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Summary
The proportion of samples with one or more close relatives in a genetic dataset increases rapidly with sample size, necessitating related-

ness modeling and enabling pedigree-based analyses. Despite this, relatives are generally unreported and current inference methods

typically detect only the degree of relatedness of sample pairs and not pedigree relationships. We developed CREST, an accurate and

fastmethod that identifies the pedigree relationships of close relatives. CRESTutilizes identity by descent (IBD) segments shared between

a pair of samples and their mutual relatives, leveraging the fact that sharing rates among these individuals differ across pedigree config-

urations. Furthermore, CREST exploits the profound differences in sex-specific genetic maps to classify pairs as maternally or paternally

related—e.g., paternal half-siblings—using the locations of autosomal IBD segments shared between the pair. In simulated data, CREST

correctly classifies 91.5%–100% of grandparent-grandchild (GP) pairs, 80.0%–97.5% of avuncular (AV) pairs, and 75.5%–98.5% of half-

siblings (HS) pairs compared to PADRE’s rates of 38.5%–76.0% of GP, 60.5%–92.0% of AV, 73.0%–95.0% of HS pairs. Turning to the real

20,032 sample Generation Scotland (GS) dataset, CREST identified seven pedigrees with incorrect relationship types or maternal/

paternal parent sexes, five of which we confirmed as mistakes, and two with uncertain relationships. After correcting these, CREST

correctly determines relationship types for 93.5% of GP, 97.7% of AV, and 92.2% of HS pairs that have sufficient mutual relative data;

the parent sex in 100% of HS and 99.6% of GP pairs; and it completes this analysis in 2.8 h including IBD detection in eight threads.
Introduction

Modern scale genetic datasets contain tens to hundreds of

thousands of individuals, sample sizes within which

numerous close relatives exist.1,2 Characterizing relatives

within such datasets is essential to avoid spurious signals

and to improve power in genetic association studies,3–5

but standard models consider only kinship estimates and

ignore the potential for different relationship types to

vary in their shared environmental effects and therefore

their heritabilities.6,7 Moreover, while population genetic

studies typically filter close relatives to avoid modeling vi-

olations,8 such an approach will dramatically reduce sam-

ple sizes in large datasets.1,2 One way to enable analyses of

more study samples is to directly model the transmission

of shared haplotypes—i.e., identitity by descent (IBD)

segments9—using the pedigree structure of each set of rel-

atives, but this requires accurate determination of those

pedigrees. And although several approaches exist for infer-

ring pedigrees from genetic data,10–12 ambiguities in the

samples’ true pedigree relationships limit the utility of

these methods.

Identifying pedigree relationships is simple for first de-

gree relatives13—parent-child (PC) and full sibling pairs—

yet distinguishing relatives only one degree more distant,

including grandparent-grandchild (GP), avuncular (AV),

and half-sibling (HS) pairs, remains a challenge. Most
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methods infer only the degree of relatedness of a pair using

either the number and length of pairwise IBD segments14,

15 or the proportion of their genome a pair shares identical

by descent.13,16 However, an existing method that lever-

ages these pairwise signals provides limited ability to

discriminate among second-degree relationships.17 Still,

IBD segment number distributions overlap little between

GP and AV types,15 and it may be possible to leverage

segment position to infer relationship types using only

pairwise IBD segments.18 Turning to multi-way IBD ap-

proaches, a recent method detects aunts/uncles of sib-

lings,19 but it requires at least two siblings to work and

can only identify their aunts/uncles.

We developed CREST (classification of relationship

types), a two-part approach for inferring sex-specific pedi-

gree relationships that leverages multi-way IBD sharing

and sex-specific genetic maps. In the first part, CREST uti-

lizes multi-way IBD sharing to differentiate relationship

types, relying on the fact that a pair of close relatives is ex-

pected to share IBD regions with their mutual relatives at

different rates depending on the pair’s relationship. For

example, consider a mutual relative that is the parent of

the genetically older member of a second-degree relative

pair. Because each meiosis leads to the transmission of

half a parent’s DNA, a grandchild will, in expectation,

inherit 1/4 of the regions shared IBD between the grand-

parent and the mutual relative—i.e., the parent of that
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grandparent. In the case of AV pairs, since two full siblings

have equal IBD sharing with their parent, the child of one

sibling—the niece/nephew of the other—is expected to

share 1/2 as many sites IBD with her/his grandparent as

the aunt/uncle does. Lastly, two half-siblings have equal

IBD sharing with their common parent. These same

sharing rates—the genetically younger sample in GP, AV,

and HS pairs sharing fractions of 1/4, 1/2, and 1 compared

to the older sample, respectively—arise for many other

types of mutual relatives, enabling the classification of rela-

tionship types. Thus, we derived IBD sharing quantities

based on this idea and trained kernel density estimation

models (KDEs) to classify these three types of second-de-

gree relatives in CREST.

This approach of leveraging IBD sharing withmutual rel-

atives not only determines the pedigree relationship types

of second-degree relatives, it also identifies the direction-

ality of the relationship—that is, which sample is geneti-

cally older (e.g., which is the grandparent or aunt/uncle).

In particular, the sample with higher levels of IBD sharing

with mutual relatives is most likely to be from an earlier

generation. (Other pedigree inference methods similarly

identify this information using kinship coefficients.10,11)

CREST applies this logic to GP and AV pairs and to PC

relatives to detect which sample is the parent. When avail-

able, age information unambiguously implies the geneti-

cally older sample for direct descendants (PC and GP rela-

tionships) but can fail for AV pairs since a niece/nephew

may be (temporally) older than an aunt/uncle.

The second part of CRESTuses a model to infer the sex of

ungenotyped parents that connect second-degree relatives

to each other, further refining CREST’s inferred pedigree re-

lationships. More specifically, CREST infers the sex of the

shared parent of HS pairs or of the intermediate parent in

GP pairs. While the mean amount of DNA shared between

HS and GP pairs is unaffected by the sex of this parent, we

leverage the substantial differences in male and female ge-

netic maps20 to distinguish between the two possibilities.

The signature of male and female recombinations on IBD

segments is strikingly different, to such an extent that we

use autosomal IBD segments alone to perform inference.

This application of sex-specific maps liberates CREST

from requiring sex chromosome or mitochondrial data

for inference, which may be less precise than recombina-

tion-based inference and would impose additional restric-

tions on the sample pairs to which it can be applied (i.e.,

in terms of their sexes).

We used a combination of simulated and real pedigree

data to evaluate CREST, the latter from the Generation

Scotland21,22 (GS) cohort. The GS data consist of 20,032

samples recruited as part of families and include 848 GP,

6,599 AV, and 381 HS pairs. We also compared CREST’s re-

sults in simulated data to those of PADRE,23 a composite

likelihood method that infers pedigree structures for two

sets of close relatives when members of the sets are also

related to each other. PADRE makes use of the relationship

between the two sets to choose the PRIMUS pedigree that
The Am
maximizes its composite likelihood and, in the process,

implicitly infers the pedigree relationship of the second-

degree pairs.

In addition to classifying second-degree relatives, the

CREST approach may be extended to infer more distant

relationship types. For example, when using simulated

pedigrees that include a pair of third-degree relatives and

two first cousins of the genetically older sample, CREST

can also distinguish third-degree relatives with high accu-

racy, thus highlighting the potential for expanding

CREST’s target relationships as datasets further grow in

size.
Material and Methods

CREST takes inferred IBD segments from a set of samples as input

and applies a multi-way IBD sharing analysis to classify pedigree

relationships among pairs; it also uses the locations of IBD seg-

ments in HS and GP pairs to infer whether they are maternally

or paternally related. The multi-way IBD segment analysis calcu-

lates ratios from the IBD regions that a target pair of close relatives

and their mutual relatives share, as described below. The algorithm

then uses KDEs we trained on ratios from simulated relative sets to

infer the pair’s relationship type. CREST is open source and freely

available (Web Resources).

We used IBIS,24 an approach that operates on unphased geno-

type data, to infer both IBD segments and degrees of relatedness.

