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ABSTRACT The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is of longstanding
medical interest as both a biomarker for neuroinjury and a potential drug target for neuroinflammation and other disorders.
Recently, it was shown that ligand residence time is a key factor determining steroidogenic efficacy of TSPO-binding com-
pounds. This spurs interest in simulations of (un)binding pathways of TSPO ligands, which could reveal the molecular interac-
tions governing ligand residence time. In this study, we use a weighted ensemble algorithm to determine the unbinding pathway
for different poses of PK-11195, a TSPO ligand used in neuroimaging. In contrast with previous studies, our results show that
PK-11195 does not dissociate directly into the solvent but instead dissociates via the lipid membrane by going between the
transmembrane helices. We analyze this path ensemble in detail, constructing descriptors that can facilitate a general under-
standing of membrane-mediated ligand binding. We construct a set of Markov state models augmented with additional straight-
forward simulations to determine pose-specific ligand residence times. Together, we combine over 40 ms of trajectory data to
form a coherent picture of the ligand binding landscape. We find that multiple starting poses yield residence times that roughly
agree with the experimental quantity. The ligand binding transition states predicted by these Markov state models occur when
PK-11195 is already in the membrane and involves only minimal ligand-protein interactions. This has implications for the design
of new long-residence-time TSPO ligands.
SIGNIFICANCE Kinetics-oriented drug design is an emerging objective in drug discovery. However, whereas ligand
binding affinity (or the binding free energy) is purely a function of the bound and unbound states, the binding kinetics
depends on the nature of the paths by which the (un)binding occurs. This underscores the importance of approaches that
can reveal information about the ensemble of (un)binding paths. Here, we used advanced molecular dynamics approaches
to study the unbinding of PK-11195 from translocator protein (TSPO) and find it dissociates from the protein by dissolving
into the membrane and that the transition state occurs after the PK-11195 molecule has largely separated from TSPO.
These results motivate the design of future long-residence-time TSPO ligands that destabilize the membrane-solvated
transition states.
INTRODUCTION

The binding affinity of a ligand to its protein target has
long been viewed as the key parameter determining its effi-
cacy. However, recent studies have shown that in some
protein-ligand systems, residence time correlates more
strongly with efficacy than binding affinity (1). But, unlike
the binding affinity, residence time is not a state function;
it depends on the height of the free energy barrier separating
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the bound and unbound states. To rationally design ligands
for longer residence times, we need to understand the (un)
binding mechanism and what molecular interactions occur
along the ligand (un)binding pathway.

Previous studies have shown that the translocator protein
18 kDa (TSPO) is one such protein for which residence
time is important for predicting efficacy (2). TSPO is a
well-conserved membrane protein, being present in all
kingdoms, including prokaryotes, as well as in the outer
mitochondrial membrane of eukaryotes (3). TSPO has
five transmembrane a-helices (TM1–5) along with a small
helical region in a 20-residue loop (hereafter denoted as the
LP1 region) connecting TM1 and TM2 on the cytosolic
side (Fig. 1 A). When in the membrane, TSPO is largely
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FIGURE 1 TSPO-PK-11195 system. (A) Front view of the TSPO dimer

in the membrane with PK bound is shown. (B) All six starting poses are

shown from the side view along the interdimer axis. To compare poses,

two moieties of PK are colored in black (o-chlorophenyl) and magenta

(1-methylpropyl), with the rest of the molecule colored according to

atom name. TM-2 is shown as transparent for clarity. Poses D1-D4

were obtained by docking with Schrödinger Glide (8) and their

corresponding Gscore values are shown. To see this figure in color, go

online.
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found in a dimeric state (4). To date, four different struc-
tures have been solved for TSPO for both bacterial (4,5)
and mammalian (6,7) organisms: the former by x-ray crys-
tallography, the latter by NMR.

Although the structure of TSPO has been solved, its
function remains unknown. In humans, TSPO is highly ex-
pressed in steroidogenic tissues, consistent with the hypoth-
esis that it is involved in the regulation of cholesterol
transport across the mitochondrial membrane. Indeed,
TSPO has been shown to have a high binding affinity for
cholesterol (9). There are other studies linking it to
apoptosis (10,11) and cellular stress regulation in TSPO
knockout mice (12,13), although evidence for this is mixed
(14,15). Increased TSPO expression has also been observed
in cases of neurodegenerative diseases such as Alzheimer’s
and Parkinson’s diseases (16). Relatedly, because of its high
expression in areas of inflammation, TSPO serves as a
biomarker for neurodegenerative disease and brain trauma,
and radiolabeled ligands such as (H3)-PK-11195 are
commonly used in positron emission tomography scans
(17). PK-11195 (hereafter denoted ‘‘PK’’) is an isoquinoline
carboxamide with no known therapeutic effect (15) and a
residence time of 34 min in the human TSPO sequence
(2,18).

