCoA) and 

methylmalonyl-CoA (mmCoA) has restricted in vivo efforts. To expand the existing in vivo 
repertoire of non-natural extender units, mCoA synthetases have been used for the activation 

of diverse C2-substituted malonates. A native mCoA synthetase from Streptomyces 
cinnamonensis was used to synthesize allyl-, propargyl-, and propyl-CoAs for the 

production of monensin analogues [35]. The native promiscuity of enoyl-thioester 

carboxylase/reductases (ECRs) [36,37] have also been leveraged to produce non-natural 

extender units in vitro. Moreover, halogenases such as SalL can diversify precursors to 

produce chlorinated and fluorinated mCoA analogues (Figure 2) [38,39]. Notably, once 

incorporated, these halogenated analogues can be further leveraged as chemical handles for 

downstream cross-coupling reactions for further derivatization, as has been done with other 

classes of natural products [40].

Access to Designer Polyketides via Combinatorial Biosynthesis of PKSs

The templated biosynthesis of polyketides by type I PKSs implies the modularity of 

biosynthetic machinery. Leveraging this paradigm, novel designer molecules are accessible 

through a “plug-and-play” strategy, wherein modifications to the assembly line, including 

the insertion, deletion, and exchange of key domains/modules afford predictable scaffold 

diversification. However, significant changes to protein structure often impair or inactivate 

the chimeric PKS.

Emerging bioinformatic and evolutionary analyses have challenged the canonical KSn-ATn-

ACPn module structure, suggesting that the boundaries be re-defined as ATn-ACPn-KSn+1 

[41]. Construction of a hybrid pikromycin-venemycin pathway (Figure 3) with these newly 

delineated boundaries resulted in higher turnover rates than the traditional boundary swaps 

and incorporation of the non-natural starter unit 3-hydroxybenzoic into a small 

combinatorial library of molecules, though non-natural extender selectivity was not explored 

[42]. Others have also independently identified the KS-AT linker site as a key target for 

homologous recombination in type I PKSs [43].

Recent advances aside, there have been varying levels of success in generating chemical 

diversity in polyketides. Small libraries of compounds with improved antifungal activities 

have been produced through non-natural incorporation of native extender units by removal 

of enzymes responsible for extender unit synthesis, inactivation of reductive domains, and 

knock-outs of tailoring enzymes [44]. Likewise, the fusion of 6-methylsalicylic acid 

synthase (6MSAS) with a PKS from Pseudallescheria boydii produced a novel compound 

[45]. Lastly, improvements of a chimeric PKS by point mutations in the KR and host 

engineering increased production of short-chain ketone fuel additives [46].
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Additionally, there have been increased efforts to understand the structure and engineering 

of specific domains and linkers. This has included reductive loop engineering informed by 

cheminformatics, which led to higher yields of the expected products [47], 

phosphopantetheinyltransferase swaps [48], the addition of multiple ACPs on the C-terminus 

of the final ACP in erythromycin biosynthesis [49], and association of chimeric pathways 

through docking domain engineering [50–52]. Finally, the recently confirmed “extended 

conformation” of a module via X-Ray crystallography will better inform future engineering 

efforts [53].

Non-Natural Chain Lengths

Natural breaks in the colinearity paradigm, such as module skipping, stuttering, or stalling, 

can similarly enable the biosynthesis of unpredictable macrolactone cores. Although the 

infidelity of these pathways was thought to be highly unusual, a number of pathways capable 

of producing multiple or unusual biosynthetic products have been identified. These studies 

have focused on both single domain inactivation [54] and engineered functionality [55], to 

dramatically alter the product profile by producing polyketides of variable chain length. 

Additional mechanisms for non-colinear polyketide biosynthesis have been recently 

discovered, including the native reversal of selectivity of vatiamides, which allows the 

biosynthetic pathway to produce multiple products of variable chain lengths and subsequent 

post-processing modifications [56] as well as the pass-back chain extension mechanism of 

thalassospiramide biosynthesis [57]. Moreover, some of these processes have been 

accelerated through engineering, leading to seventeen rapalogs as a result of laboratory 

evolution that mimicked how PKSs might have evolved in Nature [58].

However, colinearity does not apply to iterative PKSs that catalyze different sets of reactions 

while maintaining exquisite control to produce ‘cryptic’ templated products. Notably, recent 

work from Yang et al. identified a possible mechanism in which the KR plays a significant 

role in chain length determination using intrinsic selectivity across multiple iterative PKSs 

[59]. The relevance of individual domain processing for the specificity of the chain length as 

determined by starter unit selection has also been probed [60].

Diversification of Polyketide Scaffolds via Non-Native Post-PKS Tailoring

Modifications to the core scaffolds introduce additional complexity and functionality. By 

leveraging native and engineered promiscuity of post-PKS tailoring enzymes, new-to-nature 

polyketides can be generated through the introduction of non-natural or non-native moieties.

Macrolactone glycosylation is critical to the biological functionality of polyketides. Owing 

to native glycosyltransferase (GT) promiscuity, several groups have leveraged GTs for the 

biosynthesis of non-native polyketides by leveraging combinatorial libraries derived from 

wide panels of macrolactone cores and NTP-sugars. Notably, the biological functionality of 

non-natively glycosylated polyketides can display different activity from their naturally 

occurring counterparts [61], as demonstrated by a series of erythromycin analogues, some of 

which have been characterized with potent activity against erythromycin A resistant strains 
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[62]. Although these efforts continue to demonstrate the broad capabilities of these enzymes, 

the ability to diversify aglycone structures continues to pose a challenge.