While CREST can use good-quality IBD segments inferred by any

method, IBIS produces IBD segments that are largely free of inter-

nal gaps,24 with the trade-off that by default it identifies R7 cM

segments. Gap-free segments are necessary for the second part of

CREST, as false gaps between IBD segments inflate the observed

crossover count and induce bias in the sex inference. Furthermore,

our experimental results indicate that use of these long segments

suffices for discriminating between second-degree relationship

types. Still, the use of shorter, gap-free IBD segments has the po-

tential to increase the quality of CREST’s inference further.

Throughout, we refer to IBD regions that two or more samples

share on only one haplotype copy as IBD1 segments, and those

the individuals share identical by descent on both chromosomes

as IBD2 regions. Correspondingly, IBD0 regions are those where

the given samples do not share an IBD segment.

Multi-way identity by descent sharing ratios
CREST utilizes the IBD regions shared between a pair of close rela-

tives x1 and x2 and one or more of their mutual relatives to distin-

guish their relationship. The expected IBD rates we adopt are

based on the assumption that each mutual relative y is related to

both x1 and x2 only through the most recent common ancestor(s)

(MRCA(s)) of x1 and x2. CREST further assumes that there is only

one lineage from the MRCA(s) to both x1 and x2, thus excluding

cases of close inbreeding. Under these assumptions, all IBD seg-

ments shared between y and one or both of x1 and x2 must have

been transmitted by this/these MRCA(s) through one lineage.

For example, if x1 is the grandparent of x2, we take their MRCA

to be x1 itself, and if y is the half-sibling of x1, y is related to

both x1 and x2 only through x1 (via the common parent of x1
and y), so the assumptions hold. However, if y is the half-sibling

of the grandchild x2, y is related to x2 through their common

parent, and not only through x1, in conflict with the assumption.
erican Journal of Human Genetics 108, 68–83, January 7, 2021 69



In fact, mutual relatives that are descendants of either x1 or x2
violate the assumption in many cases. To exclude direct descen-

dants of x1 and x2, we analyze only mutual relatives that are third

degree (e.g., a first cousin) or more distant relatives of both x1 and

x2. Because most genetic datasets span only two or three genera-

tions, this strategy should generally prevent analyses involving

descendant mutual relatives.

The intuition behind the approach CREST uses is that x1 and x2
will have different relative amounts of IBD sharing with a given

mutual relative y depending on their relationship. We use two ra-

tios to quantify the IBD sharing rates:

Ri ¼ lengthðIBDðx1; x2; yÞÞ
lengthðIBDðxi; yÞÞ ; i˛f1;2g:

Here IBDðs1; s2;.; snÞ denotes the set of IBD regions that all sam-

ples s1; s2;.; sn share, i.e., the intersection of the IBD segments

each of the

�
n
2

�
pairs share. The length function sums the genetic

length (i.e., Morgan [M] length) of a set of IBD segments, account-

ing for the diploid status of each segment. That is, for a given set of

IBD segments I,

lengthðIÞ¼
X
i˛I

8<
:

1

2
[ ðiÞ if i is IBD1

[ ðiÞ if i is IBD2;

where [ðiÞ denotes the (M) genetic length of an IBD segment i, here

from a sex averaged genetic map. The numerators are the same in

both ratios and give the genetic length of IBD regions shared

jointly by all three samples. The denominators are the length of

IBD segments shared by x1 and y in R1, and by x2 and y in R2.

These ratiosdifferaccording to the relationship typeof the second-

degree relatives. Specifically, for a GP pair, if x1 is the grandparent

of x2, the numerator lengthðIBDðx1; x2; yÞÞ ¼ lengthðIBDðx2; yÞÞ
since x2 will inherit a subset of the IBD segments x1 shares with y

(Figure 1A). Additionally, E½lengthðIBDðx2; yÞÞ� ¼ 1
4$lengthðIBDðx1; yÞÞ

since x2 is two meioses away from x1 and each meiosis leads to

the transmission of an average of one-half of the IBD segment

length any pair of relatives shares. Thus, E R1½ � ¼ 1
4 and E½R2� ¼ 1.

Similarly, each member of a HS pair independently inherits one-

half of the genome of their common parent ~p, so the probability

that they both inherit a given IBD region that ~p and y share is�
1
2

�2

(Figure 1B). Therefore the expected numerator is 1
4$ length

ðIBDð~p; yÞÞ, and the expected denominator is 1
2$lengthðIBDð~p; yÞÞ

for both R1 and R2, so E½R1� ¼ E½R2� ¼ 1
2. In the case of an AV pair,

the aunt/uncle inherits half the genome of her/his parent ~g—the

grandparent of the niece/nephew—that is related to y. And, as in

the GP case, the niece/nephew is expected to inherit one-quarter

of the genome of ~g (Figure 1C). Therefore the expected numerator

is 1
2$

1
4$lengthðIBDð~g; yÞÞ, the expected denominator of R1 is 1

2$

lengthðIBDð~g; yÞÞ, and that of R2 is 1
4$lengthðIBDð~g; yÞÞ, resulting in

E½R1� ¼ 1
4 and E½R2� ¼ 1

2.

In practice, the above ratios vary around their expectations. This

variability arises from three sources: errors in IBD segment detec-

tion, the variance in IBD sharing between the close relative pair

(i.e., depending on the outcome of the small number of meioses

that separate them), and the variance in the meioses that separate

y from the MRCA(s) of x1 and x2. This latter variance increases for

greater meiotic distance. More specifically, mutual relatives y with

a large meiotic separation share on average a comparatively small
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fraction of their genome identical by descent with the MRCA(s) of

x1 and x2, and they have a higher coefficient of variation for this

sharing rate than closer relatives,25 leading to higher variance in

the ratios. Therefore, the more closely related y is to the MRCA(s)

of x1 and x2, the more precise the ratios will be.

In large samples, data for multiple mutual relatives can be com-

mon, and considering only a single y will typically provide less in-

formation than combining data from multiple samples. In partic-

ular, combining IBD regions from multiple mutual relatives will

often capture a larger fraction of the IBD regions that the MRCA(s)

of x1 and x2 transmitted to the pair. Our approach to incorporating

multiple mutual relatives into the ratios is to take the union over

these samples of their three- and two-way IBD sharing regions.

This effectively reconstructs the IBD sharing pattern of one or

more ungenotyped sample19 that is more closely related to x1
and x2 than any single y, thereby reducing the variance of the

calculated ratios (Figure 2). The ratios are:

Ri ¼
length

�
WyjIBD

�
x1; x2; yj

��

length
�
WyjIBD

�
xi; yj

�� ; i˛f1;2g;

where yj ranges over the mutual relatives that are available in the

dataset and satisfy CREST’s assumptions.

Ideally, the union operation in the above would be defined on

two possible haplotypes of each xi such that, if different relatives

ym and yn share IBD segments to a given xi on different haplo-

types and in the same region, the segments would be merged

into an IBD2 segment. For example, as shown in Figure S1, a

grandparent can share overlapping IBD regions with a maternal

relative and a paternal relative on different haplotypes. Merging

these into a single IBD1 segment would yield biased ratios—

reducing the grandparent’s IBD sharing length by 1/2 at this loca-

tion. A challenge in addressing this is that IBIS and some other

IBD detectors do not report which haplotype a segment resides

on. Thus we extended CREST to determine when a set of shared

IBD regions belong to the same or different haplotypes. This pro-

cedure utilizes the fact that if either sample xi has overlapping

IBD regions on the same haplotype with any two relatives ym
and yn, these regions should also be identical by descent between

ym and yn. That is, regions xi shares IBD1 to these relatives should

have three-way IBD sharing such that IBDðxi; ymÞXIBDðxi;
ynÞ4IBDðym; ynÞ. On the other hand, if ym and yn share IBD seg-