Molecular dynamics (MD) simulations have been previ-
ously performed using a bound TSPO-PK complex. Re-
searchers recently determined the unbinding pathway of
PK from a rat TSPO model generated from the Protein
Data Bank, PDB: 2MGY structure (19). To generate unbind-
ing paths, they used a combination of random accelerated
MD (RAMD) (20) and steered MD (21) and determined
that PK unbinds into the cytosol through the largely disor-
dered LP1 region (Fig. 1 A). Unfortunately, this starting
structure, determined by NMR, was significantly destabi-
lized by the detergent used in the purification (22,23).
Also, the methods used to determine the unbinding pathway,
RAMD, have the potential to impart bias on the predicted
(un)binding path. Another group performed an induced-fit
docking of PK using Glide (24) with a homology model
to resemble the mammalian (mouse) TSPO structure using
the PDB: 4UC1 Rhodobacter sphaeroides structure. They
simulated the TSPO-PK complex for 700 ns and did not
observe significant ligand displacement, which is expected
because of the extremely long residence time of the
TSPO-PK complex.

Here, we study the unbinding mechanism for the TSPO-
PK complex, using PDB: 4UC1 as the TSPO starting
structure (4) and using a weighted ensemble algorithm, re-
sampling of ensembles by variation optimization (REVO),
to generate continuous unbinding pathways without per-
turbing the underlying dynamics (25). REVO has been pre-
viously applied to study ligand unbinding on a series of
host-guest systems (26) and the trypsin-benzamidine sys-
tem (25). In the next section, we discuss the methodology
used for the simulations: the REVO resampling algorithm,
the clustering algorithm used for the construction of Mar-
kov state models (MSMs) and the conformation space
network (CSN) representation, and rate calculations. In
the Results, we analyze pathways found for dissociation
of PK from TSPO, residues that bound strongly to PK
along the observed pathways, and we compare residence
times between different starting poses. We then summarize
our findings and discuss how they relate to existing
research.
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MATERIALS AND METHODS

Protein preparation

The initial TSPO dimer structure is composed of chains A and B from PDB:

4UC1 (4). This x-ray crystal structure comes from R. sphaeroides with an

A139T mutation to resemble human TSPO. The CHARMM-GUI mem-

brane generator (27) was used to place the TSPO complex into a membrane

composed of 174 phospholipids consisting of 53.4% phosphatidylcholine,

28.2% phosphatidylethanolamine, and 18.4% phosphatidylinositol lipids.

10,268 TIP3 water molecules were inserted up to a cutoff of 10 Å from

the complex, and 121 potassium ions and 27 chloride ions were added to

reach a salt concentration of 150 mM and to neutralize the system. The sys-

tem was placed into a rectangular box with dimensions 96.4 Å � 96.4 Å �
91.8 Å. The protein was simulated using the CHARMM36 force field (28),

and parameters for the PK ligand were obtained with CGenFF (29,30).
Docking

Six different PK poses were used in the simulations. Docking was car-

ried out with extra precision (XP) by using Schrödinger Glide (8). The

center of mass (COM) of PK was placed at the COM of the bound pro-

toporphyrin IX in the chain A monomer of TSPO protein from PDB

4UC1 without any constraints. The XP docking yielded four poses

(D1–D4), and the XP Gscores for the resultant poses can be seen in

Fig. 1 B. A homology model of PK-bound TSPO (pose R) was generated

by Xia et al. as a Rosetta comparative model of the mouse TSPO struc-

ture constructed using TSPO structures from Mus musculus (PDB:

2MGY (6)), R. sphaeroides (PDB: 4UC1 (4)), and Bacillus cereus

(PDB: 4RYI (5)); more details can be found in (31). The TSPO monomer

bound to PK from this model was then aligned to chain A of the 4UC1

structure using PyMol 1.7.2.1 (32), and the ligand coordinates from the

D1 pose were changed to reflect the new pose. The 4RYI pose was

generated by x-ray crystallography, and the coordinates of the PK ligand

were added to the 4UC1 structure in the same way as pose R. The sys-

tem’s energy was minimized using a series of constraints with scripts

provided by CHARMM-GUI for all poses. The molecular structure for

each pose is shown in Fig. 1 B, and pose view diagrams are shown in

Fig. S1.
MD

All MD simulations were performed using OpenMM (33) v7.1.1. The time-

step for every simulation was 2 fs. To enforce constant temperature and

pressure, a Langevin heat bath was used with a set temperature of 300 K,

a friction coefficient of 1 ps�1 was coupled to a Monte Carlo barostat set

to 1 atm, and volume moves were attempted every 50 time steps. The

nonbonded forces were computed using the CutoffPeriodic function in

OpenMM with a cutoff of 10 Å. The atomic positions and velocities are

saved every 15,000 time steps or every 30 ps of simulation time, which is

the resampling period (t) used here.
REVO resampling

To observe long-timescale unbinding of PK, we used a variant of the

weighted ensemble algorithm: REVO (25). In this algorithm, we perform

unbiased MD simulation on 48 separate trajectories in a parallel fashion.

