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Medicine Berlin, 10178 Berlin, Germany; 35German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany; 36Institute of Physiology, Justus-Liebig University
Giessen, Ludwigstraße 23, 35390 Giessen, Germany; and 37Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway

Received 29 October 2019; revised 29 March 2020; editorial decision 22 May 2020; accepted 27 May 2020; online publish-ahead-of-print 2 June 2020

Abstract Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and
women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, di-
agnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can mod-
ify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective
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interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males
and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and
molecular mechanisms underlying these differences are still poorly understood, and their identification might have im-
portant translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most
experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and
assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the im-
portance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-
related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to in-
vestigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender dif-
ferences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
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1. Introduction

Ischaemic heart disease (IHD) is the leading cause of death and morbidity
in both men and women in Europe, even if age-standardized incidence
and prevalence of IHD are lower in females than males.1 Several differen-
ces in pathophysiology, clinical manifestations, treatment, and effect of
cardiovascular drugs due to sex have been reported as recently
reviewed.2–8

Apart from genetic predisposition and age, risk factors including ab-
normal lipid profile, smoking, hypertension, diabetes, abdominal obesity,
psychosocial factors, alcohol intake, and lack of regular physical activity
are associated with occurrence of myocardial infarction (MI) worldwide
in both sexes and at all ages.9 However, several other diseases and
lifestyle-related factors are also frequently associated with IHD, even if
mechanistic links to IHD risk have not been proved yet.10–12 The preva-
lence of some cardiovascular risk factors and comorbidities is different in
male or female IHD patients (Figure 1), and these conditions, as well as
their treatments, can also differently impact IHD risk according to
sex.13–15 Thus, sex-specific health promotion efforts may be needed to
improve IHD prognosis in both women and men.15

It is well known that the presence of risk factors, comorbidities, or
specific health behaviours may also differently affect myocardial response
to ischaemia and reperfusion (IR) in males and females. Indeed, several
animal models can be used to investigate either the mechanisms underly-
ing sex differences, or the effects of risk factors, comorbidities, and their
medications.16,17 Consistent with clinical observations, sex-specific
responses to myocardial IR injury have been observed in preclinical stud-
ies.18 Several sex-related changes have been implicated in these differen-
ces, including androgens,19 oestrogens, nitric oxide, calcium handling
(including mitochondrial permeability transition),20–22 reactive oxygen
species formation,23 which leads to changes in apoptosis and autoph-
agy24 as well as programmed necrosis,25 to name some of them.18

Unfortunately, current pharmacological approaches directed at attenua-
tion of IR injury have failed to translate into clinical treatments in both
males and females.26 Possible explanation for these disappointing results
is that IHD is a complex disorder depending on a number of etiologic
factors, and is frequently associated with other systemic disease
states.17,27 Furthermore, these conditions might exert different effects in
males and females. Despite this evidence, preclinical studies usually only
include young and healthy male animals and/or derived tissues and cells,
thus neglecting the possible effects of sex-related variables.

This ESC WG Position Paper will (i) discuss biological mechanisms un-
derlying the interaction between sex and most common IHD risk factors

or comorbidities; (ii) discuss the advantages and challenges of preclinical
studies investigating the interplay between sex, IHD, risk factors, comor-
bidities, and associated co-medications; (iii) provide recommendations
on strategies to enhance identification, characterization, validation, and
publication of studies addressing sex-related differences in comorbidities
and IHD.

2. Mechanisms underlying
sex-related differences in IHD

Sex classification of sexually reproducing organisms is made according to
their chromosomal complements, functional reproductive organs, and
levels of sex steroids.28 Whether sex differences in IHD are due to sex,
hormones, or sex and hormone interactions at various life stages is still
not well known.3,28 Additional factors like prenatal environment may
also be crucial. In addition to sex, defined by biological factors, gender
differences related to social, environmental, and community factors can
also affect IHD risk.2,29 For example, gender can account for differences
in health-seeking behaviours and thus clinical outcomes in women af-
fected by IHD.2 Since gender recapitulates the social and cultural role of
individuals within a given society, it is usually developed in response to
environment and cultural settings (including family interactions, media,
peers, and education), it can change among different societies,30 and it is
very complicated to dissect and study gender differences by using pre-
clinical studies. However, in a Canadian study of young adults with acute
coronary syndromes using a newly developed composite measure of
gender, feminine gender was associated with increased risk of recurrent
events independent of female sex.31 Since it is beyond the scope of this
manuscript, mechanisms underlying gender-related differences will not
be discussed further in the current article.

2.1 Sex chromosomes
2.1.1 Y chromosome
Compared to the X and autosomal chromosomes, the Y chromosome
encodes for very few genes, divided into male-specific genes and genes
with an X chromosome analogue. So far, only 71 protein-coding genes
have been described, and the best known is Sry, gene coding for testis de-
termining factor, a transcription factor needed for testis development
and testosterone production in male foetal life. Knowledge of the func-
tion of the additional male-specific Y chromosome-derived genes is
scarce.32,33 Sex-related difference in IHD epidemiology makes it reason-
able to ask what role the non-gonadal effects of the Y-chromosome

368 C. Perrino et al.
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..play. Importantly, the up-regulation of inflammatory genes and down-
regulation of autoimmunity promoting atherosclerosis in men, has been
linked to Y chromosome genes.34,35 In addition, gene and chromosome
manipulation in mice has made it possible to move testis determining
gene Sry from the Y chromosome to an autosome, and thereafter pro-
duce offspring with gonadal sex uncoupled from sex chromosome iden-
tity. Cardioprotection studies in these mice have shown that XY
combination results in smaller MIs compared to XX combination inde-
pendent of gonadal sex and hormonal status through development.36

2.1.2 X chromosome
Despite the difference between males and females in total number of
genes due to the much larger X chromosome, dosage compensation is
secured by inactivation of one of the X chromosomes in female cells.
Some genes, however, seem to escape inactivation, thereby partially
explaining phenotypic diversity. Random inactivation of one X chromo-
some makes the female heart a mosaic of two different cardiomyocytes
(one with the maternal X chromosome and one with the paternal X
chromosome)37–39. When it comes to the question of whether genes
on the X chromosome have a role in IHD, associations between differ-
ent forms of ischaemic injury, specific X chromosomal gene variants or
dosing remain to be studied.40 In contrast to large studies of sets of single
nucleotide polymorphisms on defined chromosome loci of autosomal
chromosomes, studies so far found no association between IHD and X
chromosomal variants40 However, most studies had limited power to
detect sex differences, since they mainly enrolled males41

2.2 Gonadal hormones and their receptors
Systemic or tissue-specific levels of gonadal hormones (oestrogens, pro-
gestogens, androgens) change through different stages of life in a sex-
specific pattern and are believed to have significant impact on IHD.