ments to the same region on different haplotypes of xi, the corre-

sponding haplotypes of ym and yn will not, in general, be iden-

tical by descent in that region. Thus, in regions where ym and

yn are IBD0, CREST treats xi as being IBD2 to the set of mutual rel-

atives (which is equivalent to the IBDð011Þ concept implemented

in DRUID19). Note that this approach does not detect all in-

stances of IBD2 sharing: it is possible for ym and yn to be IBD1

to each other on one of their haplotypes while sharing their other

haplotypes to each of xi’s two haplotypes. Therefore, this method

is an approximation that does not consider this latter case since

we lack information to distinguish which haplotypes the samples

share.
Classifying relationship types using kernel density

estimation models
CREST adopts KDEs to classify the three second-degree relation-

ship types using the ratios R1 and R2 as features. To train and eval-

uate the KDEs, for each such relationship type, we first simulated

genotype data for a range of pedigree structures that include
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Figure 1. Example IBD sharing between the three types of second-degree relatives and one of their mutual relatives
Samples with filled shapes are those for which data are available and include the close relative pair x1 and x2 and their mutual relative y.
The dashed line connecting an MRCA of x1 and x2 to y indicates that the pedigree structure between that MRCA and y need not be
known. Sexes here are arbitrary and the pedigree relationship type inference works identically for all sample sexes. Haplotypes for
the genotyped individuals appear below each pedigree plot as blue or gray vertical bars, with haplotypes for ungenotyped common an-
cestors of the HS and AV pairs that are related to y also shown. The blue regions are either one haplotype of an MRCA of x1 and x2 or IBD
segments other individuals share with this haplotype. (Grey portions of the vertical bars are not identical by descent with the blue haplo-
type in the MRCA and do not enter the analysis.) The black boxes outline the regions shared identical by descent between x1 and y, and
the red boxes outline the regions x2 and y share identical by descent.
various mutual relatives, and we derived R1 and R2 ratios from the

IBD segments that IBIS24 detects in the simulated genotypes (see

simulations section for details). Because the R1 and R2 values are

ordered, and since we seek to classify only the relationship types

(with directionality considered separately), CREST exchanges the

order of the two ratios if needed such that R1 % R2. This shrinks

the space the features range over, increasing precision. We then

trained separate KDEs for each relationship type and used 5-fold

cross validation to select both their optimal bandwidth (from

10�2 to 10�1/2) and kernel function from among the Gaussian,

Linear, and Exponential forms.

As noted earlier, the closer the mutual relatives are to the target

pair, the less variance the ratios will tend to have, yielding more

reliable classification. Therefore, to build models that account

for this, we incorporate another feature that is associated with

the variance: what we term the genome coverage rate, C, of the

pair for a given set of mutual relatives. We define this as C ¼
max

�
1
L lengthðWyjIBDðx1; yjÞÞ; 1L lengthðWyjIBDðx2; yjÞÞ

�
; where L is

the total (M) genetic length of the genome. Thus, C is the larger

of either the IBD sharing rate between x1 and the mutual relatives

or that of x2. This genome coverage rate is anti-correlated with the

variance in the ratios (Figure S2) since it is related to howmuch of

the genome of x1 and x2’s MRCA(s) is/are covered by IBD segments

in the mutual relatives.

To incorporate genome coverage into our models, we built KDEs

stratified by C, one for each of several bins.When C< 0.2, the bins

span intervals of size 0.025, and we use only one bin for C R 0.2

because the variances of R1 and R2 appear more constant above

this threshold (Figure S2). CREST does not attempt to classify pairs

with a C< 0.025 since distinguishing relationships is difficult with

such a low signal. For a given genome coverage bin, we trained
The Am
KDEs using 5-fold cross validation as noted above for each bin

separately.

To classify a pair’s relationship type, CREST calculates the poste-

rior probability of each type. It outputs these probabilities, calcu-

lated as PrðTjR1; R2; CÞ ¼ PrðR1; R2jT; CÞ$PrðTÞ=
�P

T 0
PrðR1; R2jT 0;

CÞ $PrðT 0Þ
�
, where T˛fGP;AV;HSg is the type, and PrðTÞ is the

prior probability of the given type, which defaults to 1
3 for all T,

but can be specified by the user. PrðR1;R2jT ;CÞ is the likelihood

of R1 and R2 for a given relationship T from the KDE applicable

to the given genome coverage value C. As CREST reports all these

probabilities, users can choose to use the maximum a posteriori

relationship type or to incorporate the probabilities into down-

stream analyses. In results, we use the maximum a posteriori type

unless otherwise specified. When C < 0.025 (including when no

mutual relatives are available) or R1 ¼ R2 ¼ 0 (i.e.,

lengthðWyjIBDðx1; x2; yjÞÞ ¼ 0, so there is no detected multi-way

IBD sharing to themutual relatives), CREST does not infer the rela-

tionship but outputs the prior probabilities.
Inferring the directionality of the relationship
CREST leverages the ratios R1 and R2 to determine the direction-

ality of the relationships.More specifically, CREST identifies which

sample is the grandparent, aunt/uncle, and parent in GP, AV, and

PC pairs, respectively, by comparing these ratios. In principle, the

genetically older sample in the pair should inherit more DNA from

the MRCA(s) than the younger sample. Thus, the union of pair-

wise IBD sharing over mutual relatives for the genetically older

sample is expected to be greater than that of the younger sample.

This pairwise IBD sharing quantity is in the denominator of the
erican Journal of Human Genetics 108, 68–83, January 7, 2021 71
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Figure 2. The R1 and R2 ratios cluster more tightly when using multiple mutual relatives
Ratios R1 and R2 from 200 simulated pairs of each relationship type, calculated using (A) one first cousin (1C) of the genetically older
sample and (B) combining one first cousin and his/her sibling (1CþS). Here we swap labels if needed so that R1 % R2.
ratios, so CREST uses D ¼ log2
R2

R1
¼ log2

lengthðWyj
IBDðx1 ;yjÞÞ

lengthðWyj
IBDðx2 ;yjÞÞ to deter-

mine the directionality. For instance, if x1 is genetically older,

then D is more likely to be positive. We trained KDE models

with D values from simulated GP, AV, and PC pairs and CREST

uses these to calculate the probability of the relationship

directionality.

Inferring the sexes of ungenotyped relatives
CREST provides information beyond the relationship type of HS

and GP pairs by inferring the sex of ungenotyped relatives: the

common parent of an HS pair and the intermediate parent of a

GP pair. This inference is possible due to distinct features of

male and female genetic maps that lead to different patterns in

the IBD segments maternal and paternal pairs of these types share.

It is common practice to use a sex-averaged genetic map when

analyzing relatives,14,17,19 but to do so overlooks the substantial

differences between the sex-specific maps. In general, the female

map has a greater genetic length than the male map (1.63 on

the autosomes), but the male map is locally longer near the telo-

meres.20 The autosomal length difference between the maps af-

fects the number of crossovers—and thus the number of IBD

segments—transmitted through male or female meioses.26

Accordingly, the distributions of IBD segment numbers differ

meaningfully between maternal and paternal HS and GP relatives

(Figure S3) to such an extent that classification is possible using

segment number alone. Consistent with this, a recent study

demonstrated that observed segment number differences are suffi-

cient to distinguish 80%–90% ofmaternal and paternal HS pairs in

an endogamous population.27 Even so, exploiting the meaningful

differences between male and female recombination rates at given

physical positions has the potential to improve classification

beyond what segment number alone can provide. To best utilize

all the information in sex-specificmaps, CREST therefore leverages

the IBD segment positions and lengths to compute the probability

that the observed segments were transmitted through male or fe-

male meioses.
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HS andGP pairs represent special cases of relationship types that

lend themselves well to this analysis. In HS pairs, all IBD segments

shared between the half-siblings necessarily coalesce in the com-

mon parent. Thus exactly two meioses in that parent are respon-

sible for the crossovers that determine the IBD segment locations

(Figure S4).