Each of these trajectories (called ‘‘walkers’’) has a statistical weight (w)

that governs the probability with which it contributes to statistical

observables. With periodicity t, a resampling procedure is performed,

in which similar walkers are merged together and unique walkers are

cloned, as defined by a distance metric. During cloning, weights are split,

and during merging, weights are added to ensure conservation of

probability.
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Below, we briefly describe the REVO method, focusing on the details of

its application in this work. More information on the algorithm can be found

in previous work (25). In REVO, merging and cloning is done to maximize

a variation function: V ¼ P
i
Vi ¼

P
i

P
j

�
dij
d0

�a

fifj, where dij is the distance

between walker i and walker j determined using a distance metric of choice.

For these simulations, the distance metric used was the root mean-square

deviation of the PK atoms between each walker, after alignment to a selec-

tion of binding site atoms in TSPO. The exponent a is used to modulate the

influence of the distances in the variation calculation and was set to 4 for all

simulations. d0 ¼ 0.148 nm is a characteristic distance used to make V

dimensionless and to normalize the variance for comparison between

different distance metrics. f is a novelty and here is defined as fi ¼ log(wi)

� logððpmin =100ÞÞ. The minimal weight, pmin, allowed during the simula-

tion was 10�12. The walker that is selected for cloning is the one that has the

highest Vi, and the resultant weight of the clones is larger than pmin. The two

walkers selected for merging are at most 2 Å away, have a combined weight

lower than the maximal allowed weight pmax ¼ 0.1, and are the walker pair

j, k that minimizes ðVjwk þ Vkwj =wj þ wkÞ. Once the walkers (i, j, k) are
selected, the new variation is calculated: if it increases, then these opera-

tions are performed, and another (i, j, k) is proposed; if it decreases, then

resampling for that cycle is terminated, and a new cycle of MD is per-

formed. Three simulations were run for each docked pose using 48 walkers

and 1200 cycles, for 1.728 ms of simulation time per simulation. In total,

each pose was simulated for 5.184 ms.
Boundary conditions

The overall goal of the simulations was to determine the pathways along

which PK can transition from the initial starting poses to an unbound

state. During the simulations, we defined PK as being unbound when

the minimal distance between the ligand and TSPO was at least 10 Å.

When the ligand crossed this boundary, the weight was recorded, and

the walker was ‘‘warped’’ back to the initial conformation. The structure

recorded before warping is known as an exit point. When the walker

warps back, the atomic positions and velocities are reset to their initial

values before the simulation began. The walker weight does not change

as a result of warping.
Clustering and network layout

The trajectory frames of all 18 REVO runs were clustered together using

the MSMBuilder 3.8.0 Python library. The frames were featurized using a

vector of atomic distances between TSPO and PK atoms initially within

8 Å of each other from the 4RYI starting pose for a total of 7527 distances.

A k-centers clustering algorithm was used to generate 2000 clusters using

the featurized space, and each frame was assigned to a cluster. The clus-

tering was done using the Canberra distance metric. A count matrix

describing the cluster-cluster transitions was calculated for a lag time of

30 ps.

We then construct a CSN from the count matrix, which is a graphical

representation of the transition matrix. Each node, representing each row

of the transition, and the edges, representing nonzero off diagonal ele-

ments of the transition matrix, were determined using the CSNAnalysis

package (34). Gephi 0.9.2 (35) was used to visualize the CSN. The size

of each node is proportional to the statistical population of the cluster.

For visualization, the smallest node was set to be 20 times smaller

than the largest node. The layout of the network was determined using

a force minimization algorithm, Force Atlas, included in Gephi. The al-

gorithm repulses nodes that are not connected and attracts nodes that are

connected via an edge. The strength of the attractive force is propor-

tional to the weight of the edges. The directed edge weights were values

between 0.1 and 100 as determined by wij ¼ 100pij, where pij is the tran-

sition probability of cluster i transitioning to cluster j. Unidirectional



Membrane-Mediated Ligand Unbinding
edge weights were then determined using the average between the two

directed edge weights. Force Atlas was applied twice. The first minimi-

zation was done without adjusting for node sizes, allowing the nodes to

overlap. The second minimization adjusted for the node size and pre-

vented overlap. For visualization, all edges are shown with a uniform

line weight.
Quantifying unbinding pathways

Upon analysis of the simulation results, the only unbinding pathways

observed in our simulations were PK dissociating through pairs of transmem-

brane helices. We therefore introduce the coordinate Qij, which measures the

minimal x-y distance from the COMof PK to the line formed by the COMs of

helices i and j to measure the dissociation progress of PK into the membrane.

