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Abstract

Motivation: Although gene set enrichment analysis has become an integral part of high-throughput gene expression data
analysis, the assessment of enrichment methods remains rudimentary and ad hoc. In the absence of suitable gold standards,
evaluations are commonly restricted to selected datasets and biological reasoning on the relevance of resulting enriched
gene sets.

Results: We develop an extensible framework for reproducible benchmarking of enrichment methods based on defined
criteria for applicability, gene set prioritization and detection of relevant processes. This framework incorporates a curated
compendium of 75 expression datasets investigating 42 human diseases. The compendium features microarray and
RNA-seq measurements, and each dataset is associated with a precompiled GO/KEGG relevance ranking for the
corresponding disease under investigation. We perform a comprehensive assessment of 10 major enrichment methods,
identifying significant differences in runtime and applicability to RNA-seq data, fraction of enriched gene sets depending on
the null hypothesis tested and recovery of the predefined relevance rankings. We make practical recommendations on how
methods originally developed for microarray data can efficiently be applied to RNA-seq data, how to interpret results
depending on the type of gene set test conducted and which methods are best suited to effectively prioritize gene sets with
high phenotype relevance.
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Introduction

The goal of genome-wide gene expression studies is to discover
the molecular mechanisms that underlie certain phenotypes
such as human diseases [1]. For this purpose, expression changes
of individual genes are typically analyzed for enrichment in
functional gene sets. These sets may represent molecular func-
tions and biological processes as defined by the Gene Ontology
(GO) [2], pathway databases such as KEGG [3] and Reactome [4] or
experimentally derived gene sets such as available in the MSigDB
[5]. The two predominantly used enrichment methods are (i)
overrepresentation analysis (ORA), testing whether a gene set
contains disproportionately many genes of significant expres-
sion change, and (ii) gene set enrichment analysis [7, GSEA],
rather testing whether genes of a gene set accumulate at the
top or bottom of the full gene vector ordered by direction and
magnitude of expression change. Both methods are the foun-
dation of many popular enrichment tools including DavID [8],
Enrichr [9] and clusterProfiler [10]. However, the term GSEA
now encompasses a general strategy implemented by a wide
range of methods [11]. Those methods share a common goal,
although approaches and statistical models vary substantially.
There are various ways by which the existing methods can be
categorized. In their seminal paper, Goeman and Bithlmann [6]
categorize enrichment methods based on the underlying null
hypothesis as ‘competitive’ or ‘self-contained’. A ‘competitive’
method compares a gene set against the background of all
genes not in the set, assessing whether the level of differential
expression (DE) in the gene set exceeds the background level.
A ‘self-contained’ method analyzes each gene set in isolation,
assessing DE of the gene set without comparing to a background
[12, for a review]. Khatri et al. [13] took a different approach
by dividing methods along the timeline of development into
three generations: (i) ‘overrepresentation’ methods such as ORA,
which first reduce the full expression matrix to genes passing
a threshold for DE, and subsequently concentrate analysis on
the list of differentially expressed genes, (ii) ‘gene set scoring’
methods such as GSEA, which first compute DE scores for all
genes measured, and subsequently compute gene set scores by
aggregating the scores of contained genes and (iii) ‘network-
based’ methods, which evaluate measures of DE in the context of
known interactions between genes as defined in signaling path-
ways and gene regulatory networks [14]. Methods can be further
categorized based on whether they test a ‘directional’ hypothesis
(genes in the set tend to be either predominantly up- or down-
regulated) or a ‘mixed’ hypothesis (genes in the set tend to be
differentially expressed, regardless of the direction); whether
they focus on binary case-control comparisons or also support
more complex experimental designs; and, relatedly, whether
they analyze expression differences of gene sets between sample
groups or whether they score gene set activity levels for single
samples [15, 16]. Given the variety of existing methods with
individual benefits and limitations, a major question is thus
which method is best suited for the enrichment analysis (EA).