Several experiments involving gonadectomy prior to IR demonstrated
that both female and male hearts benefit from exogenous supplementa-
tion of oestradiol or testosterone, respectively.42–45 Oestradiol protects
the isolated heart against IR injury via non-genomic oestrogen receptors
either by stimulating G protein-coupled oestrogen receptors, resulting
in activation of phosphoinositol 3 kinase and mitochondrial adenosine
triphosphate-sensitive potassium channel-dependent cell signalling sur-
vival pathways,46–47 or through non-nuclear oestrogen receptors leading
to endothelial nitric oxide synthase activation and cardioprotective S-
nitrosylation of key mitochondrial proteins.48 Preclinical studies indicate
that acute administration of progesterone has a non-genomic cardio-de-
pressive effect involving modulation of calcium handling, including sarco-
endoplasmic reticulum calcium adenosine triphosphatease expressionr49

and action potential duration50; anti-apoptotic effects have also been
suggested, and might provide cardioprotection.51 The role of testoster-
one has been controversial, and synergistic effects or co-dependency of
oestradiol and testosterone might also be crucial.52,53 Non-gonadal ex-
pression of aromatase is higher in males than females,54,55 and significant
conversion of androgens to oestrogens takes place in the heart. Recent
experimental studies indicate a dose-dependent cardioprotective effect
of testosterone, but also additive cardioprotection when combined oes-
trogen and testosterone treatment is used.42 However, results from clin-
ical studies of IHD after testosterone supplementation to elderly men
with low endogenous levels of testosterone are inconclusiveref52,56,57

2.3 Pre-natal environment and foetal
programming
Preclinical and epidemiological studies suggest that susceptibility to IHD
can be the result of foetal programming via limitation of the final cell
number in the heart, reduced vessel density, and by epigenetic modifica-
tion of gene expression. Sex dimorphisms could be due to foetal

Equally distributed
in men and women

More frequent in women More frequent in menSpecific for women Specific for men

Pregnancy and lactation
Pregnancy-related disorders 
Polycystic ovary syndrome

Menopause

Stress
Hyperlipidemia
Atrial fibrillation

Heart valve disease
OSA

Degenerative brain disease
Clock disruption

Kidney and urinary tract diseases 
Infections
Anemia
Cancer

Aging
Physical inactivity

LVH
Depression and anxiety 

Metabolic syndrome
Obesity

Diabetes
Thyroid disease

Osteoporosis
Pulmonary hypertension

Rheumatic diseases
Irritable bowel disease 

Arterial hypertension
Smoking

PAD
COPD
Stroke

Erectile dysfunction
Androgenetic alopecia

PREVALENCE OF MAJOR RISK FACTORS, SPECIAL CONDITIONS AND COMORBIDITIES 
IN MEN AND WOMEN WITH ISCHEMIC HEART DISEASE

Figure 1 Distribution of major risk factors, special conditions, and comorbidities in patients with IHD according to divergence (or lack of this) between
males and females. Sex-specific prevalence represented in this figure was derived from epidemiological data available in the literature. LVH, left ventricular
hypertrophy; OSA, obstructive sleep apnoea; PAD, peripheral artery disease; COPD, chronic obstructive pulmonary disease.
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hormonal differences (testosterone in males) and other less well-
characterized dissimilarities.58–62 Pre- and perinatal complications like
hypoxia, foetal malnutrition, and maternal hypothyroidism have repeat-
edly been linked experimentally to increased susceptibility to IR injury of
the adult heart.62–65 Later studies confirmed the presence of DNA
hypermethylation leading to reduced expression of cardioprotective
protein kinase Ce, endothelial nitric oxide synthase, adenosine mono-
phosphate kinase, and heat-shock protein 70.66,67 Reduced adult expres-
sion of heart mitochondrial respiratory chain proteins has also been
reported after prenatal hypoxia,68 potentially increasing vulnerability to
ischaemia. A limited number of studies included both sexes, and some
but not all of these reported larger MI in adult male compared to female
hearts after pre- or perinatal stress.62,65,69

3. Sex-specific effects of
comorbidities and other
confounding factors in IHD

According to sex distribution, comorbidities can be considered ‘general’
when similarly distributed among men and women or sex-related when
disproportionately represented in or exclusively limited to one sex.
Divergence in prevalence (or lack of this) between males and females for
major comorbidities and confounding factors is schematically indicated
in Figure 1 and discussed below. In the general population, association of
IHD to single or frequently multiple diseases (and relative treatments)
can impact on IHD development, IR injury, and protection from it.
However, much less information is currently available regarding the role
of sex, and in particular whether the effects of comorbidities in IHD dif-
fer between men and women, and if so what are the underlying mecha-
nisms. Importantly, prevalence of comorbidities and their sex-specific
prognostic effect on IHD might change after stratification for age. For
several risk factors or comorbidities common to males and females, no
data are currently available regarding sex-specific effects of them on IHD
risk (Table 1). Moreover, there are significant differences in the clinical
treatment of several comorbidities in men and women that may be fur-
ther complicated by the different efficacy profile of some drugs used for
treatment of these comorbidities as recently extensively reviewed,4,70–72

and by the confounding effect of drugs that are indicated only for women
(e.g. contraceptives, menopausal hormone therapy).

Various preclinical models have been used to study most comorbid
diseases possibly affecting IHD risk and prognosis. However, there is a
critical information gap between preclinical and clinical research in this
area since the majority of animal experiments is conducted on young
and healthy animals of one sex only, even though the confounding effect
of several risk factors and comorbidities on IHD has been known for
decades.12,27,73 Even more, in most animal models of comorbidities, drug
treatments as done in humans are lacking. The combination of multidisci-
plinary approaches in both male and female experimental models has
the potential to unravel novel mechanisms underlying sex-related differ-
ences, but it has been rarely attempted.