Negative values indicate the COM of the ligand is closer to the center of the

helical bundle, and positive values indicate the COM is closer to being fully

dispersed in the membrane. All six poses had trajectories along which PK

traveled between transmembrane helices 1 and 2, and only pose R had trajec-

tories along which PK went between transmembrane helices 2 and 5. For

pose R analysis, we separate the conformations according to which value

(Q12 orQ25) is largest. Projections onto a givenQ-value will only use confor-

mations for which that Q-value is the largest.
Calculating nonbonded energies

We calculated the nonbonded interaction energies by Eint ¼ VLJ þ VES,

where VLJ is the Lennard-Jones potential energy and VES is the potential en-

ergy from electrostatic interactions. The Lennard-Jones interactions were

determined using a 12-6 potential given as VLJ ¼ 4 3

��
�

�
s
r

�6
�
, where r

is the atomic distance between atoms, s is the interatomic distance at which

the potential is 0, and 3is the depth of the potential well. To calculate s and

3, we used the Lorentz-Berthelot combining rule. There was a hard cutoff

distance of 10 Åwhen calculating the Lennard-Jones potential. The electro-

static energy was calculated using VES ¼ ð1 =4pε0ÞðQiQj =rijÞ, where Qa is

the charge of atom a, rij is the interatomic distance between atoms i and j,

and 30 ¼ 8.854 � 10�12 F/m is the permittivity of free space in farads per

meter. The specific s, 3, and Q for each atom type was provided by

CHARMM-36 parameter files obtained through CHARMM-GUI. Two

sets of nonbonded energies were calculated: between PK and TSPO and

between PK and lipids in the membrane.
Calculating off rates and mean first-passage
times using Hill relation

The rates are calculated using the flux of trajectories into the unbound basin,

also known as the Hill relation (36–38), defined as koff ¼ ðPiwi =TÞ, where
wi is the weight of the walker entering the unbound basin and T is the total

simulation time. During the simulations, the unbound basin was defined by

the 10 Å boundary condition. However, although many walkers had disso-

ciated into the membrane, no walkers made it to the boundary. Therefore, to

obtain estimates of unbinding rates, after the simulations were completed,

the unbound basin was redefined using a minimal distance of 5 Å, as we

found negligible interaction energy between PK and TSPO at this distance

(Fig. S2). In our simulations, we observed a total of 2285 instances of tra-

jectory crossings into the five-unbound basin. This is broken down by start-

ing pose as follows: 4RYI (47), D1 (4), D2 (1804), D3 (278), D4 (152), and

R (0). In our analysis, once a walker entered the unbound basin, we ignored

all future trajectories associated with that walker. This was done to prevent

double counting of unbinding transitions. The mean first-passage time

(MFPT), synonymous with the residence time, was calculated as

MFPT ¼ ð1 =koff Þ. The uncertainty of off rates and MFPT for each pose

is the standard error across each set of simulations.
Calculating MFPTs using Markov state models

We create transition matrices, T(t), for various lag times (t) using the clus-

ter identities from the CSN and tracking walkers through merging and clon-

ing operations in the REVO resampler. We alter these matrices to include a

probability sink for states that are unbound, defined as when PK is at least

5 Å away from the TSPO dimer. We run a Markov chain simulation for a

given starting pose and lag time by initializing a probability vector, P, where

all of the probability starts at the state of a given starting pose. To progress

the simulation, we use the following: Pk ¼ P0T(t)
k, where P0 is the initial

probability vector and Pk is the probability vector after k time steps. We

continue the simulations until all the probability accumulates in the un-

bound basin. We then calculate the MFPT using the following formula:

MFPT ¼ Sk(pk � pk � 1)ðtk þ tk�1 =2Þ, where pk is the probability of being
unbound at timestep k and tk is the time associated with time step k. We