By contrast, for GP pairs, the IBD segments coalesce in the

grandparent—the grandchild having inherited the segments after

two rounds of meiosis. The first meiosis, grandparent to parent,

transmits a haplotype consisting of switches from one grandpa-

rental haplotype to the other. The second, parent to grandchild,

introduces crossovers between the parent’s two haplotypes, only

one of which derives from the focal grandparent. CREST is de-

signed to operate on unphased IBD segments such as those pro-

vided by IBIS. Unphased segments between the grandparent and

grandchild will span the crossovers in the grandparent-to-parent

meiosis, but will break at the crossovers in the parent-to-grand-

child meiosis (Figure S4). In other words, the grandparent-to-

parent meiosis will not introduce observable crossovers, so the

only detectable meiosis for GP pairs is parent-grandchild. As

such we model GP pairs as undergoing only a single IBD-affecting

meiosis. (It is straightforward to adapt CREST to handle high-qual-

ity phased IBD segments from GP pairs. In this case, the segments

would include breaks due to crossovers from the grandparent-to-

parent meiosis, and CREST could merge adjacent segments broken

by these crossovers to recreate the forms of the unphased seg-

ments it considers.)

The above implies that the observed IBD segments in both HS

and GP pairs were shaped by crossovers in a single individual,

and thus they can be modeled as the result of a meiotic process

of a single sex. This is not the case for AV pairs: their IBD segments

descend from two grandparents, onemale and one female. This re-

sults in segments that were generated from a mixture of the male

and female crossover processes, and, with no prior information

about which grandparent each IBD segment coalesces in, the abil-

ity to determine the sex of the parent of the niece/nephew is

limited. More distant relatives pose similar challenges, and at
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present we subject neither AV pairs nor relatives of other relation-

ship types to sex inference.

CREST models crossover events as following a Poisson process

for mathematical convenience, although we acknowledge this ne-

glects the phenomenon of crossover interference. Recent work

provides the means to model interference within arbitrary

numbers of meioses from a given genetic map,26 but to our knowl-

edge there is no corresponding analytical model capable of

handling interference from combinations of bothmale and female

meioses.

By definition, an IBD segment i consists of a region of sequence

shared between two or more individuals that is flanked by a pair of

crossovers or by the start or end of the chromosome. However, in

practice the inferred boundaries of segments will not correspond

exactly to the locations of any crossovers.24,28 We therefore model

the flanking crossovers as falling within windows of fixed physical

length denoted wi;0, wi;1, where 0 and 1 correspond to an earlier

and later physical position, respectively. These windows are of

equal length and are centered symmetrically on the ends of the re-

ported IBD segments. The window length is a parameter but must

be small relative to the minimum length of the detected IBD seg-

ments. Put broadly, the window length imposes an upper bound

on the distance between the actual and inferred segment bound-

aries: the more accurately the IBD segments have been called,

the smaller the window can be. Tuning the window length to

match the inferred IBD segments will increase the precision of

the inference (up to the limit of the genetic maps’ resolution).

We have chosen a window length of 500 kb for all our analyses.

For each HS and GP pair, our model partitions the genome into

disjoint sets of the IBD segments, I and the remaining non-IBD re-

gions, U. Importantly, the segments in I and non-IBD regions in U

do not correspond exactly to those found by the IBD detection

software because of the crossover-containing windows wi;0 and

wi;1. In the case of a segment bordering the start or end of a chro-

mosome, we give the window that would fall at that location zero

length. Thus, every reported segment i is modeled as the union of

three non-overlapping windows: w0;i, w1;i, and the remainder of

the segment interior iint (Figure 3). These three windows form a

segment i0 that is an approximation of a detected IBD segment i,

and I contains these extended segments. The IBD0 regions u˛ U

span from the right-hand window of one i0 to the left-hand win-

dow of the next, except in cases where u reaches a chromosome

end and so does not border a window on that side. Therefore,

our segments in I and IBD0 intervals in U approximate (slightly

over- and underestimate, respectively) the inferred IBD segments

and IBD0 regions.

Given the earlier considerations of unphased IBD segments in

HS and GP pairs, we designate all interior intervals iint as contain-

ing zero crossovers and the segment-bounding windows wi;0 and

wi;1 not located at a chromosome start or end as containing exactly

one crossover. A further consideration is that the focal parent

transmits one of two haplotypes to each half-sibling or to the

grandchild. This means that, where a HS pair is IBD0, a crossover

will switch the affected sibling’s haplotype to match that of the

other half-sibling, thus initiating an IBD1 segment. Likewise in

GP pairs, the parent will transmit a haplotype descended from

either the focal grandparent (IBD1) or from the other grandparent

(IBD0), and a crossover induces a switch (Figure S4). Given this, we

model IBD0 regions u as containing 0 crossovers.

The genetic length of a region in Morgans is the number of

crossovers expected to occur in that span of sequence during a sin-

gle meiosis, i.e., the Poisson rate of crossing over.We define [SðrÞ to
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be the genetic length of a region rmeasured on the genetic map of

sex S˛fF;Mg, F for female, M for male. The probability of k cross-

overs occurring within this interval over n meioses is given by the

Poisson mass function with rate n[SðrÞ, i.e., Prðkjn; r; SÞ ¼
f ðk;n[SðrÞÞ, because the rate of the sum of independent Poisson

processes is equal to the sum of their rates.

The probability of finding one crossover in the flanking win-

dows and none in the interior window of an IBD segment is:

Prði0jn; SÞ¼Prðk¼1jn;w0;i; SÞ$Prðk¼0jn; iint; SÞ
$ Prðk¼1jn;w1;i; SÞ:

In the samemanner, the probability of finding no crossovers in a

non- IBD interval u is given by Prðujn;SÞ ¼ Prðk ¼ 0jn;u;SÞ.
To calculate the likelihood of all IBD-approximating segments

i0˛I and non-IBD regions u˛U, we assume that each segment

forms independently, which follows from the Poisson model, so

PrðI; Ujn; SÞ ¼ Q
i0˛I

Prði0jn; SÞ$Q
u˛U

Prðujn; SÞ. This equation gives the

probability of observing all IBD segments and non-IBD intervals

given some number of meioses n. As remarked, all crossover-gener-

ating meioses in the special case of HS and GP pairs occur in a sin-

gle individual of sex S, and n¼ 2 for HS pairs and n¼ 1 for GP pairs.

Given this restriction, for an n appropriate to the relationship

type, CREST can use the two likelihoods PrðI;U jn; FÞ and

PrðI;U jn;MÞ to calculate a logarithm of odds (LOD) score

LOD¼ log10ðPrðI;U jn; FÞÞ� log10ðPrðI;U jn;MÞÞ;

which we use to classify pairs. Here, negative-scoring pairs likely

derive from a male parent, and positive-scoring pairs from a

female.
Simulations
To train and test CREST’s relationship type inference, we used Ped-

sim26 to simulate a range of pedigree structures that include one

GP, AV, or HS pair and one or more of their mutual relatives

(Figure S5). In all cases we used sex-specific genetic maps20 and

crossover interference29 modeling in these simulations, and a

collection of European descent samples30 as the input phased

data (EGA:EGAD00000000120). (The latter were previously

phased using Beagle31 and filtered so that no pair is more closely

related than fifth degree.19)

The simulated data we used for training include mutual rela-

tives that vary from first cousins to second cousins of the genet-

ically older sample in the second-degree pair. We simulated

enough samples to obtain 1,000 pedigrees within each KDE

genome coverage bin. As the coverage rate varies for a given

pedigree structure, we simulated 1,000 pedigrees for each rela-

tionship type and pedigree structure class in five batches of

200 pedigrees each. We then mapped these to the correspond-

ing genome coverage bin based on the IBD segments IBIS in-

ferred, and we randomly downsampled to obtain 1,000

pedigrees per bin. The pedigrees include nine different combi-

nations of mutual relatives that have the following relationships

to the genetically older sample: one first cousin; one first cousin

and his/her sibling; two first cousins that also are first cousins to

each other (i.e., non-sibling first cousins); three first cousins that

are first cousins to each other; one first cousin and his/her

niece/nephew; one first cousin once removed and his/her sib-

ling; one first cousin once removed and his/her niece/nephew;

one second cousin; one second cousin and his/her sibling.