3.1 Age and lifestyle
3.1.1 Age
Women are affected by IHD at a later age than men.74 On the other
hand, young women have a particularly high risk of mortality following
MIref74 More women than men die each year of IHD, and the hearts of
postmenopausal women are more vulnerable to ischaemic insults

compared to premenopausal women, suggesting that ageing has an effect
on sex-specific differences in IHD. Ovariectomy significantly increases in-
farct size, but it increases by ageing in female rats, independent of plasma
oestradiol levels.75 Ischaemic preconditioning is well known to reduce
infarct size in young male rats, but both in aged hearts and female hearts
the protective effect is less evident.27 There are also age-dependent,
sex-specific differences in extracellular matrix and coronary resistance
vessels, which may affect adaptation to work load.76–78

3.1.2 Smoking
Smoking is currently more common in males compared to females, but it has
been repeatedly reported to increase IHD risk more in females than
males.79–81 In addition, passive smoking exposure since birth increases risk of
higher cholesterol levels in late adolescence especially in females.82

Experimental studies on IHD and smoking including both sexes are few; how-
ever, a nicotine-induced reduction in oestrogen levels has been proposed as
an explanation for the increased ischaemic brain damage in females.83

3.1.3 Physical inactivity
Although most studies have been undertaken in men, women benefit at
least as much as men from being physically active both prior to cardiac
events and as part of rehabilitation.84–88 Unfortunately, available data are
limited due to adjustment for age and sex prior to presentation of clinical
trial results.86 After short-term forced exercise, sex-dependent differences
in cardioprotection have been observed in preclinical models.89 In sedentary
female rats, infarct size was smaller than in age-matched sedentary males,
and males benefitted more from the preischaemic exercise protocol.89

3.1.4 Stress
Psychosocial and metabolic chronic stresses modify the atherosclerotic
process, the related acute cardiovascular events,90 and other disorders
such as Takotsubo cardiomyopathy differently in males and females.91

The underlying mechanisms involve, among possible other factors, en-
hanced haematopoiesis and different responses of immune cells to glu-
cocorticoid release,92 with consequent changes in leucocyte homing to

......................................................................................................

Table 1 Effects of general risk factors or comorbidities on
IHD risk in women

Increasing risk Decreasing risk Unknown or unclear

Ageing Physical activity Thyroid diseases

Smoking Osteoporosis

Stress LVH

Obesity Pulmonary hypertension

Hyperlipidaemia Atrial fibrillation

Hypertension Heart valve diseases

Diabetes PAD

Depression COPD

HIV OSA

Inflammatory diseases Brain diseases

Clock disruption

Gastro-intestinal diseases

Kidney diseases

Anaemia

Cancer

LVH, left ventricular hypertrophy; OSA, obstructive sleep apnoea; PAD, periph-
eral artery disease; COPD, chronic obstructive pulmonary disease, HIV, human
immunodeficiency virus.
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atherosclerotic plaques in response to enhanced sympathetic activa-
tion.90 In addition, young women post-MI have a 2-fold higher likelihood
of developing mental stress-induced myocardial ischaemia, presumably
due to increased proclivity to microcirculatory abnormalities.93

3.2 Endocrine and metabolic diseases
3.2.1 Obesity, metabolic syndrome, and diabetes
Although prevalence of obesity varies greatly within and between coun-
tries, overall, more women are obese than men, but an increased body
mass index has the same deleterious effects on IHD risk in women and
men across diverse populations.94 In contrast, sex may modify the preva-
lence and incidence of IHD in the context of type 1 and 2 diabetes and
metabolic syndrome.95–98 Sexual disparity in the diagnosis of cardiovas-
cular risk factors for IHD as well as the management and treatment of
acute coronary syndromes are involved in the loss of ‘female advantage’
in metabolic disorders,96,98 beside any significant sex difference in the
effects and complications of diabetes itself.99–106

3.2.2 Hyperlipidaemia
The management of dyslipidaemia is known to be different in men and
women.107 Interestingly, in a community-based study conducted in USA
among subjects with high risk for IHD, hyperlipidaemia was more aggres-
sively treated in white men compared to white women or black men and
women.108 In the community-based Tromsø Study in Norway, higher se-
rum total cholesterol implied higher relative risk of MI in men than
women.109 Various experimental models of hyperlipidaemia confirm in-
creased myocardial injury due to ischaemia, but the cofounding role of
sex differences has not been studied yet.

3.2.3 Thyroid disease
Although observational and experimental studies suggest that thyroid
hormones might have a possible therapeutic role modifying the course
of IHD,110,111 it remains yet unknown whether such effect translate into
efficacy and safety in the clinical setting and whether they vary by sex.112

Thyroid hormones have inotropic actions mediated through the modu-
lation of calcium re-uptake and, in particular triiodothyronine, modulates
inflammatory response, apoptosis, mitochondrial function, and hence
progression to heart failurer113,114 Under experimental conditions, thy-
roid status markedly affects the acute response to myocardial IR.115

3.2.4 Osteoporosis
IHD and osteoporosis have been seen as two independent conditions,
but recent evidences may change this view.116–118 Proposed shared
mechanisms are reduced sex hormone production, elevated follicle stim-
ulating hormone in women, hyperlipidaemia, inflammation, reduced
blood flow in intraosseous and coronary vascular beds, increased homo-
cysteine level, and reduced vitamin K or D levels.119–124 The most com-
monly used animal models of induced osteoporosis are based on
gonadal hormone deficiency in rats or mice, addition of glucocorti-
coids125 aged or female gonadectomized Apo E-/- mice. All these models
also increase susceptibility to myocardial IR.

3.3 Cardiopulmonary and vascular diseases
3.3.1 Hypertension
3.3.1.1 Arterial hypertension. Hypertension approximately doubles
the risk of IHD. Although recent reports have found that overall hyper-
tension is more prevalent in men, its sex-specific prevalence varies
according to age, and while in subjects <40 years old it is more prevalent

in men, in subjects older than 65 years it is more prevalent in women.126

Specific relations between IHD, hypertension, and sex are also influ-
enced by age. Surprisingly, in perspective of human clinical data, the num-
ber of experimental studies examining IR in hypertensive hearts in both
sexes is limited.127,128

Left ventricular hypertrophy (LVH) is more prevalent in women when
the recommended definitions of LVH are currently used.129,130 Patients
with LVH are more vulnerable to IR,131–133 and some therapeutic strate-
gies reducing LVH, including antihypertensive drugs, may exert beneficial
effects not completely related to their hypertension-lowering ef-
fect.131,134 Male and female hypertrophic rat cardiac myocytes exhibit
different responses to experimental IR, suggesting that sex-specific strat-
egies should be attempted to optimize post-ischaemic treatment of male
and female patients with LVH.135

3.3.1.2 Pulmonary hypertension. Recent studies highlight the high
prevalence of mechanical left coronary artery compression by a dilated
pulmonary artery in patients with pulmonary arterial hypertension, an ef-
fect which would explain, at least in part, the angina and angina-like symp-
toms observed in a large number of patients with the disease.136 The
difference in prevalence of pulmonary hypertension may be explained by
chromosomal, sexual hormone and/or immune system differences.
Preclinical studies have identified a partly paradoxical role of oestrogen
and/or testosterone depending on experimental model and sex.137,138