repeat this for all initial poses and lag times to determine MFPT as a func-

tion of lag time.
Selecting poses for straightforward MD
simulations

To strengthen the accuracy of our MSMs, we run straightforward simula-

tions at weak points in the network. To determine these weak points, we

randomly multiplied the elements of a row on the transition matrix with

numbers drawn from a Gaussian distribution with a mean (m) at 1 with a

standard deviation (s) of 0.2, and we renormalized the row after perturba-

tion. We rerun the Markov chain simulations to calculate the MFPT. To get

a sense of how consistently the cluster alters the MFPT, we randomly per-

turb the transition matrix 10 times independently. Weak points in the

network are determined by the clusters whose perturbations affect the

MFPT the most, using the following formula: dMFPT/MFPT, where dMFPT

and MFPT are the standard deviation and average of the perturbed MFPT

values, respectively. For two poses, this ratio was greater than 0.2; we iden-

tified these clusters as weak points and reran straightforward MD simula-

tions from the highest-weighted structure in that cluster. From each weak

point, we launched 144 independent straightforward MD simulations for

a length of 500 cycles (15 ns). In addition, we launched trajectories from

high-LASA (lipid-accessible surface area) clusters in the central unbound

region and each of the high-LASA states originating from pose R. In total,

we ran 10.8 ms of supplemental trajectories to bolster our MSMs.
RESULTS

PK-11195 unbinding pathway

We comprehensively studied the TSPO-PK interaction land-
scape using a set of REVO simulations initialized at six
different starting poses (Fig. 1 B), simulating 5.184 ms per
pose. After the simulations were completed, all frames
were clustered together into a CSN shown in Fig. 2, in which
each node represents a PK pose and the edges reveal which
poses interconvert in our simulations within a 30 ps lag time.
All of the starting poses form a connected network, though
pose R is only connected via two low probability edges to
the pose 4RYI ensemble (Fig. S3). The 4RYI pose is simi-
larly connected to pose D4 but is also connected to the other
docked poses via the high-LASA clusters. It is worth noting
that both pose 4RYI and pose R were the only poses that
were not designed for this specific protein structure and
were instead inserted from other protein structures after
alignment. Consistent with this fact, both of these regions
Biophysical Journal 120, 158–167, January 5, 2021 161



FIGURE 2 Combined CSN of all REVO simulations from each starting

pose. Each node in the network represents a cluster of ligand poses and

is sized according to the cluster weight. Nodes are connected by edges if

the ligand poses are observed to interconvert in the REVO trajectory seg-

ments. Nodes are colored according to the LASA. Starting poses are

marked in bold, and transition state poses shown in Fig. 3 D are marked

in italics. To see this figure in color, go online.
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in the CSN do not show accumulation of probability into
one or more high-probability states. Instead, we observe a
broader distribution among many low probability states,
indicating a lack of a local funneling in the energy land-
scape. Interestingly, all of the docked poses (D1–D4)
show at least one high-probability state, although this is
not necessarily at the initial docked pose itself, indicating
that some relaxation is required from the docked poses to
reach the true local minima.

Contrary to what was observed in previous work (19), PK
did not dissociate into the solvent via the LP1 region;
instead, it dissociates into the membrane. The CSN shows
that all the poses, besides pose R, connect directly to the un-
bound states, shown in yellow and orange, in which PK is
fully dissolved into the lipid membrane. In all of these path-
ways, PK exits between TM1 and TM2. The pose R trajec-
tories show two different pathways that have a moderate
LASA—one between TM1 and TM2 and another between
TM2 and TM5—for which PK forms direct interactions
with membrane lipids.

We introduce the coordinateQij, which measures the min-
imal x-y distance from the COM of the ligand to the line
connecting the centers of mass of helix i and helix j
(Fig. 3 A). Negative Q-values indicate the ligand is within
162 Biophysical Journal 120, 158–167, January 5, 2021
the helical bundle, and positive values indicate the ligand
is outside the bundle. This provides a basis to compare be-
tween different pathways and a means of obtaining general
information about membrane-mediated ligand unbinding
pathways. Fig. 3 B compares the TSPO-PK interaction en-
ergy (Eint) with membrane-PK interaction energy. In the
Q12 pathway (solid lines), PK interacts more closely with
the lipid membrane than TSPO after �5 Å. For the Q25

pathway (dashed lines), this crossover occurs at 7.5 Å.
The difference is due to differences in the orientation of
PK along the two pathways. Fig. 3 D shows the transition
states labeled in Fig. 2 in which the Q-values are approxi-
mately equal to zero along each dissociation pathway. We
see that each structure is still heavily informed by its starting
pose, with very different PK orientations. Fig. 3 C shows
probability distributions projected onto Q12 for starting
poses D1 and D2. This shows that although D1 started
further backward on the unbinding pathway, the simulations
discovered another high-probability basin around Q12 ¼ 0,
which can also be seen by the high-probability states around
D1z. A representative Q12 dissociation pathway is shown
and analyzed in Fig. 3, E and F. Note that although the
Q12-value increases steadily along the pathway, the minimal
distance between TSPO and PK (used to define the unbound
state) rises rapidly only as PK reaches a Q12 of �15 Å.
Additionally, we track the PK COM as a function of Q12

(Fig. 3 G). Once it gets fully dissociated into the membrane,
PK does not travel closer toward the solvent in either direc-
tion. Rather, it interacts strongly with the hydrophobic tails
and remains at approximately the membrane midpoint over
the course of our simulations.