Thus, we include third-degree relatives (first cousins) and as
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Figure 3. Modeling IBD segments as non-
overlapping intervals
An IBD segment i, in blue, is a region of
sequence shared between two or more indi-
viduals. The segment i must necessarily be
flanked by a pair of crossovers (or by one
or both chromosome ends). To account for
imprecision in the detected IBD segment
bounds, we model the flanking crossovers
as falling within windows wi;0 and wi;1, in

translucent red, centered at the IBD start and end points. The interior of the segment that is not overlapped by those windows is an in-
terval itself, which we label iint. Taken together, wi;0, iint, and wi;1 form i0, which approximates i. The IBD0 regions in gray that remain
surrounding the approximations i0 are labeled u, and all i0 and u cover the genome.
far as seventh-degree relatives (second cousins twice removed of

a grandchild) for training.

To compare CREST with PADRE,23 we also simulated seven

different pedigree structures that include the second-degree pair

and mutual relatives consisting of (again with respect to genetically

older sample): one first cousin and his/her sibling (1CþS); one first

cousin and his/her child (1CþC); one first cousin and his/her niece/

nephew (1CþN); one first cousin once removed and his/her sibling

(1C1RþS); one first cousin once removed and his/her child

(1C1RþC); one first cousin once removed and his/her niece/

nephew (1C1RþN); and one second cousin and his/her sibling

(2CþS). We tested both methods using 200 replicate pedigrees of

each structure for all three types of second-degree relatives.

We further evaluated CREST’s inference sensitivity and speci-

ficity across genome coverage bins. For this analysis, we simulated

200 copies for each relationship type of the same nine pedigree

structures we used for training (above). We then mapped these

to genome coverage bins and randomly downsampled to obtain

200 copies per bin. To generate calibration curves, we performed

another five batches of simulations of the same nine pedigree

structures and analyzed 1,000 pairs for each bin following random

downsampling.

To test CREST’s ability to perform sex inference of the ungeno-

typed parent linking HS and GP pairs, we simulated 1,800 HS

and GP pedigrees. We used a feature of Ped-sim to constrain the

sexes in each pedigree, such that it generated 900 each of maternal

and paternal HS pairs and 900 maternal and paternal GP families,

the latter including data for the relevant grandmother and grand-

father. To obtain GP pairs, we chose at random only one of the two

grandparents generated per family, ensuring analysis of only one

pair per family so that the results for every pair were independent.

To increase the sample size, we performed five replicates of these

simulations, for a total of 9,000 HS and GP pairs, split evenly

into 4,500 maternal and paternal pairs.
Parameters used to run each method
Tocollect IBDsegments forboth the relationship type andsex infer-

ence parts of CREST, we first ran IBIS v.1.19.1 with default parame-

ters on the simulated data. Since PADRE requires results from

ERSA14 and PRIMUS10 as inputs, we ran them separately on the

simulated data. To run PRIMUS (v.1.9.0), we first used the –no_

IMUS and –no_PR options, which corresponds to only running

PLINK32 (v.1.90b2k) to calculate relatedness estimates. We then

filtered the output file from PLINK to only include pairs from the

same pedigree. Next we ran PRIMUS on this file to reconstruct ped-

igrees, allowing it to search for up to second-degree relatives using

the –degree_rel_cutoff 2 option (all simulatedpedigrees it applies to

include only first- and second-degree relatives). Meanwhile, ERSA
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needs inferred IBD segments from GERMLINE33 as input, while

GERMLINE works on phased data, so we ran Eagle34 v.2.4 to phase

the simulated unphased genotypes.

Each of the Ped-sim simulation runs for the PADRE comparison

generated data for 200 pedigrees for all three relationship types,

and each pedigree includes data from four samples, for a total of

2,400 samples output by one Ped-sim run. After running Eagle

on these 2,400 samples separately for all seven of the pedigree

structure types used to compare CRESTand PADRE, we ran GERM-

LINE v.1.5.1 with the options -err_het 2 -err_hom 1 -min_m 1 -bits

64 as specified in the ERSA paper. Then we ran ERSA v.2.1 with

default settings on the GERMLINE output for each dataset.

After all these steps, we ran PADRE v.1.0. We found that PADRE

initially crashed in some tests, with the source of the crashes being

some of the pedigrees PRIMUS inferred, so we removed the pedi-

grees that cause the crashes from consideration by PADRE (as in

another PADRE analysis19). This avoids calling these tests as

PADRE failures, thereby improving its performance.

In a separate test, to exclude the possible effects of phasing qual-

ity on PADRE’s results, we simulated replicates of the same pedi-

gree structures and used the true haplotypes produced by the

Ped-sim –keep_phase option, keeping the subsequent analysis

steps the same as described above.

Runtimes on the simulated data are from the same server config-

uration as in the real data tests (below).
Real data processing
To test CREST’s relationship type inference on the GS dataset, we

ran IBIS v.1.20 using -maxDist 0.116131 and otherwise with

default parameters. The -maxDist option sets the maximum ge-

netic distance between SNPs and can reduce false positive segment

calls.24 Following this, we used CREST to analyze the second-de-

gree relatives that IBIS inferred and excluded potential double

cousins or other pairs that may violate CREST’s assumptions by

requiring the IBD2 sharing fraction between these pairs to be

less than 0.02 (a default CRESToption). We also restricted CREST’s

analysis to mutual relatives that are third- to sixth-degree relatives

of both members of the target pairs since IBIS has been validated

on relatives up to sixth degree.24 (Note that we used all mutual rel-

atives for the analyses of simulated data.)

Some GS samples are part of multiple target pairs—for example,

one grandparent can have several grandchildren resulting in

several GP pairs—and we averaged the classification results across

those pairs for each relationship type. The reason for this is that

each sample shares the same IBD segments with his/her relatives

regardless of which pair CREST analyzes it in, so the ratios of pairs

with overlapping members are correlated. Thus we averaged the

sensitivity and specificity of all pairs that have the same
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genetically older sample in GP and AV pairs, and also averaged the

results for HS pairs with the same common parent (Figure S6). For

instance, for a grandparent with four grandchildren, each pair

contributes a count of 1/4 toward the sensitivity and specificity

metrics. We calculated the averages within relationship types, so

a given sample can be both a grandchild and a half-sibling, with

results from the two types considered independently.

For sex inference, we analyzed all HS pairs and a set of indepen-

dent GP pairs. Two grandparents related to a grandchild through

the same parent—i.e., a grandparental couple—have entirely

non-independent unphased IBD segments shared with their

grandchild. Specifically, under theoretically optimal IBD detec-

tion, the segments of the two GP pairs would be the inverse of

one another (an IBD region in one grandparent would be IBD0

in the other grandparent and vice versa). So, as in the simulations,

in cases where the GS have both GP pairs in this configuration rep-

resented in the data, we select one at random to keep for analysis

and discard the other. This removed 148 GP pairs from the results.

To perform X chromosome analysis of selected paternal half-sis-

ters, we ran PLINK –genome on the X chromosome genotype data

to get the number of sites where the pairs share no alleles—i.e.,

have opposite homozygous genotypes.

The runtimes we report are from servers with four Xeon E5 4620

2.20 GHz processors, andwe ran IBIS with eight threads on the real

data. (CREST is not multithreaded.)
Results

To evaluate CREST’s ability to distinguish among second-

degree relationship types, we first compared its perfor-

mance with that of PADRE using simulated pedigrees. We

also used simulated data to characterize CREST’s perfor-

mance across variable genome coverage rates; its ability

to infer directionality for PC, AV, and GP pairs; and its

potential to classify third-degree relationship types.

Furthermore, we assessed the sex-specific relationship

type inference model implemented in CREST, initially in

simulated data. As we are unaware of another tool to

perform sex-specific relationship type inference using

autosomal genotypes, we report only CREST’s inference

rates for this latter analysis.