3.3.2 Atrial fibrillation
Atrial fibrillation and IHD are frequently associated in the ageing popula-
tion. Men have a 1.5- to 2-fold higher lifetime risk of incident atrial fibrilla-
tion than women, and major risk factors for atrial fibrillation are IHD,
hypertension, and obesity.139,140 Myocardial ischaemia can trigger atrial
fibrillation, and atrial fibrosis can sustain re-entry circuits.141,142

Moreover, atrial fibrillation can induce or aggravate myocardial ischaemia
through several mechanisms, including microcirculatory abnormali-
ties.143 Significant sex differences in pulmonary veins and left atrium ac-
tion potential characteristics have been reported in rabbits, and they
may contribute to sex-related arrhythmogenesis144 Available experi-
mental models in this area of research might be used to test susceptibility
to electrical induction of atrial fibrillation in conjunction with acute myo-
cardial ischaemia or post-infarct remodelling, however, the role of sex in
these models is still unclear.145,146

3.3.3 Heart valve disease
Aortic stenosis is frequently associated with IHD and its risk factors.147

Compared to men, women with severe aortic stenosis have less valve
calcification and more valve fibrosis, suggesting that pathophysiology of
aortic stenosis and potential drug targets may differ according to sex.148

In contrast, men with aortic stenosis develop more myocardial fibrosis,
maladaptive hypertrophy and ventricular dilatation than women.149,150

Several small and large animal models of calcific aortic valve diseases are
currently available that might be useful to improve understanding of the
basic biology, determine the contributions of comorbidities to IHD de-
velopment and the efficacy of early interventions.151

3.3.4 Peripheral arterydisease
As with IHD, the prevalence of peripheral artery disease at younger ages
is higher in men compared to women, but increases after menopause.61

Preclinical studies of peripheral artery disease as comorbidity to IHD are
limited, as is the inclusion of both sexes in such studies.
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3.3.5 Chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is frequently associ-
ated with IHD.152 Their coexistence is associated with worse outcomes
than either condition alone. Pathophysiological links between COPD
and IHD include common risk factors, predominantly smoking, and sys-
temic inflammation during COPD exacerbations. Sex-specific knowl-
edge about the influence of COPD and its treatments on IHD and vice-
versa remains incomplete.153 Information from preclinical models is
also limited.

3.3.6 Obstructive sleep apnoea
Obstructive sleep apnoea (OSA) increases cardiovascular risk, including
IHD.154 Intermittent hypoxia due to OSA may promote atherosclero-
sis,155–157 and it seems to increase the risk of IHD in men, with an appar-
ently weaker relationship in women.158,159 Information from preclinical
models is limited.

3.4 Neuro-psychological diseases
3.4.1 Stroke
A relationship between endogenous sex hormones (oestrogens and
androgens) and ischaemic stroke or IHD has been suspected. Similar to
experimental MI, in animal models of stroke, premenopausal female
rodents show reduced infarct size compared to male or menopausal fe-
male rodents, and oestrogen administration reduces infarct size.
Oestrogen supplementation immediately after ovariectomy exerts neu-
roprotective effects, whereas it shows no beneficial effects when admin-
istered 10 weeks after ovariectomy.160 Protective effects are mediated
via oestrogen receptors-a and downstream cellular signalling161 or in-
crease in astrocyte-specific insulin-like growth factor-1 expression and
improved mitochondrial metabolism.162 Information from preclinical
models combining IHD and stroke is limited.

3.4.2 Degenerative brain disease
IHD is a risk factor for dementia or cognitive impairment, with an in-
creased risk of dementia in women with IHD.163,164 In addition, preva-
lence of dementia subtypes and cognitive impairment differ between
men and women.165 It has been hypothesized that anti-platelet/anti-
thrombotic therapies could reduce the risk of dementia in IHD
patients.166 However, the protective effect of anti-platelet agents was
not the same in men and women, reinforcing the importance of sex-
related pathophysiological differences.

3.4.3 Clock disruption
Circadian rhythms are driven by internal molecular clocks regulating
sleep–wake cycles, heart rate, feeding, body temperature, blood pres-
sure, hormone secretion, metabolism, and bone marrow function167,168

reflected in diurnal clinical manifestation of diseases like MI with in-
creased incidence of in the early morning.169,170 Disturbances of the nor-
mal activity and resting phase have adverse effects on cardiovascular
parameters, healing responses, and remodelling.171–173 Sex- and oestro-
gen cycle-dependent variations in circadian rhythmicity of plasma corti-
costerone levels in rats have been reported.174 Female clock mutant
mice were found to be protected from the development of metabolic
changes and cardiomyopathy that was observed in male mice with the
same mutation.175 This protection could be mediated by ovarian hor-
mones via differentially regulated metabolic pathways, but its importance
in IHD remains to be determined.

3.4.4 Depression and anxiety
Depression and anxiety disorders are common in male and female IHD
patients, are linked to higher mortality and morbidity rates176 and in-
creased mortality in coronary artery disease patients.177 Depression rep-
resented a cardiovascular risk factor comparable to obesity and high
cholesterol levels in a study focusing on males only.178 With respect to
mechanisms, an experimental study in rats revealed a sexual dimorphism
in the molecular response to stress, involving sex-specific differences in
brain-derived neurotrophic factor (BDNF) and cyclic adenosine mono-
phosphate response element-binding protein.179 A point mutation of the
BDNF protein caused a defect in the coagulation cascade in mice and
was significantly associated to MI.180 Interestingly, occurrence of a poly-
morphism in BDNF is associated to either depressive symptoms or fe-
male sex181 therefore suggesting a direct link between change in BDNF
activity and increased susceptibility to IHD in women carrying this spe-
cific variant.

3.5 Gastro-intestinal tract diseases
Inflammatory bowel disease has been consistently associated with an in-
creased risk of IHD.182 In addition, the correlation between alterations
in gut microbiota composition and IHD is gaining increasing atten-
tion.183,184 Interestingly, comorbidities such as obesity and type 2 diabe-
tes are associated with alterations in gut microbiota.185 Animal models
of intestinal inflammation might be extremely helpful to dissect the mo-
lecular mechanisms underlying these interactions.186 Several animal and
human studies have shown sex-related differences in gut microbiota
composition.187–189 However, whether gut symbiosis can attenuate the
effects of risk factors or reduce post-ischaemic events,190 and whether
sex plays a role in these processes is still unclear.