We also measure interaction energies between PK and in-
dividual residues for all residues on TM1, TM2, TM5, and
LP1 (Figs. S4–S7). Early in both the Q12 and Q25 pathways,
PK strongly interacts with aromatic residues Phe46 and
Trp50, forming p-p interactions. These aromatic residues
with long side chains follow PK along the unbinding
pathway, which is observed by plotting the Q-value of indi-
vidual residues as a function of Q-PK (Figs. S8 and S9).
Interestingly, this phenomenon occurs for smaller amino
acid side chains as well; Gly22 and Pro47 both change
Q-value significantly over the Q12 pathway, indicating sig-
nificant distention of the helices during unbinding.

Finally, we investigated the similarity of the PK confor-
mations within each cluster with respect to the dihedral
angles along four different rotatable bonds (see Figs. S10–
S12). The standard deviation for all the angles is generally
low (below 85�); however, there are clusters in high-
LASA regions on the network that have a higher standard
deviation. This indicates that PK has more rotational flexi-
bility when it is within the membrane. However, when look-
ing at the overall angle range for the network clusters, there
are several clusters with a high overall range, indicating that
different ligand conformations are occasionally being clus-
tered together. In particular, rotatable bond 1 has a range of
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FIGURE 3 Analysis of membrane-mediated exit paths. (A) The coordinate Qij is defined as the x-y distance between the COM of PK, shown as sticks and

colored by atom type, and the line that connects the centers of mass of helix i and helix j. LP1 is not shown here for clarity. (B) The expectation values of the

interaction energy between PK and TSPO (blue) and between PK and the membrane (black) are shown as a function of Q. In each case, the solid line shows

Q12, and the dashed line shows Q25. The shaded region indicates the standard error over the ensemble of measurements at each Q-value. (C) Probability

curves projected onto Q12 for simulations initialized in Pose D1 (blue) and D2 (orange) are shown. Q12-values of the starting structures are marked with

asterisks. (D) Poses from transition pathways with Q z 0 are shown. These poses are also labeled in the CSN of Fig. 2. Phe46 is shown in purple, and

Trp50 is shown in orange. (E) A set of poses along the Q12 pathway colored from bound (red) to unbound (blue) is given. Top view is shown on the left,

and a front view is shown on the right. (F) The minimal PK-TSPO distance and the Q12-value are shown for each pose in (E). (G) The z COM position

is shown as a function of Q12. The red lines indicate the upper and lower bounds of the membrane as defined by the maximal and minimal z coordinate

of the lipid membrane. To see this figure in color, go online.
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90� or higher for most states, and rotatable bond 2 has a
range over 150� in the D1–D3, D4, and R basins as well
as in the states in which PK has dissociated into the mem-
brane. Therefore, it is likely that the distance metric, defined
as a set of atomic distances from PK to the TSPO binding
site, is good at distinguishing the PK location but not neces-
sarily good at defining the internal coordinates of PK. It is
thus possible that the clustering procedure introduced
some unphysical connections, and the network should be
seen as representing an upper bound of the connectivity be-
tween the bound states.
PK-11195 rates and residence times

We directly estimate the unbinding rates (koff) by summing
the weights of the unbinding trajectories, and we calculate
the MFPT by inverting the unbinding rate for each starting
pose (Fig. 4 A). Pose D2 had a high unbinding flux and a pre-
dicted MFPT of less than 0.02 s, indicating a clear lack of
stability with respect to the other poses. Poses D3 and D4
had predicted MFPTs of 2.6 and 4.1 min, respectively, still
lower than the experimental measurements; these estimates
are likely to continue to decrease with further simulation
time. Poses 4RYI and D1 had MFPTestimates near or above
the experimental MFPT (28 and 260 min, respectively). No
unbinding events were observed for pose R, implying an
even longer MFPT than 260 min.

One of the issues with performing simulations via
weighted ensemble is ensuring the simulations converge. A
lack of convergence introduces additional uncertainty into
koff and MFPT calculations. To address this issue, we launch
a set of Markov chain simulations using the transition matrix
that constructed the CSN. Because of the unphysical connec-
tions between various clusters, we constructed pose-specific
networks by only including states that were visited by trajec-
tories that were generated from a given starting pose. We
Biophysical Journal 120, 158–167, January 5, 2021 163
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FIGURE 4 (A) Mean first-passage time (MFPT) estimates using unbind-

ing fluxes observed over the course of REVO simulations. (B) A bar graph

of the final MFPTs comparing the Hill relation (green) and MSM simula-

tions before (gray) and after (black) the addition of new straightforward

MD simulations is given. Pose-specific MFPTs were computed from

MSMs that were built using only trajectories generated from that starting

pose. Simulations starting from pose R never entered the unbound basin,

and thus, MFPTs could not be determined by either method. The experi-

mental MFPT of 34 min is shown as a dashed blue line in each panel. To

see this figure in color, go online.