To validate CREST in real samples, we ran it on the GS da-

taset and compared its inferred second-degree relationship

types and parental sex inferences with those of the re-

ported relationships.
Classifying second-degree relationship types via CREST

and PADRE

We tested CREST and PADRE using simulated data from

seven different types of pedigrees. These pedigrees include

the target second-degree pair and two of their mutual rela-

tives, andwe define them by the relationship of themutual

relatives to the genetically older target sample: 1CþS,

1CþC, 1CþN, 1C1RþS, 1C1RþC, 1C1RþN, and 2CþS

(material and methods). PADRE was designed to infer de-

grees of relatedness but can be used to classify relationship

types of close relatives when given data from their more

distant relatives.19 In fact, its accuracies for inferring sec-
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ond-degree relationship types are higher than those

previously reported for RELPAIR,17 a close relationship

type classifier. More specifically, PADRE assigns the degrees

of relatedness that maximize the composite likelihood be-

tween two sets of close relatives, this likelihood being the

product of (1) the PRIMUS-inferred pedigree likelihoods23

for each close relative set and (2) the pairwise relatedness

likelihoods14 between members of different sets. We read

off the second-degree relationship type of the target pair

from the corresponding maximum composite likelihood

PRIMUS pedigree. PRIMUS pedigrees must contain at least

two closely related samples to work, and PADRE analyzes a

pair of related PRIMUS pedigrees. Thus, all the simulated

pedigrees we used to compare PADRE and CREST include

the target second-degree pair and two mutual relatives

that are first- or second-degree relatives of each other. How-

ever, we note that CRESTworks even with only onemutual

relative of the target pair.

We ran both CREST and PADRE on 200 replicates of each

of the pedigree structures. As noted in material and

methods, PADRE crashed for some tests, and we applied a

previously used fix19 that enabled it to analyze most of

these cases, but it continued to crash for 2.10% of the pedi-

gree structures. In turn, for 0.830% of pedigrees, CREST did

not infer a type due to IBIS not inferring the target pair as

second-degree relatives, C < 0.025, or R1 ¼ R2 ¼ 0 (material

and methods). To account for the effects of these pairs, we

show classification results both with and without the un-

classified pairs.

Figure 4 plots the sensitivity and specificity from all 200

pedigrees for the seven types of pedigree structures. (If a

tool did not classify a target pair, we scored it as having a

sensitivity of 0 and a specificity of 0.) CREST’s overall sensi-

tivity (Figure 4A) ranges from 0.915 to 1.00 for GP, 0.800 to

0.975 in AV, and 0.755 to 0.985 in HS pairs across the seven

types of mutual relatives. In contrast, PADRE’s overall

sensitivity is 0.385 to 0.760 for GP, 0.605 to 0.920 in AV,

and 0.730 to 0.950 in HS pairs. This corresponds to an in-

crease in sensitivity of 0.110 to 0.250 in CREST across all

mutual relative types, averaged over the three target rela-

tionships (Figure 4A). Turning to specificity (Figure 4B),

CREST’s performance rates are 0.978–0.995 in GP, 0.885–

0.993 in AV, and 0.903–0.988 in HS, while PADRE’s rates

are 0.943–0.965 in GP, 0.589–0.855 in AV, and 0.790–

0.978 in HS. Averaged over the three relationship types,

CREST’s specificity is 0.060–0.130 higher (Figure 4B).

When only considering the subset of pairs that both

PADRE and CREST classify (97.1% of pairs), PADRE’s

average sensitivity and specificity over all relationship

and pedigree types increase, respectively, by 0.016 and

0.019 (Figure S7). CREST’s comparative performance re-

mains similar, as its sensitivity and specificity are 0.101–

0.250 and 0.051–0.125 higher on average, respectively.

To determine whether phasing quality adversely impacts

PADRE’s results, we compared CREST and PADRE on

another 200 replicates of the same pedigree structures

but used perfectly phased haplotypes output by the
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Figure 4. Performance of CREST and PADRE for second-degree relationship type classification
The sensitivity (A) and specificity (B) of CREST and PADRE for inferring GP, AV, and HS relationship types in simulated data, along with
the average of these rates across the three relationships. The x axis indicates the mutual relative types included in the analysis (abbre-
viations in material and methods), with each target relationship type and mutual relative combination including data from 200 target
pairs.
simulator. This step should not affect CREST’s performance

since IBIS ignores phase information. Use of these optimal

haplotypes improves PADRE’s sensitivity by 0.039 on

average, and most especially improves its sensitivity for

GP pairs, by a range of 0.105–0.330 (Figures S8 and S9).

Nevertheless, CREST’s average sensitivity is still 0.107–

0.203 higher in these data, and its specificity is 0.059–

0.116 greater, averaged over the three relationship types.

In general, for the types of mutual relatives we tested,

both CREST and PADRE perform well at classifying HS

pairs, while CREST has higher sensitivity for AV and GP

pairs. PADRE’s high performance in HS pairs may be

because the mutual relatives are equally close to the target

samples for this relationship type. Alternatively, previous

work indicated that PADRE may be biased against GP rela-

tionship classification and in favor of HS.19 Along these

lines, the confusion matrices show that PADRE misclassi-

fied more GP pairs as AV when given more distant mutual

relatives (Figures S10 and S11). In turn, CREST tends tomix

HS and AV classifications and is better at identifying GP

pairs.

Considering the runtime of these analyses, the IBD de-

tector IBIS ran on the 2,400 samples simulated for each

of the seven types of mutual relative classes in an average

of 11.2 CPU minutes (single threaded), and CREST

completed its classification in another 1.75 min on

average. On the other hand, the pre-processing steps for

running PADRE require that the samples be phased, have

IBD segments detected (with GERMLINE), and be analyzed

using both PRIMUS and ERSA. Phasing using Eagle and

ERSA together take more than two CPU days to finish pro-

cessing data from one of the mutual relative type

simulations.
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The performance of CREST under variable genome

coverage rates

As discussed in material and methods and depicted in

Figure 4, classification using close mutual relatives has bet-

ter performance than using more distant relatives. To

ensure that CREST’s KDE distributions more accurately

represent the true relationship probabilities for a given

target pair and their mutual relatives, we trained stratified

KDEs based on the genome coverage rate C of a set of

mutual relatives (material and methods).

Figures 5A and 5B show the sensitivity and specificity of

CREST in simulated data across the same bins of genome

coverage rates on which we trained separate KDEs. As ex-

pected, the sensitivity and specificity both increase as the

coverage grows. For coverage rates between 0.125 and

0.15, or roughly that expected when using one first cousin,

CREST’s sensitivity and specificity are both 1.00 for GP,

0.983 and 0.957 for AV, and 0.913 and 0.992 in HS pairs,

respectively. Even when C is in the lowest bin of 0.025–

0.05, CREST still achieves sensitivities and specificities,

respectively, of 0.928 and 0.985 for GP, 0.819 and 0.789

in AV, and 0.650 and 0.924 in HS pairs. Notably, the infer-

ence of GP pairs generally has quite high sensitivity and

specificity regardless of the genome coverage rate. This is

likely because, if xi is the grandchild, in theory R1 ¼ 1,

with no variance from the meioses that separate xi from

the grandparent, but only due to false positive and/or false

negative IBD segments.

The results above consider only the highest posterior

probability relationship as the type that CREST infers,

but this probability is informative about CREST’s confi-

dence and can be used in applications of the method.

Figure S12 depicts calibration curves for each relationship
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type in each genome coverage bin. In general, CREST gives

reasonably well-calibrated probabilities across bins,

though there are some biases evident for HS and AV pairs

for lower coverage values. GP probabilities are well cali-

brated regardless of the coverage, while the probabilities

for AV and HS are well calibrated for coverage rates larger

than 0.125. For lower coverage rates, the probabilities are

still informative, especially for values near 0 or 1.