3.6 Kidney and urinary tract diseases
Disorders of the kidney and urinary tract are comorbidities with sex-
specific effects in cardiovascular diseases (CVD).191,192 In patients with
decreased glomerular filtration rate, IHD is the most common cardiovas-
cular cause of death whereby men are more often affected than
women.193 Interestingly, uric acid levels together with glomerular filtra-
tion rate levels are strong predictors of IHD, particularly in women.194–197

However, a Korean study of renal function and clinical outcomes after ST-
segment elevated MI revealed no sex difference in 1-year mortality.198

Although many animal models have been developed to study the causes
and treatments of chronic kidney disease in humans,199 most of them do
not develop chronic kidney disease-associated CVD200 except for the ad-
enine diet model that produces rapid-onset kidney disease and CVD.201

Subtotal nephrectomy plus permanent coronary ligation in rats resulted
in more organ damage than each condition separately,202 however, ne-
phrectomy did not affect the cardioprotective effect of precondition-
ing.203 The role of sex in these conditions is still unknown.

3.7 Immune system and blood diseases
3.7.1 Infection(s)
Infectious agents, including viruses, bacteria, and parasites, can be associ-
ated with atherosclerosis and IHD. While the association for some, like
helicobacter pylori, chlamydia pneumonia, and cytomegalovirus is strong,
others like influenza still need clarification. Nevertheless, large random-
ized prospective trials, evaluating the efficacy of antibiotic treatment for
the secondary prevention of IHD have not demonstrated a reduction in
the rate of events. Differences between sex in the association between
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infections and IHD and in response to treatment remain largely
unknown.204

3.7.2 Human immunodeficiency virus
Infection by human immunodeficiency virus (HIV) and the use of some
antiretroviral drugs are associated with an increased risk of CVD that
goes beyond the risk explained by traditional cardiovascular risk factors
including social status. Although most studies in HIV-positive patients
mainly included male subjects, HIV infection has been associated with up
to twice as high risk of IHD in females as in males.205–207 Lower body
weight, slower drug metabolism, and hormonal control may explain sex-
related differences in antiretroviral associated toxicities and contribute
to differences in outcome of co-existing IHD.208 Furthermore, the use of
IHD-related therapeutic interventions is lower in HIV-positive females
than males with similar risk profiles.209

3.7.3 SARS-CoV-2 virus
COVID-19 pandemic caused by SARS-CoV-2 with debut in 2019 is an-
other example of infective disease with remarkable sex-related differen-
ces. Although similar numbers of affected have been reported in men
and women, for still unknown reasons, men seem more vulnerable com-
pared to women.210 The mechanisms underlying these findings as well as
their connections to CVD and IHD in particular remain to be investi-
gated, and might include differences in cardiovascular risk factors,
comorbidities, and lifestyles.211–213 Obviously, long-term recovery and
risk of IHD are still unknown and will need further investigations in both
men and women.

3.7.4 Inflammation and rheumatic diseases
Several systemic inflammatory diseases are associated with increased
risk of IHD.214–218 Chronic inflammatory diseases can promote coronary
microvascular dysfunction and hereby contribute to the development of
myocardial ischaemia and cardiovascular events even in the absence of
obstructive epicardial IHD.219,220 Autoimmune diseases are on average
more frequent in women,221 and are also characterized by cardiovascu-
lar inflammation-promoting development of hypertension, LVH as well
as atherosclerosis.222,223 These cardiovascular changes may regress in re-
sponse to immunomodulatory therapy.224 Inducible, spontaneous, or
engineered mouse models of chronic inflammatory diseases are avail-
able, reflecting the sex bias in susceptibility to the specific diseases,225–229

and the higher vulnerability to atherosclerosis.230–232 Among those
mouse models, only one spontaneously develops MI,233 and the inci-
dence of degenerative coronary vascular disease with MI is more pro-
nounced in male vs. female mice.234 To the best of our knowledge, no
studies are available evaluating the outcome of MI or IR in models of
chronic inflammatory diseases, neither including evaluation of sex, even if
clinical studies suggest sex-specific impact of rheumatic diseases on car-
diovascular risk.235,240

3.7.5 Anaemia
In a cohort study including over 17 000 patients undergoing elective per-
cutaneous coronary interventions, pre-procedural anaemia was associ-
ated with higher prevalence of bleeding and stroke, while post-
procedural anaemia had higher incidence of death, MI, target vessel re-
vascularization, bleeding, and major adverse cardiovascular events.
However, no sex-related differences in outcome were found in anaemic
patients compared to non-anaemic patients of either sex.223

3.8 Cancer
Oncological patients are susceptible to experience CVD,240,241 due to the
clustering of cardiovascular risk factors in cancer242,243 or cardiovascular
toxicity of anticancer therapies.244,245 Proposed mechanisms linking IHD,
sex hormones, and cancer are obtained from preclinical and cellular stud-
ies, for example by regulation of hypoxia-inducible factor 1a.246–249

Experimental models combining cancer with anti-cancer therapies are
needed beyond observational cohort studies. Although experimental can-
cer models exist, reflecting the sex bias in prevalence or severity of the
specific cancer,250,251 so far they only focused on tumour effects, without
addressing the occurrence of IHD. Mouse models of anti-cancer therapies
associated with cardiotoxicity, but not specifically with IHD, are available
and illustrate sex bias in susceptibility to cardiac toxicity.252

3.9 Special conditions exclusive for a
specific sex
3.9.1 Pregnancy, lactation, and contraceptives
IHD is usually rare in pregnancy, although it is becoming more common
for several factors, including lifestyle changes and increased maternal age,
associated with stress, smoking, diabetes, and chronic hypertension.253

MI in pregnancy or the early postpartum period is associated with higher
risk,253,254 while data on the effects of pregnancy after MI are scarce.255

Consistent with these clinical observations, hearts of late pregnant
rodents are more prone to IR injury compared to non-pregnant
rodents.256,257 Despite this, some cardioprotective mechanisms are acti-
vated during pregnancy. For example, the pregnancy-related hormone
relaxin has been shown to exert multiple beneficial cardiovascular effects
during MI, including suppression of arrhythmias and inflammation and re-
versal of fibrosis,258 while amniotic fluid stem cells play a cardioprotec-
tive role following MI.259 While higher parity is associated with a higher
risk of IHD later in life, breastfeeding duration inversely impacts on IHD
risk.260,261 Oxytocin, a main breastfeeding hormone, is cardioprotective
against IR injury, mainly through the activation of pro-survival path-
ways.262–264

Oral contraceptive therapies based on oestrogens are known to in-
crease thrombotic events, however, there is scant evidence related to
the adverse effects of contraception types among women with already
existing IHD.265,266 Moreover, little is known on the confounding effects
of contraceptives in women with comorbidities such as, for example,
obesity on cardiovascular risk.267