FIGURE 5 Combined CSN of all REVO simulations from each starting

pose with the addition of frames from straightforward MD simulations,

colored by (A) LASA and (B) committor probability. Starting poses are

marked in bold in (A). To see this figure in color, go online.
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again find that the D2 pose has a low MFPT, though two or-
ders of magnitude less than that calculated by the Hill rela-
tion. Calculating the MFPT using the MSM showed that all
poses besides D2 were on the same order of magnitude as
the experimental residence time and were within an order
of magnitude of that determined by the Hill relation. Because
there were no trajectories starting from pose R that entered
the unbound basin, a MFPT could not be computed for this
starting pose without additional simulations.

The accuracy of the MFPT calculations, however, as-
sumes that the transition matrix determined from the simu-
lations has converged. To test for convergence, we run
additional straightforward simulations at the bottlenecks
of the network and rerun the MFPT calculations by
combining the old and new trajectory data. Two such bottle-
necks were identified: the connections between pose R and
pose 4RYI, as well as between poses D2 and D4. To better
sample the unbound state, we also ran straightforward MD
simulations from high-LASA poses in the Q12 and Q25 path-
ways that were seen by pose R, as well as the most probable
164 Biophysical Journal 120, 158–167, January 5, 2021
state in the unbound basin. We then reclustered and remade
the CSN network to include the new frames (Fig. 5). Several
connections were formed between pose 4RYI and pose R,
which also gained connections to the other poses after re-
clustering. Additionally, the most probable region in the
network was once again the D1–D3 basin, as determined
by the steady state probabilities of each state.

With the addition of the straightforward simulations, we
recalculated the pose-specific MFPTs from each starting
pose. The new simulations did not show pose R progress
enough along the unbinding pathway to enter the unbound
basin, and therefore, we again could not compute a resi-
dence time for this pose. The MFPT for pose D2 increased
by five orders of magnitude in the new D2 MSM, but it is
still the pose with the fastest unbinding pathway. This is
likely a result of reclustering after the addition of the new
trajectories. Accordingly, when we recalculate a new
MSM that uses the new clusters but excludes the new
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trajectories from the transition matrix, we find only an addi-
tional slight increase of the D2 MFPT from 0.13 to
0.16 min.

Poses 4RYI, D1, and D4 all had MFPTs on the same order
of magnitude as the original MSM simulations, and D3 had
an MFPT that was lower by a factor of �10. The lack of
change between the MFPT calculations for slow unbinding
events indicates that the original MSM had converged
enough to produce a reliable estimation for those poses. In
terms of stability, D2 consistently has the fastest unbinding
events and is consistently the most unstable pose we simu-
lated. Poses 4RYI, D1, D3, and D4 all have similar levels
of stability, as can be seen by their similar residence times.
Because of the lack of unbinding events for pose R, we
cannot measure how stable it is in comparison to the other
starting poses, but we can say that starting in the pose R ba-
sin is more stable than the other poses we simulated.
PK-11195 transition state

Our final goal was to determine the location of the transition
state along the unbinding pathway. Fig. 5B shows the commit-
tor probability of each state in the final network. The vast ma-
jority of the states have a near-zero committor to the unbound
state. Only once PK is dissociated into themembrane does the
committor probability begin to significantly increase.Webuilt
an ensemble of transition states using the centroid structures
for the two nodes with committor probabilities between 0.4
and 0.6. In this way, we estimate that the transition state—in
which the committor equals 0.5—occurs when PK has begun
dissociating into the membrane and has reached a Q12 of
�10 Å. For these states, we find that the nonbonded interac-
tion energy between TSPO and PK is roughly �5 kcal/mol
(compared to �45 kcal/mol in the bound state), whereas the
interaction energy between PK and the lipid membrane has
increased to �40 kcal/mol at this Q12 (Fig. 3 B).

To ensure that this result is not affected by any unphysical
connections between bound poses, we also calculated the
committor probability for each state in the pose-specific net-
works (Figs. S13–S17). We determined pose-specific transi-
tion states for each of the initial poses that had unbinding
events (i.e., all except pose R) and found that they were
all located in the membrane after PK had dissociated from
TSPO. This confirms the results from the committor proba-
bility analysis of the full network. Further, these transition
states all demonstrated a mix of direct PK-TSPO interac-
tions and PK-lipid interactions. Together, these results sug-
gest that the membrane presents a physical barrier that acts
to trap PK near TSPO and forms the rate-limiting step of PK
dissociation into the membrane.
DISCUSSION

The results of our simulation show that from all six initial
PK poses using the R. sphaeroides TSPO structure, the
ligand dissociates into the membrane through the transmem-
brane helices. We found a pathway between TM1 and TM2
and a lower-probability pathway between TM2 and TM5.
These pathways identify residues with which PK has high
interaction energy. Among them are aromatic residues
Phe46 and Trp50, which form p-p interactions with the
ligand. The interactions with the Trp50 rings are also found
in different bound states. We note that the Trp50 residue
happens to be highly conserved across organisms of several
species and kingdoms. These stabilizing interactions could
lower the barrier to entry for other TSPO ligands such
as protoporphyrin IX and heme, which are also largely
aromatic.