As a consequence, many methods have been published claiming
improvement, especially with respect to ORA and the original
GSEA method. This claim is typically made based on (i) simulated
data, specifically designed to demonstrate beneficial aspects of
anew method, and (ii) experimental datasets, for which however
the truly enriched gene sets are not known. As the evaluation is
thus typically based on self-defined standards including only a
few methods, Mitrea et al. [17] identified the lack of gold stan-
dards for consistent assessment and comparison of enrichment
methods as a major bottleneck. Steps toward an objective assess-
ment are recent independent studies [18-22], which evaluated
a partly overlapping selection of enrichment methods on (i)
simulated data, modeling certain aspects of experimental data
[18]; (ii) experimental data, arguing on the biological relevance
of the enriched gene sets [19]; or (iii) a combination of both data
types [20-23]. As the standard of truth is hard to establish for
experimental data, several approaches have been suggested to a
priori define target gene sets for specific datasets. For example,
Naeem et al. [24] suggested an assessment based on known
target gene sets of transcription factors for expression datasets
where those transcription factors are overexpressed or knocked
out as available for Escherichia coli and Saccharomyces cerevisiae.
On the other hand, Tarca et al. [25, 26] collected 42 microarray
datasets investigating human diseases for which a specific KEGG
target pathway exists. This strategy has been adapted by several
recent enrichment evaluation studies [27-31]. However, there is
little agreement among studies on which methods to prefer,
with most studies concluding with a recommendation for a
consensus/combination of methods [21, 23, 24, 29]. Although
this is valuable in practice, existing assessments (i) were mostly
based on microarray data, and it is not clear whether results hold
equally for RNA-seq data, (ii) do not represent the wide range of
existing methods and (iii) are often cumbersome to reproduce for
additional methods, as this involves considerable effort of data
processing and method collection.

Methods
Construction of the benchmark compendia

As illustrated in Figure 1, the two pre-defined benchmark
compendia consist of 42 microarray datasets collected by
Tarca et al. [25, 26, GEO2KEGG] and 33 RNA-seq datasets
from The Cancer Genome Atlas [32, TCGA|. These datasets
investigate 42 human diseases, including 35 cancer types
(Supplementary Tables S1 and S2). Gene set relevance rankings
for each disease were constructed by querying the MalaCards
database [33]. MalaCards scores genes for disease relevance
based on experimental evidence and co-citation in the literature.
Per-gene relevance was summarized across GO and KEGG gene
sets by subjecting disease-relevant genes for each disease to the
GeneAnalytics [34] web tool. GeneAnalytics computes com-
posite relevance scores for each gene set based on the relevance
scores of the contained genes, weighted by the proportion of
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Figure 1. Benchmark setup. The benchmark framework incorporates a pre-defined RNA-seq panel (left), gene set relevance rankings (center) and a microarray
panel (right). The RNA-seq panel investigates 33 cancer types across 33 datasets from TCGA [32], which are accessed through the curatedTcGaData package.
The microarray panel investigates 19 human diseases across 42 datasets collected by Tarca et al. [25, 26], which are available in the KEGGdzPathwaysGEO and
KEGGandMetacoreDzPathwaysGEO packages. Gene set relevance rankings for both data panels are constructed by (i) querying the Malacards database [33] for each
disease investigated and (ii) subjecting resulting disease genes to GeneaAnalytics [34], which yields relevance rankings for GO-BP terms and KEGG pathways. EA
methods selected for benchmarking are carried out across datasets of the data panels, yielding a gene set ranking (EA ranking) for each method on each dataset. The
resulting EA rankings for each dataset are then benchmarked against the precompiled relevance rankings for the corresponding disease investigated.

Table 1. Gene set analysis methods under benchmark

Method Author Year Citations! RNA-seq Gene statistic? Set statistic Significance estimation
ORA 3 3 3 v user-defined DE/ GS overlap Fisher’s exact test
GLOBALTEST Goeman et al. [68] 2004 983 - - Q statistic Empirical Bayes GLM
GSEA Subramanian et al. [7] 2005 16 730 - tsoN KS statistic Sample permutation
SAFE Barry et al. [54] 2005 350 - Student’s t Wilcoxon rank sum Sample permutation
GSA Efron and Tibshirani [62] 2007 798 - tsam Maxmean Sample permutation
SAMGS Dinu et al. [69] 2007 270 - tsaM Hotelling’s T2 Sample permutation
ROAST Wu et al. [70] 2010 253 v tMOD Weighted mean Rotation
CAMERA Wu and Smyth [66] 2012 246 v tMoD tige Two-sample t-test
PADOG Tarca et al. [25] 2012 71 - [tmoD Weighted mean Sample permutation
GSVA Hénzelmann et al. [71] 2013 471 v - KS statistic Empirical Bayes GLM

See Supplementary Table S3 for additional methodological differences including directionality, supported experimental designs and whether a pre-ranked execution
mode is available. Abbreviations: DE, differential expression; GS, gene set; KS, Kolmogorov-Smirnov; GLM, generalized linear model.