3.10 Comorbid diseases exclusive for a
specific sex
3.10.1 Pregnancy-related disorders
Women with a history of common pregnancy complications or
pregnancy-related disorders, including hypertensive disorders or gesta-
tional diabetes, peri-partum cardiomyopathy, and persistence of weight
gain after delivery are at increased risk for CVD later in life.268,269 Since a
large proportion of women worldwide become pregnant once or twice
over their lives,269 evaluation of pregnancy outcome and in general re-
productive factors may provide an unique and early opportunity to pre-
vent IHD in women.270 Abnormal placental development and function
underlie most pregnancy disorders, including spontaneous preterm
birth, foetal growth restriction, and preeclampsia. Even women between
45 and 55 years of age with former preeclampsia show severe subclinical
atherosclerosis.271 In addition to its crucial role in maternal and foetal
circulatory systems, the placenta is hormonally, metabolically, and immu-
nologically active.272 Several animal models involving rodents, guinea

Sex and comorbidities in ischaemic heart disease 373



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
pigs, sheep, and non-human primates have been useful to address the
role of placenta in foetal growth disorders, preeclampsia, or other ma-
ternal diseases during pregnancy.272–275 Using surgical, genetic, and phar-
macological approaches, animal models have been also developed to
recapitulate maternal symptoms of preeclampsia and other hypertensive
disorders of pregnancy,276 as well as gestational diabetes.277–279 To our
knowledge, combination of these systems with IHD models has never
been systematically attempted.

3.10.2 Endocrine-related conditions and disorders
3.10.2.1 Polycystic ovary syndrome. Women with polycystic ovary
syndrome are characterized by hyperandrogenism, infertility, and an
unfavourable cardiometabolic profile in early life.280 Data on IHD and
mortality in peri- and post-menopausal women with polycystic ovary
syndrome appear to be controversial, even if they seem to be at an ele-
vated risk.281–284 Available animal models of hyperandrogenism and
ovarian morphology changes can be used to investigate polycystic ovary
syndrome,285 and might be crucial to determine the molecular mecha-
nisms underpinning these effects.

3.10.2.2 Menopause. Similar to humans, rats and mice cease oestrus
cycling with ageing, but the age may vary with strain or other variables.
To investigate the mechanisms underlying menopause and pre-
menopause, 4-vinylcyclohexene diepoxide (VCD), a chemical toxin that
causes ovarian failure by targeting pre-antral follicles can be used.286,287

VCD treatment blocks the production of female ovarian hormones,
while production of androgens is preserved, representing a better model
to analyse menopause rather than the loss of all ovarian hormones as
would result from ovariectomy. VCD can be also administered to young
adult animals to mimic early ovarian failure. Timing of gonads removal in
animal models (indicated as castration if shortly after birth, prior to sex-
ual development, or gonadectomy if performed after puberty) may be
critical in the development or progression of IHD. Menopausal hormone
replacement therapies to prevent and treat symptoms of menopause
have a complex risk-benefit pattern as they may also modify the risk for
IHD in certain subpopulations of women.288,289 Sufficient clinical data for
individual risk-benefit considerations of these treatments are missing.290

3.10.2.3 Erectile dysfunction. Vascular erectile dysfunction is a strong
predictor of IHD, and cardiovascular evaluation of patients presenting with
erectile dysfunction is now recommended.291 Erectile dysfunction shares
common pathways and risk factors with IHD.292 Phosphodiesterase-5
(PDE5) inhibitors, usually reserved as treatments of erectile dysfunction
and pulmonary arterial hypertension, have been shown to reduce MI size
and suppress ischaemia-induced ventricular arrhythmias.293

3.10.2.4 Androgenetic alopecia. Alopecia has been associated with
an increased IHD risk and there appears to be a greater risk with degree
of baldness.294–296 Alopecia is also associated with an increased risk of
hypertension, hyperinsulinemia, metabolic syndrome, and dyslipide-
mia.294–296 The precise mechanisms underlying these effects are cur-
rently unknown and deserve further investigation.

4. Preclinical research to assess
sex-specific effects of comorbidities
in IHD: opportunities and challenges

Preclinical models are crucial to test hypotheses on sex differences in
cardiovascular research and to study the importance of specific signalling

cascades.297,298 Similar to humans, animal models display cardiac remod-
elling and sexually dimorphic characteristics with respect to IR injury.297

Here, mitochondria—which are mainly derived from the mother only—
play an important role in mediating IR injury and protection from it, but
also to explain the biology of sex differences.299,300 Experimental animal
studies have reported sex differences in various aspects of mitochondrial
function, some of which may explain, in part, the cardioprotection
against IHD observed in pre-menopausal women. Cardiac mitochondria
from female animals show decreased uptake of calcium,301,302 improved
respiratory function,303,304 less oxidative stress,303,305,306 greater resis-
tance to calcium-induced mitochondrial permeability transition pore
opening307,308 and less mitochondrial fragmentation,309 when compared
to mitochondria from male animals. Post-translational modification of
mitochondrial proteins (such as aldehyde dehydrogenase and a-ketoglu-
tarate dehydrogenase) modify reactive oxygen species handling and play
an important role in female cardioprotection.306

While animal studies are of utmost importance for a better under-
standing of the underlying causes for sex differences in IHD, current re-
search approaches present major limitations (summarized in Table 2).
To more easily allow translation of animal data, inclusion of males and
females and the use of a wider range of models, incorporating more real-
istic environmental and comorbid conditions are required.27,310

Moreover, unbiased studies can provide a general overview and avoid
reductionist approaches.311,312 Species-specificity issues and technical/
methodological caveats should be also considered, to allow a better
alignment of animal studies with IHD patients’ real world, and a focus on
human biology and therapeutic goals. Whenever possible, global or
tissue-specific knockout mice or overexpression of crucial genes in-
volved in the modulation of gonadal sex or sex hormones should be
considered to study the mechanisms underlying sex-dimorphic effects of
comorbidities on IHD. The following sections will address opportunities
and challenges related to these aims.

4.1 Use of male and female cells, tissues,
organs, or organisms
Although the study of both sexes individually is important to validate sci-
entific hypothesis or test novel therapeutic approaches, direct compari-
son of results in both sexes might present even greater advantages.
While most signalling pathways might be commonly shared in cells or tis-
sues derived from male or female animals, specific gene and protein ex-
pression or modifications might be affected by sex.313 Therefore,
focusing on only one sex might prevent the identification of important bi-
ological effects or promote their misinterpretation.