Previous results (19) using a different starting pose and
TSPO structure showed PK dissociating into the cytosol
through the LP1 loop region. The TSPO structure used in
the previous study was built from a homology model based
on the mouse NMR TSPO structure and used the rat
sequence, whereas our structure was determined from
x-ray crystallography from R. sphaeroides TSPO. As
mentioned in the Introduction, this NMR structure was de-
stabilized by the detergent used in the purification (22,23),
which likely affected the homology model structure as
well. This, in addition to the differences in sequence, results
in several key structural differences between the mouse
(PDB: 2MGY (6)) and R. sphaeroides (PDB: 4UC1 (4))
structures. TM1 in the mouse structure is significantly
longer, and the top portion of the helix is at a drastically
different angle than the helix in the structure we used in
our simulations. Although the LP1 region is present in
both structures, the R. sphaeroides sequence has a small
a-helix that in the mouse structure is incorporated into
TM1. Finally, the LP1 region in R. sphaeroides has several
stabilizing interactions (4) between nonbonded residues
such as between Trp30-Met97, Asp32-Arg43, and Trp39-
Gly141 that are not present in the mouse structure. This
stabilization limits the freedom of motion of the LP1 loop,
sterically hindering PK from leaving via the LP1 pathway.
In addition to TSPO structural differences, previous results
were obtained using a 2:1 POPC/cholesterol lipid bilayer,
whereas our results used an �2.9:1.6:1 mixture of POPC/
POPE/POPI lipids. Cholesterol is known to bind to TSPO,
although known binding sites are not close to the TM1-
TM2 pathway found here. Differences in lipid composition
could also affect membrane fluidity, which could impact the
relative probabilities of the LP1 and TM1-TM2 pathways. It
will be an important goal of future work to parse the relative
impact of these differences (protein sequence, protein struc-
ture, and membrane composition) in determining ligand
dissociation pathways.

There is interest in designing new TSPO ligands with
longer residence times (2,18). The ligand binding transition
state is the rate-limiting step of ligand binding and release,
which can also be identified in simulations by a committor
probability of 0.5 between the bound and unbound basins.
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Here, we find that the ligand binding transition state occurs
when the ligand has only minimal direct contact with TSPO,
with a Q12 of �10 Å. In addition to details of the bound
state, this implies that TSPO ligand residence time is
primarily affected by properties related to membrane
permittivity and diffusivity, such as hydrophobicity. These
results lead to the hypothesis that the membrane composi-
tion could have a direct impact on ligand binding kinetics
of PK.

This work also raises questions about membrane insertion
and removal along ligand binding paths. Additional REVO
simulations with only PK and the lipid membrane could
reveal the membrane diffusion coefficient of PK as well as
rate constants for insertion and removal to form holistic
models of membrane-mediated binding that stretch from
solvent to binding site. A larger question is how the presence
of other proteins known to interact with TSPO, such as
voltage-dependent ion channel (10) and cytochrome P450s
(39), affect the unbinding and binding and insertion and
removal pathways. Cholesterol could also affect the binding
pathways of PK, either by binding to TSPO and affecting a
conformational change or through membrane fluidity, which
could affect the (un)binding rate of PK as it interacts with
the membrane (40).

Although it is exciting that our predicted residence
times come so close to experimental quantities, some
caution should be exercised in making this comparison.
First, it has been previously shown that some simulations
using traditional MD force fields do not produce reliable
estimations for residence time (41). However, we note
that this result was mainly due to a lack of polarizability
in the force field and errors in parameters that overesti-
mate the electrostatic interactions. In our system, PK is
uncharged, and we do not expect these errors from the
force field to dramatically influence our estimates of ki-
netics. Another thing to note is the experimental MFPT
reported by Costa (2,18) was determined using human
TSPO, whereas our simulations used the structure from
R. sphaeroides containing an A139T mutation. Although
the mutation was designed to mimic the human TSPO
structure (4), the human and R. sphaeroides sequences
have low homology (30%), which could potentially result
in different transition paths, transition states, and unbind-
ing rates. Furthermore, these results emphasize that we
should take care to ensure consistency of the ‘‘unbound’’
state from simulation and experiment. In radioligand
displacement assays, any ligand pose that is not sterically
blocking entry of the radiolabeled competitor ligand
would be considered ‘‘unbound’’ (42). However, in sur-
face plasmon resonance, a ligand would still be consid-
ered bound until it dissociated from the detergent that is
bound to the chip along with TSPO. Our simulations
show how differences in the definition of the unbound
state can lead to significant differences in residence
time and could help rationalize differences between
166 Biophysical Journal 120, 158–167, January 5, 2021
experimental residence times obtained with different
methods.
SUPPORTING MATERIAL
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