Polyketide alkylation via biological and chemical syntheses, has similarly expanded 

biological functionality, as evidenced by the enhanced bioactivity of the daidzein analogue, 

4’-O-methyl daidzein [63]. Often catalyzed by S-adenosylmethionine (SAM) dependent 

methyltransferases (MTs) [64], post-PKS polyketide alkylation has been diversified using 

rational reprogramming of promiscuous MTs for use in combinatorial biosynthesis reactions 

[65]. Interestingly, some natural product MTs have displayed promiscuity for non-native 

SAM analogues for the transfer of ethyl-, propargyl-, allyl-, and benzyl- moieties [66–68]. 

Notably though, while MTs have been highly successful for the diversification of non-

ribosomal peptides, they have not yet been fully explored with polyketide substrates.

Halogenases also contribute to the diversification of natural products [69]. Flavin-dependent 

halogenases, such as VemK [70], ChmKN [71], and Rdc2 [72] have been demonstrated to 

halogenate aromatic polyketides, including resveratrol, to produce natural product analogues 

with potent bioactivities; however, their mechanisms are not conducive for use on non-

aromatic substrates, limiting their potential to diversify other polyketides.

High-Throughput Approaches to Polyketide Synthetic Biology

Evaluating large numbers of artificial PKS pathways remains a critical engineering 

bottleneck due to the low-throughput of traditional analytical methods. Emerging high-

throughput strategies, including engineered transcription-factor biosensor platforms and 

colorimetric assays [24], offer promising tools for engineering polyketide biosynthesis. 

Recently, a newly refactored FapR-based biosensor system for the detection of a variety of 

C2-substituted CoA- and N-acetylcysteamine (SNAc)-linked extender units [73] was 

described, both in vivo and in vitro. This biosensor detected the over-production of mmCoA 

in an engineered E. coli strain and also detected other extender units, paving the way for 

high-throughput engineering of native and non-natural extender unit supply in producing 

organisms.

There has also been much effort toward detection of polyketide pathway biosynthesis end-

products and intermediates. Significant enhancements to mass spectroscopy-based screening 

methods, including laser-assisted rapid evaporative ionization mass spectrometry [74], have 

enabled the high-throughput direct detection of some natural products, including 

erythromycin A. Moreover, transcriptional regulators such as MphR are currently being 

leveraged for sensitive and specific screening of novel non-natural polyketides [75]. It is 

anticipated that such biosensors can be used to improve access to pathway intermediates and 

novel products through directed evolution by providing the ability to screen millions of 

pathway variants.

Future Outlook

The discovery of increasingly diverse polyketide enzymatic machinery offers powerful plug-

and-play potential for the diversification of complex bioactive compounds. Yet, the ability to 

effectively engineer these pathways has been limited. However, efforts underpinned by 
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enhanced mechanistic and structural studies of these megasynthases suggest an optimistic 

outlook for future PKS engineering to yield tailored polyketides. Probing the promiscuity of 

this machinery utilizing precursor-directed biosynthesis has enabled the mutasynthesis of a 

variety of critical targets. Moreover, analysis of product profiles derived from single domain 

and module modifications have elucidated unanticipated breaks in the co-linearity paradigm 

to enable cryptic and non-natural products. While engineering efforts were previously 

throttled by low-throughput screens, current and future engineering will be enhanced with 

the availability of tailored biosensors that enable high-throughput approaches to solve 

otherwise challenging problems related to polyketide biosynthetic engineering. An exciting 

future vision for designer polyketides includes augmenting traditional medicinal chemistry 

approaches with the application of computational methods to identify potential compounds 

of interest and value [76]. For example, “PKS Enumerator” [77] and the follow-up “SIME: 

Synthetic Insight-Based Macrolide Enumerator” [78] are cheminformatics tools that 

generates virtual libraries of macrolactones with multiple user-defined constraints derived 

from knowledge of polyketide biosynthesis. Such in silico libraries could then be mined 

using machine learning and/or 3D docking for potential new bioactive compounds. With this 

in mind, MacrolactoneDB integrates almost 14,000 existing macrolactones and their 

bioactivity information from various public databases [79]. Machine learning on this data set 

led to impressive prediction power for activity against several critical targets. Together, our 

vision for polyketide synthetic biology melds together high-throughput synthetic biology, 

advances in structural biology, mechanistic studies, and in silico prediction of bioactive 

compounds to develop new-to-nature polyketides as potential therapeutics and probes.
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Figure 1. 
Accessing designer polyketides leveraging diverse engineering strategies. Native pathways 

are shown in light grey, while engineered and non-natural pathways are shown in dark grey. 

Modifications to the PKS and post-PKS tailoring enzymes are highlighted in their 

corresponding colors.
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Figure 2. 
The development of malonyl-CoA analogues for introduction into polyketides. Top: 

Biosynthesis of malonyl-CoA and various C2-substituted malonyl-CoA analogues. These 

acyl-CoAs are then utilized by PKSs to produce naturally occurring polyketides and their 

analogues. Bottom: Panel of previously biosynthesized C2-substituted analogues (See text 

for references).
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Figure 3. 
Hybrid synthases of the venemycin PKS (top) were constructed with traditional domain 

boundaries between the KS and ACP (middle). Module swaps were then constructed using 

boundaries between the KS and AT (gray box). The new boundary definition resulted in a 

chimera that was several-fold faster than its traditional boundary counterpart. A (adenylation 

domain), KR (Ketoreductase), ACP (acyl carrier protein), KS (ketosynthase), AT 

(acyltransferase), TE (thioesterase), KSQ (ketosynthase-like decarboxylase), KR0 (inactive 

ketoreductase).
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