4.2 Comorbidity models
Several animal models are currently available to reproduce comorbid-
ities as well as sex-related conditions such as peri-menopause and meno-
pause, to test novel therapeutic interventions and health-promoting
strategies.314–316 Combination of these models might allow the identifi-
cation of sex-dimorphic effects of specific comorbid diseases on IR injury
and protection from it and their underlying mechanisms. Unfortunately,
not all comorbidities identified in humans can be currently mimicked in
animal models, and in almost all animal studies on the effects of comor-
bidities in IR injury and protection from it, adequate treatment of comor-
bidities by state-of-the-art therapy is lacking.27
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4.3 Sex-related candidate mechanisms
Once sex dimorphisms on the effects of comorbidities on IR injury and
protection from it are identified, the relative contributions of sex hor-
mones and sex chromosomes should be determined.317,318 Since pe-
ripheral or ‘activational’ effects of gonadal hormones cause the majority
of sex differences, gonadectomy is usually the first experiment per-
formed in this context, preferably in both sexes. Gonadectomy allows to
determine whether the sex difference depends on the secretion of go-
nadal hormones in adulthood. Then, further experiments will be needed
to determine relevant hormones and their downstream mechanisms of
action. In addition to the exogenous administration of sex hormones, oes-
trogen and androgen receptor knockout mice are also available.319–321

For example, oestrogen receptor-beta knockout mice have been widely
used to investigate the effects of these hormones on IHD.320,322–325

In case sex differences persist after gonadectomy, then permanent
changes caused by gonadal hormones eventually acting at early stages of
development (long-lasting, differentiating ‘organizational’ effects) need to
be assessed. If these effects also do not explain the sex difference, then
extra-gonadal mechanisms related to sex chromosomes might be con-
sidered. This simplified sequential experimental approach addresses es-
sential questions and provides the first steps for finding the mechanisms
explaining sex-biased effects of diseases in preclinical models. To deter-
mine whether a phenotype depends on gonadal hormones or sex chro-
mosomes different mouse models could also be used, including the Four
Core Genotypes and the XY* mouse model (advantages and limitations
have been previously reviewed elsewhere).317,326

4.4 Species differences
Results obtained from animal species may not translate directly to
humans for several reasons. Firstly, the frequency of oestrous cycle in fe-
male experimental animals is species dependent. In particular, rodents
present different duration of oestrous cycle and very different oestrogen
levels, they are poly-ovulatory while women are mono-ovulatory.
Moreover, although the initial stages of follicular growth seem to be
comparable between humans and rodents, differences in the later stages
cannot be excluded.327 Among small mammals, mice are the most com-
monly used because of the possibility to perform in vivo genetic modifica-
tions.328 As outlined above, mice also allow the manipulation of the
hormonal state and specific sex-chromosome genes and thus to discrimi-
nate between sex chromosomes, gonadal status, and hormonal effects.28

Rats have also been used to study sex differences. However, oestra-
diol levels do not fall as low in female rats after cessation of oestrous

cycling as in women following menopause, and this represents a critical
issue when using rats as a model of menopause.329 In addition, remark-
able differences have been described after MI between mice and rats,
when comparing males and females.330,331

In large animals provided by commercial suppliers (in particular pigs),
the presence of gonads should be confirmed, since some male animals
may be castrated at birth. In other cases, animals might be sexually imma-
ture at the time of study (for example piglets smaller than 100 kg used in
research), making extrapolation of data to adult animals problematic.
Moreover, mostly female pigs are used for studies of IHD due to easier
handling of these animals.332 Finally, while preclinical models may identify
biological sex differences when they exist, the complex social, psycho-
logical, environmental, community factors, and constraints leading to
gender peculiarities are impossible to examine in animal models.

4.5 Technical caveats
The bias deriving from the preferential use of only animals of one sex is
often based on practical rather than scientific concerns. Since in many
fields there is a significantly larger body of literature and data sets on
male mice, this further encourages the use of this sex in preclinical stud-
ies. In addition, male mice are larger and easier to be surgically manipu-
lated, and they lack oestrous cycles. In contrast, females are smaller
(requiring lower weight-adjusted drug dosages), less aggressive, easier to
handle, and they generally are less expensive. However, the use of fe-
male mice with synchronized oestrus cycles strongly complicates re-
search design.

Although most primary or stabilized cell lines are derived from ani-
mals of unknown sex, the sex of the cell/tissue donor can be determined
identifying specific fragments of the X and Y chromosomes. With re-
spect to cardiomyocyte-like cell lines, H9C2 are rat female myoblasts,
while HL-1 are myocyte-like cells from female mice. In addition, it is im-
portant to consider the hormonal environment of cultured cells, in par-
ticular culture media composition, since it might contain sex steroid
hormones and in vitro exposure of cells to hormones may affect cellular
pathways/signals of interest over several passages. Conversely, charcoal
treatment could be used to eliminate or reduce hormones levels.

Sex steroid hormones initiate rapid actions that do not require gene
transcription (non-genomic actions) as well as effects on gene transcrip-
tion (genomic actions). Thus, duration of hormone exposure is a critical
consideration in study design. Moreover, since systemic actions of hor-
mones might significantly affect hemodynamic state, the use of in vivo ani-
mal models followed up by isolated heart perfusion studies might be

Table 2 Major limitations of current research approaches to investigate the role of sex and comorbidities in IHD

• Mechanistic preclinical studies investigating sex-dimorphic aspects highlighted by clinical studies are rare.
• IHD research studies are rarely combined with experimental models reproducing major comorbidities, and the role of sex is usually neglected.
• Methodological information on age/sex/hormonal status of the research material (cells/tissue/organs) or animals is often incomplete in full research

papers, hampering comparisons, and reproducibility.
• Simultaneous comparison of both sexes is rarely performed in preclinical studies.
• Sexual maturity, parity, or reproductive senescence of experimental animals are usually under-evaluated in preclinical research.
• Castration/gonadectomy or exogenous administration of hormones is rarely employed to assess the role of sex on specific intracellular signalling

pathways.
• Due to species specificities, results obtained from animal studies may not be translated directly to humans.
• Complexity, duration, and costs.
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helpful to eliminate in vivo confounding factors related to extracardiac he-
modynamic, particularly in the pregnancy state.

Several conditions related to animal feeding, housing, or breeding
need accurate evaluation. Retired breeder females may be used for stud-
ies of ageing, but this approach has some limitations, since it is currently
unknown whether presence and number of previous pregnancies can af-
fect over time cardiovascular function. Thus, comparisons between mul-
tiparous animals and age-matched nulliparous females or males might be
inaccurate.