1Google Scholar, May 2019.

2Notation for specific modifications of the regular t-statistic: t-like signal-to-noise ratio tgon [59]; SAM’s tgan accounting for small variability at low expression levels
[72]; moderated t-statistic tyjop [38]; and extended t-statistic accounting for inter-gene correlation tig¢ [66].
3Popular implementations are available in DAVID [8] and PathwayStudio [67] among many others [11].

relevant genes and the number of data sources supporting the
relevance of genes in the gene set (Supplementary Methods
S1.3).

to compute moderated log2 read counts. Using edgeR’s estimate
of the common dispersion ¢, the prior.count parameter of the
cpm function was chosen as 0.5/¢ as previously suggested [36,
37]. On the other hand, methods were adapted as previously
described [29] to use 1limma/voom [38, 39], edgeR or DESeq2 [40]
for computation of the per-gene statistic in each permutation of
sample labels.

Enrichment methods

Enrichment methods selected for assessment are listed in
Table 1. Methods were carried out as implemented in the
EnrichmentBrowser package [29]. See Supplementary Methods
S1.1 for an overview of main features and implementation
details of each method. Sample permutation methods originally
developed for microarray data were assessed in two different
ways on RNA-seq data (see column ‘RNA-seq’ in Table 1). As
these methods compute t-like statistics for each gene in each
permutation of the sample labels, we (i) carried these methods
out after applying a variance-stabilizing transformation (VST) or
(ii) adapted methods to employ RNA-seq tools for computation
of the per-gene DE statistic in each permutation. For the VST we
used the cpm function implemented in the edger package [35]

Gene set collections

Gene set collections were defined according to human KEGG
pathways and GO terms of the biological process (GO-BP)
ontology using the function getGenesets from the
EnrichmentBrowser package. Collections were restricted to
gene sets with a minimum and maximum size of 5 and 500,
respectively. This yielded 323 KEGG gene sets and 4631 GO-
BP gene sets with a median gene set size of 72 and 11,
respectively.
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Runtime

Elapsed runtime was evaluated using the R function system. time
on an Intel Xeon 2.7 GHz machine.

Statistical significance

The fraction of statistically significant gene sets returned
by an EA method when applied to a specific dataset was
evaluated with and without multiple testing correction. A
nominal significance level of 0.05 was used when not correcting
for multiple testing. Multiple testing correction was carried
out using the method from Benjamini and Hochberg (BH) [41]
with an FDR cutoff of 0.05. ‘Type I error rate’ was evaluated
by randomization of the sample labels on the dataset from
[42]. The dataset contains microarray measurements of acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)
patients and is available from Bioconductor in the golubEsets
data package [43]. Probe level measurements were normalized
using the vsn2 function of the vsn package [44]. Normalized
data were summarized to gene level using the probe2gene
function of the EnrichmentBrowser package. The type I error
rate was estimated for each enrichment method by shuffling
the sample labels (ALL vs. AML) 1000 times and assessing in
each permutation the fraction of gene sets with P < 0.05.
‘Random gene sets’ of increasing set size were analyzed to
assess whether enrichment methods are affected by gene
set size. We therefore sampled 100 random gene sets of
defined size s ¢ {5,10,25,50, 100,250,500} and assessed the
fraction of significant gene sets for each enrichment method
when applied to the Golub dataset using the true sample
labels.

Phenotype relevance

To evaluate the phenotype relevance of a gene set ranking Ry
obtained from the application of an EA method m to an expres-
sion dataset d investigating phenotype p, we assess whether the
ranking accumulates phenotype-relevant gene sets at the top.
Therefore, we first transform the ranks from the EA to weights—
where the greater the weight of a gene set, the more it is ranked
toward the top of Ry).

Transformation of gene set ranks into weights

EA methods return gene sets ranked according to a ranking
statistic S, typically the gene set P-value or gene set score. If the
number of gene sets investigated is Ngs, then absolute ranks r,
run from 1 to Ngs. Relative ranks

TR =7a/Ngs (2)
can then be transformed into weights w € [0, 1] by
w=1-rp (2)

Intuitively, w approaches 1 the more a gene set is ranked toward
the top of the ranking. In the presence of ties, we calculate
relative ranks

1R =P(S=>5) (3)

as the fraction of gene sets with a value of the ranking statistic
atleast as extreme as observed for the gene set to be ranked [29].
Note that r; = 1 if there are no ties present in the ranking.