Detecting the directionality of relationships

To test CREST’s ability to detect the directionality of rela-

tionships, we used the same simulated pedigree structures

as in the above genome coverage analysis, but instead of

analyzing HS pairs, we took their common parent and

one of the half-siblings to serve as PC pairs. We applied

the KDE classifier to infer which sample is the grandparent,

aunt/uncle, or parent in 200 pairs for each genome

coverage bin. As shown in Figure S13, averaged over all

pairs with C > 0.025, or roughly using one fifth degree or

more closely relatedmutual relative, CRESTachieved sensi-

tivity of 1.00 in determining the directionality of GP pairs,

0.99 for AV, and 1.00 for PC pairs. Moreover, the probabil-

ities from this test are nearly perfectly calibrated

(Figure S14).

CREST has the potential to infer third-degree

relationship types

In principle, the CREST approach need not be limited to

second-degree relationships, as a similar logic applies to

more distant relatives. To analyze the potential for CREST

to distinguish third-degree relatives, we tested its ability

to classify four third-degree relationship types: great-

grandparent (GGP), grand-avuncular (GAV), half-avun-

cular (HAV), and first cousin (1C). Assuming that x1 is

the genetically older sample, for a GGP pair, E½R1� ¼ 1
8

and E½R2� ¼ 1; for a GAV pair, E½R1� ¼ 1
8 and E½R2� ¼ 1

2; for

a HAV pair, E½R1� ¼ 1
4 and E½R2� ¼ 1

2; and for a 1C pair,

E½R1� ¼ E½R2� ¼ 1
4.

To train and test this extension of CREST, we simulated

1,000 pedigrees for each of the third-degree relative types,

with each pedigree including two first cousins of the genet-

ically older sample as mutual relatives. After calculating R1

and R2, we trained KDEs using 800 pairs and 5-fold cross

validation for each type. We then tested on the remaining

200 pairs and found that the inference accuracy is high,

with sensitivities of 0.990 for GGP, 0.940 for GAV, 0.925

for HAV, and 0.975 for 1C pairs (Figure S15). Furthermore,

the classification probabilities are well calibrated

(Figure S16). Thus, CREST has potential utility to distin-

guish relationship types even for third-degree pairs given

sufficient mutual relative data.

Sex-specific classification

To evaluate CREST’s sex-specific classification, we used

Ped-sim to generate 4,500 maternal and 4,500 paternal

pairs for each of the HS and GP relationship types (material

and methods). Figure 5C plots the resulting LOD scores,
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which are positive for pairs CREST infers as maternally

related and negative for paternal, with a greater magnitude

of LOD corresponding to greater confidence in the call.

For the HS pairs, CREST correctly infers the sex of the

parent in 99.9% (4,499) of maternal pairs and 99.9%

(4,499) of paternal pairs. In turn, for GP pairs, CREST infers

99.8% (4,491) of maternal pairs and 99.1% (4,461) of

paternal pairs correctly. We used the LOD scores to

generate receiver operating characteristics (ROCs) for these

relationship types, as shown in Figure S17. The area under

the curve (AUC) of these ROCs are high, with values for HS

and GP pairs of >0.999, consistent with the classification

results highlighted here.

Validation in Generation Scotland data

In order to test our model in real data, we used CREST to

classify second-degree relationships in the GS samples,

which are enriched in close relatives and include reported

pedigree structures. Analyzing these data required 2.8 h to

run IBIS using eight threads, 2.7 CPUminutes to infer rela-

tionship types, and 2.5 CPU minutes to perform sex infer-

ence.We considered those pairs that IBIS detects as second-

degree relatives and who have at least one sufficiently

related mutual relative for performing relationship type

inference (material and methods). For sex-specific classifi-

cation, since this part of CREST does not require informa-

tion from mutual relatives, we used all pairs IBIS infers as

second-degree relatives and that were reported as HS or

GP pairs.

When analyzing CREST’s performance for inferring rela-

tionship types,we founda few relativepairs it confidently in-

fers as having a conflicting type, sowe inspected the pairs us-

ing sample ages and IBD sharing to other relatives. For two

pairs, CREST shows strong evidence that they are AV instead

of HS and GP as reported (inferred probability of 1.00 with

C ¼ 0.162 and C ¼ 0.121, respectively). For the pair labeled

as GP, we found that the (ungenotyped) intermediate parent

is listed as five years younger than his labeled father, indi-

cating that this pair cannot be GP and supportive of the AV

type. Theotherpairwas labeledaspaternalHS, but, denoting

the individuals as A and B, we found that individual A has

IBD sharing with B’s maternal relatives (A is a fourth-degree

relative of B’s maternal first cousin), and, in turn, B does

not share IBD segments with A’s maternal aunt. This indi-

cates that they cannot be either paternal or maternal HS. In

addition, B is 24 years older than A, supporting CREST’s pre-

diction of an AV relationship. A third case concerns a set of

labeled maternal HS pairs, where we found that purported

paternalfirst cousinsof someof these samplesare in fact their

niece and nephew. We confirmed this by calculating an

IBDð011Þ rate of 129 cM; this is a signal DRUID uses to detect

aunts and uncles of two ormore siblings, with a threshold of

50 cM reliably discriminating aunts and uncles.19 However,

after correcting this part of the pedigree, we noticed other

inconsistent degrees of relatedness among the relatives,

and the true relationship of the labeled HS pairs is difficult

to determine. We therefore excluded this entire pedigree
erican Journal of Human Genetics 108, 68–83, January 7, 2021 77
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Figure 5. CREST performance on simulated relatives
(A and B) The sensitivity (A) and specificity (B) within genome coverage rate (C) bins for GP, AV, andHS pairs, and the average across these
three types.
(C) Histograms showing the distributions of LOD scores for the inferred parental sex of HS (top) and GP (bottom) pairs. Blue samples
represent scores for pairs where the true sex is male, and likewise red for female.
(which contains only one reported HS pair after averaging)

from our analysis. After relabeling the HS and GP pairs as

AV and removing the noted pedigree, the relationship type

analysis includes 233 GP, 2,616 AV, and 344 HS pairs.

For the sex-specific classification analysis, after

excluding the two pairs and pedigree identified above, we

noticed that an additional four pairs, three HS and one

GP, had anomalous scores that warranted inspection

(Figure S18). Returning to the GS pedigree data, we were

able to conclude that two of the HS pairs—which are called

as HS by CREST—were initially labeled with the incorrect

parental sex. One is a reported maternal HS pair with a
78 The American Journal of Human Genetics 108, 68–83, January 7, 2
LOD z �12.1, and in fact had been reported as paternal

HS in the original pedigree data but was mis-transcribed

in one file. The other is a reported pair of paternal half-sis-

ters, with a LODz 7.9. Paternal half-sisters are expected to

share at least one allele at every site on the X chromosome,

and the average percentage of opposite homozygous X

sites across all 18 reported paternal half-sister pairs in the

GS data is only 0.41% (including the noted pair). By

contrast, the pair in question exhibited opposite homozy-

gous genotypes at 2.5% of X chromosome sites, contradict-

ing their reported relationship (p < 2.2 3 10�16, one-sided

binomial test).
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For the other HS pair and the GP pair, CREST lacked the

necessary mutual relatives to return relationship type pre-

dictions. This HS pair also consists of reportedly paternal

half-sisters but has LOD z 5.7. Nevertheless, the pair

have opposing homozygous genotypes at 4.6% of X chro-

mosome sites, disproving the reported paternal HS type

(p < 2.2 3 10�16, one-sided binomial test). Although this

might suggest a truly maternal pairing, a single mitochon-

drial marker mismatch discounts a sharedmaternal parent,

and we concluded that the pair may not be HS and so

excluded it from the rest of the analysis. The remaining

misclassified maternal GP pair has a LOD z �5.1 and in-

cludes a grandmother who should transmit her mitochon-

drial DNA to maternal grandchildren. Even so, the grand-

child differs at six mitchondrial markers from her

grandmother, while the grandmother shares these markers

identically with other maternal relatives in the pedigree.

This is strong evidence against the pair being maternal,

and, with an age difference of 45 years, we reclassified

this as a paternal GP pair. Following these changes and

filtering to independent GP pairs (material and methods),

371 HS and 692 GP pairs remained for the sex classification

analysis.