Housing conditions, including light/dark cycles, temperature, absence
of vibrations, or external noise, are crucial to maintain oestrous cycling
in female rats and mice. Females housed together frequently synchronize
their cycles. Disruption of sleep/wake cycles, isolation, lack of physical
activity, or handling conditions may increase stress imposed on animals,
influence sex hormone-related pathways and therefore should be taken
into account. Finally, chow composition and the possible presence of
phytoestrogens should be ruled out.

4.6 Documentation, costs, and duration of
research
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines
for reporting animal research propose to include sex of the animals
among the items to be described as the minimum information in all scien-
tific publications.333 Similarly, revised recommendations for the conduct,
reporting, editing, and publication of scholarly work in medical journals
clearly report the importance of describing variables of the source popu-
lation including sex.334 However, these recommendations are not always
fulfilled, even if requested by most scientific journals.

While preliminary studies can identify sex-dependent effects of
comorbidities on IHD, only subsequent more complex, long, and costly
studies may identify the precise mechanisms underlying observed sexual
dimorphisms. Combination of several available animal models will re-
quire time and a learning curve to identify the best conditions and seg-
ments of investigation. It is possible that new animal models will be
needed, and these requirements might further increase costs and pro-
long duration of research.

Furthermore, experimental preclinical studies involving ageing or
pregnant animals usually present several ethical and regulatory difficulties
in most countries, and duration of research in these cases is usually lon-
ger. In addition, although studies in non-human primates represent a
pre-requisite of studies in humans, costs and hurdles related to project
managing are even higher and make them prohibitive for most basic sci-
ence investigators and small companies developing novel therapies for
IHD. These considerations should be taken into account by investigators,
scientific societies and funding agencies in order to provide financing
through dedicated calls or considering rewards/bonuses/incentives cov-
ering higher costs and longer duration of research.

5. Conclusions and
recommendations

IHD is an epidemic and global disease affecting men and women, fre-
quently associated with multi-morbidity in the adult and ageing popula-
tion. Within scientific and medical communities, there is now increasing
awareness that many IHD mechanisms differ between sexes, and sex dif-
ferences in IHD risk factors and types of IHD have been identified.

Despite this evidence, studies specifically investigating sex-specific impli-
cations of comorbidities in IHD are largely missing at all levels of re-
search. Extremely narrowly focused studies may bias research directions
and eventually miss essential aspects of human disease, including sex-
related differences and their relation to comorbid disease. To overcome
these hurdles, it would be necessary to account for sex, comorbidities,
and their treatments in a virtuous circle tightly linking preclinical, transla-
tional, and clinical research (schematically illustrated in Figure 2).
According to this hypothetical model, relevant clinical questions could
be addressed through available preclinical models, investigating the pres-
ence of sexual dimorphisms and their underlying mechanisms. Next, the
relevance of obtained results should be tested in larger animals or using
human-derived cells or tissues, in order to finally translate results into
large real-world populations of IHD patients.

Based on these considerations, the ESC WG on Cellular Biology of
the Heart and invited experts provide the following Recommendations
(Table 3):

(1) Some confusion regarding sex or gender nomenclature still exists in the
literature, and the two terms are sometimes incorrectly considered in-
terchangeable. Proper terminology should be always used, particularly
in preclinical research involving animals, cells and tissues that can ex-
plore biological mechanisms related to sex, but are unable to address
the complex socio-cultural phenomena underlying gender differences.

(2) To test whether sex is an independent biological variable, experimental
protocols should include both sexes, possibly analysed simultaneously
(not separately or under different conditions or timing). If not possible,
results should be cautiously interpreted, or this should be highlighted as
a study limitation.

(3) In order to facilitate comparisons between published data, all relevant
experimental details (including age, strain, sex, anaesthesia, model, tim-
ing of intervention) should be clearly provided, preferentially in parts of
the text searchable in databases (e.g. title and abstract). Publishers and
Editors should require a report on sex and age of experimental animals
or cell lines included in full papers of biomedical research.

(4) Since several preclinical models are currently available to reproduce
most conditions, risk factors and comorbid diseases that might affect
IHD risk and prognosis differently according to sex, an interdisciplinary
approach could be useful, combining IHD and comorbidities preclinical
models in male and female animals.

(5) Reviewers of grant applications and manuscripts for studies addressing
IHD and the different comorbidities should consider whether a poten-
tial sex-specific effect has been accounted for. If the Authors propose
to generalize results based on investigations in only one sex, this should
be very well motivated and potential limitations should be discussed.

(6) Educational programmes in cardiology and basic cardiovascular re-
search should include elements encouraging students and young doc-
tors to be aware of the sex differences in biology and medicine.

(7) Considering the widespread, global presence of IHD and multimorbid-
ity in the adult and ageing population, research should not be limited
only to the most common comorbidities in IHD but address a wider
spectrum of diseases present in an adult population of both sexes and
their relative comedications. Such research adds to the basic under-
standing of IHD independently from the role of sex and comorbidities.

(8) Research addressing sex-specific effects of comorbidities in IHD is
expected to have great scientific and clinical impact, but presents sev-
eral technical, methodological, economical, and scientific challenges.
These considerations should be taken into account by Investigators,
Scientific Societies and funding agencies in order to provide financing
through dedicated calls or considering rewards/bonuses/incentives cov-
ering higher costs and longer duration of research to reach this goal.
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Figure 2 Proposed flow-chart to investigate the role of sex and comorbidities in IHD in a virtuous circle tightly linking preclinical, translational, and clin-
ical research.

Table 3 Recommendations

1 Correct nomenclature should be always used when describing sex- or gender-related differences in IHD.

2 Experimental studies investigating IHD should include subjects from both sexes and, if not possible, results should be cautiously interpreted.

3 For any observed sexual dimorphic phenotype in IHD, it should be determined whether it is dependent on the hormonal state and if it is specific to or

modified by genetic sex.

4 All relevant experimental details including age, strain, and sex should be clearly provided, preferably also in the searchable parts of the MS, for exam-

ple, abstract and title.

5 Combination of IHD and comorbidities in preclinical models in male and female animals should be encouraged.

6 Peer-review of studies investigating IHD and comorbidities should always consider whether potential sex-specific effects have been accounted for.

7 Educational programmes in Cardiology and basic cardiovascular research should include elements addressing sex differences in Biology and Medicine.

8 Research should include a wide spectrum of diseases present in an adult population of both sexes and consider the sex-related effects of

comedications.

9 Scientific Societies and Funding agencies should provide financing through dedicated calls or consider rewards/bonuses/incentives covering higher

costs and longer duration of research in this area.
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