Relevance score of an EA ranking

To assess the similarity of Ry, with the corresponding relevance
ranking R, for phenotype p, we compute the relevance score

Ngs
K@) = D WHSy(D), (4)

i=1

where w(i) is the weight of gene set i in Ry, and S,() is the
relevance score of gene set i in R,. Intuitively, the greater the
relevance score S, of a gene set, the more it is considered
relevant for phenotype p. Also, the greater the relevance score
Xma@ accumulated across the EA ranking, the more similar is the
EA ranking Ry with the corresponding relevance ranking R,. It
can further be shown that the relevance score X, has certain
preferable properties over using a standard correlation measure
or a standard classification performance measure such as the
area under the ROC curve (Supplementary Methods S1.4).

Empirical relevance score distribution

To assess whether the observed relevance score Xpq, signifi-
cantly exceeds scores of a method placing the gene sets ran-
domly along the ranking, we analogously compute relevance
scores for random rankings of the gene sets and determine
the proportion of random rankings achieving a score equal or
greater than the observed score. To assess the significance of
the observed relevance score while preserving ranking depen-
dencies that are imposed by structural overlaps between gene
sets, we also compute relevance scores for rankings obtained
from the application of method m to dataset d with permuted
sample labels and calculate the P-value as for a permutation test.

Theoretical optimum

The observed relevance score Xpq can be used to compare
phenotype relevance of two or more EA methods when applied
to one particular dataset. However, as the number of gene sets
in the relevance rankings can differ between phenotypes, com-
parison between datasets is not straightforward as resulting
relevance scores might scale differently (Supplementary Figures
512 and S13). Therefore, we compute the theoretically optimal
score O, for the case Rygy = R, in which the EA ranking is
identical to the relevance score ranking. The ratio

}_{m(d) = Xm(d)/op (5)

between observed and optimal score can then be used when
comparing scores obtained for several methods applied across
multiple datasets. This allows one to assess whether certain EA
methods tend to produce rankings of higher phenotype rele-
vance than other methods when applied to a compendium of
datasets.

Executable benchmark system

The GSEABenchmarkeR package is implemented in R [45] and
is available from Bioconductor [46] under http://bioconductor.
org/packages/GSEABenchmarkeR. The package allows one to (i)
load specific pre-defined and user-defined data compendia, (ii)
carry out DE analysis across datasets, (iii) apply EA methods to
multiple datasets and (iv) benchmark results with respect to the
chosen criteria. The individual components of the benchmark
system are described in Supplementary Methods S1.5.


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz158#supplementary-data
http://bioconductor.org/packages/GSEABenchmarkeR
http://bioconductor.org/packages/GSEABenchmarkeR
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz158#supplementary-data

Table 2. Gene set analysis tools

Reproducible GSEA benchmarking | 549

Tool Author Year Citations?® Availability Gene sets Methods?
WEBGESTALT Zhanget al. [73] 2005 1423 Web server GO, KEGG, +20 more ORA, GSEA
GOSTATS Falcon and Gentleman [74] 2007 1437 R package GO ORA
G:PROFILER Reimand et al. [75] 2007 534 Web server GO, KEGG, +7 more ORA
GENETRAIL Backes et al. [76] 2007 360 Web server GO, KEGG, +28 more ORA, GSEA
DAVID Huang et al. [8] 2009 19 569 Web server GO, KEGG, +38 more ORA
GORILLA Eden et al. [77] 2009 1881 Web server GO ORA
TOPPGENE Chen et al. [78] 2009 1200 Web server GO, KEGG, +45 more ORA
CLUSTER-PROFILER Yu et al. [10] 2012 1305 R package GO, KEGG, +8 more ORA, GSEA
PANTHER Mi et al. [79] 2013 1405 Web server GO, +2 more ORA, GSEA
ENRICHR Chen et al. [9] 2013 1246 Web server GO, KEGG, +33 more ORA

1Google Scholar, July 2019.
2Detailed summary of implemented methods in Supplementary Methods S1.2.

Research reproducibility

Results are reproducible using R and Bioconductor. Code
is available from GitHub (https://github.com/waldronlab/
GSEABenchmarking).