Figures 6A and 6B plot CREST’s relationship type infer-

ence sensitivity and specificity in the GS data across

different genome coverage rates C. As expected, both the

sensitivity and specificity tend to increase with C. Overall,

for C> 0.125, CREST’s sensitivity is relatively high at 0.935

for GP, 0.977 for AV, and 0.922 for HS pairs. Similarly, the

specificity is high in this coverage range, with values of

0.999 for GP, 0.937 for AV, and 0.979 for HS pairs. However,

relative to the next lower coverage bin, the sensitivity of

GP pairs drops when C > 0.175, and that of HS pairs drops

for the C > 0.225 bin. For the GP pairs, these last two bins

include only 1.5 and 2 misclassified pairs (after averaging),

and for HS pairs, the last bin has 1.75 misclassified pairs.

These misclassifications are due to CRESTusing mutual rel-

atives that either (1) include another grandchild of the

grandparent that IBIS infers as a third-degree relative of

the grandparent or (2) violate CREST’s MRCA assumptions

but only occur with three or more generations of sample

collection (e.g., a great-grandchild or descendants of a HS

member’s full sibling). We note that GS’s recruitment pro-

vides more of the latter category of relatives than is typical

for population-based studies,1 so fewer assumption viola-

tions may occur in population samples. Still, extending

CREST to detect mutual relatives that violate its MRCA as-

sumptions is the subject of future work.

Within these GS pedigrees, CREST’s sex inference LOD

scores nearly always correspond to the reported relation-

ship types (Figure 6C). In particular, CREST correctly infers

100% (342) of maternal HS pairs, 100% (29) of paternal HS

pairs, 99.8% (480 of 481) of maternal GP pairs, and 99.1%

(209 of 211) of paternal GP pairs. Genotype data are avail-

able for the intermediate parent in the three misclassified

GP pairs (one maternal with a LOD z �0.6 and two

paternal with LOD z 2.4 and 2.7). Accordingly, IBIS
The Am
detects IBD1 segments at nearly all sites in the grand-

parent-parent and parent-grandchild pairs, consistent

with PC relationships that validate the reported relation-

ships. The ROCs for the GS data demonstrate the effective-

ness of the classifier, yielding AUCs of 1.00 for the HS pairs

and 0.999 for the GP pairs (Figure S19).
Discussion

Pedigrees have wide ranging utility throughout genetics,

with the modeling of transmitted haplotypes among rela-

tives and/or the use of their IBD sharing fractions being

central to both linkage analysis and recent heritability esti-

mation procedures.6,7 Family data are also needed to iden-

tify de novo recombinations20,29,35 and mutations36,37 and

to enable family-based phasing and imputation, the gold-

standard means of addressing these problems.38

Given these applications, several methods exist for

pedigree reconstruction and for confirming or disproving

reported pedigree relationships.10–12,17,23,39 However,

differentiating among the relationships that map to a

given degree of relatedness has remained challenging. Pair-

wise relatedness measures, the standard signal for detect-

ing relatives until recently,16 have limited information to

enable the classification of relationship types.17

We developed CREST, an approach that infers both pedi-

gree relationships and whether HS and GP pairs are mater-

nally or paternally connected. This latter inference relies

on male and female genetic maps,20 whose genome-wide

rate differences were observed in early human genetic

analyses.40 Sex-specific maps also differ markedly in their

local crossover rates, and these differences form a key basis

to the signals CREST uses for its inference. For example,

IBD segment counts, a quantity affected by genome-wide

crossover rates, overlap meaningfully in maternal and

paternal GP pairs (Figure S3), whereas CREST’s LOD scores

in GP pairs are well separated (Figures 5C and 6C).

CREST’s relationship type inference assumes that

mutual relatives connect to both members of a target

pair only through one or more MRCA(s) of the target

pair. To enforce this assumption, which is most readily

violated by descendants of the MRCA(s), CREST does

not analyze first- and second-degree relatives of the target

pair. However, such close relatives carry IBD segments

that span a large fraction of a target sample’s genome—

i.e., they have high coverage rates—and so have the po-

tential to be very informative for relationship type infer-

ence. On the other hand, in the GS dataset, some relatives

that violate the MRCA assumption are more distantly

related than first or second degree, and CREST’s use of

these samples lowered its performance in the high

coverage rate bins (Figures 6A and 6B). We view the

proper utilization of such samples as a subject of interest

for future work.

At present, CREST does not require age information even

though the difference in age of the target pair is also
erican Journal of Human Genetics 108, 68–83, January 7, 2021 79
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Figure 6. CREST performance on the Generation Scotland data
(A and B) The sensitivity (A) and specificity (B) of relationship type classification for GP, AV, and HS pairs, and the average across these
three types in the GS dataset. These plots use a genome coverage rate (C) bin size of 0.05 because several bins have a small number of HS
and GP pairs with a bin size of 0.025 (minimum of 7 for HS and 7 for GP using 0.025 versus 14 and 16 here).
(C) Histograms showing the distributions of LOD scores for the inferred parental sex of HS (top) and GP (bottom) pairs. Blue samples
represent scores for pairs where the reported sex is male, and likewise red for female.
informative for distinguishing among relationship types.

However, the age difference distribution in the GS data re-

veals large overlapping ranges between HS and AV pairs

and between AVand GP pairs (Figure S20). Still, straightfor-

ward extensions of CREST may benefit from use of ages

when they are available.

Here we applied CREST to simulated and real relatives us-

ing IBD segments detected with IBIS. In both forms of data,

so long as the mutual relatives do not violate CREST’s as-

sumptions, the method appears relatively insensitive to er-

rors in the IBD segments. Nevertheless, the quality of IBIS

and other IBD detectors depend on several factors,

including SNP density. Therefore, users must be careful to

ensure that the detected IBD segment quality does not
80 The American Journal of Human Genetics 108, 68–83, January 7, 2
adversely impact CREST’s results. One way to accomplish

this is to simulate relatives with properties such as marker

density and population membership similar to the target

samples and tune the IBD detector’s parameters accord-

ingly to ensure that CREST’s performance matches the

user’s goals.

While this paper was under review, PONDEROSA27—a

method for pedigree reconstruction and second-degree

relationship type inference in endogamous popula-

tions—was released. PONDERSA uses highly reliable

phased IBD segments to make inference, leveraging both

segment numbers and whether the segments reside on

only one haplotype in order to distinguish among types.

These signals are distinct from those that CREST uses,
021



and PONDEROSA is therefore complementary to CREST.

Indeed, depending on haplotype phase quality and the

availability of mutual relatives, one approach may shed

light on a pairs’ type when the other method falls short.

As direct-to-consumer genetic testing companies pro-

vide customers with estimated relationships among sam-

ples, CREST has several uses. Most apparently, it can enable

these companies to report specific relationship types,

including which parent an individual is related through

for some relationships. Additionally, while the mutual rel-

atives of a target pair inform the pedigree structure be-

tween the pair, providing this pedigree structure to the

method DRUID can enable more exact detection of the dis-

tance between those close relatives and their more distant

mutual relatives.19 Thus, an iterative procedure is possible,

with mutual relatives of unknown relationship to a set of

close relatives enabling the detection of the latter pairs’

relationship types, and the resulting pedigrees enabling

more precise characterization of their distance to the

mutual relatives.

Lastly, a key factor influencing CREST’s performance is

the genome coverage rate of the available mutual relatives.

In general, more closely related pairs will have a higher

genome coverage. Consequently, with ever increasing

sample sizes—and therefore datasets with greater numbers

of relatives, including close relatives—CREST’s inference of

relationship types will have greater reliability going

forward.
Data and code availability

The code generated during this study is available at https://

github.com/williamslab/crest.

Genotype data for Generation Scotland subjects are

available through an application from https://www.ed.ac.

uk/generation-scotland/for-researchers.

The simulated genotype data supporting the current study

have not been deposited in a public repository but can be re-

produced using Ped-sim and the European descent data,

which is available by application from the European

Genome-Phenome Archive (EGAD00000000120).
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Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.12.004.
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