Results

We present the GSEABenchmarkeR R/Bioconductor package,
which implements an executable benchmark framework for the
systematic and reproducible assessment of gene set enrichment
methods (Figure 1). The package facilitates efficient execution
of a representative and extendable collection of EA methods on
comprehensive experimental data compendia. The compendia
are curated collections of microarray and RNA-seq datasets
investigating human diseases (mostly specific cancer types),
for which disease-relevant gene sets have been defined a priori.
Consistently applied to these datasets, methods can then be
assessed with respect to computational runtime, statistical
significance and phenotype relevance, i.e. whether methods
produce gene set rankings in which phenotype-relevant gene
sets accumulate at the top. In the following, we use the package
to assess the performance of 10 major EA methods listed in
Table 1. These methods represent a decade of developments
and are well established as indicated by their citation frequency.

Scope of the benchmark

We emphasize that the goal of our benchmark is a quantitative
assessment of the performance of EA ‘methods/algorithms’ as
opposed to a comparison of EA ‘tools’, typically facilitating the
execution of one or more EA methods on a number of existing
gene set databases with different options for result exploration
and visualization (Table 2). We note that the methods in
Table 1 are set-based and thus ignore known interactions
between genes. We also note that benchmarking with the
GSEABenchmarkeR package extends to network-based methods
that incorporate known interactions (Supplementary Methods
S1.6). However, as the assessment of network-based methods
additionally requires evaluating the choice of network [14, 47],
we decided to deal with these methods in a separate manuscript.
As the universal inputs for all benchmarked methods, we
consider (i) the full genes x samples expression matrix and (ii) a
binary grouping vector that defines two sample groups in a case-
control design, optionally supplemented by a blocking vector for
paired samples or sample batches. We note that several methods
also provide an execution mode that allows analysis of pre-

ranked list of genes, which is useful for scenarios where the full
expression matrix is not available, or where a gene list of interest
has been derived from other genomic high-throughput assay
types. On the other hand, we concentrate the benchmark on
the majority of methods analyzing differences between sample
groups. Enrichment methods scoring gene signature activities
for single samples [15, 16], which can thus not be meaningfully
compared to methods analyzing differences between sample
groups, are not further considered. An exception is GSVA which
applies single sample scoring of gene sets but can be used
in conjunction with DE tools such as limma [38] to test for
differences in gene set activity between sample groups. We start
by exploring the benchmark compendia for sample size and
DE and subsequently describe how EA methods developed for
microarray data can be adapted for application to RNA-seq data.

Benchmark compendia and gene set collections

As illustrated in Figure 1, the two pre-defined benchmark com-
pendia consist of 42 microarray datasets collected from GEO
[48] by Tarca et al. [25, 26, GEO2KEGG] and 33 RNA-seq datasets
from TCGA [32]. These datasets investigate 42 human diseases,
including 35 cancer types (Supplementary Tables S1 and S2).
When analyzing datasets of the benchmark compendia for sam-
ple size and DE, we find them to display a representative range
(Supplementary Figure S1). The 42 datasets of the GEO2KEGG
microarray compendium range from a minimum of 4 cases and
4 controls to a maximum of 91 cases and 62 controls. Using the
typical DE thresholds of (i) absolute log2 fold change >1 and (ii)
BH [41]-adjusted P-value < 0.05, we find several datasets of the
GEO2KEGG microarray compendium with not a single DE gene,
and at the other extreme, datasets with up to 73% DE genes
(according to the P-value criterion; up to 15% satisfying both
criteria). For this study, we restrict the analysis of the TCGA RNA-
seq compendium to cancer types for which at least five adjacent
normal tissue samples are available and take the pairing of
samples (tumor vs. adjacent normal) into account. This yields
15 cancer types/datasets ranging from a minimum of 9 patients
to a maximum of 226 patients, for which both tumor and adja-
cent normal samples were available (Supplementary Figure S1).
Datasets of the TCGA RNA-seq compendium display relatively
high levels of DE, with a range of 34-79% DE genes (according
to the P-value criterion; 9-29% satisfying both criteria). We also
explored the gene set size distribution in human KEGG pathways
and GO-BP ontology (Supplementary Figure S2). When restricted
to gene sets with a minimum of 5 genes and a maximum of
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500 genes (the typical EA thresholds), we find that (i) there are
considerable more GO-BP sets than KEGG sets (4631 vs. 323)
and (i) GO-BP gene sets tend to be smaller (median set size:
11 vs. 72).

Applicability to RNA-seq data

Popular methods for DE analysis require the raw RNA-seq read
counts as input to preserve the sampling characteristics of the
data [35, 39, 40]. However, frequently used tools for transcript
abundance estimation report transcripts per million (TPMs) [49]
or fragments/reads per kilobase of transcript per million mapped
reads (FPKMs/RPKMs) [50] that already account for differences
in gene length and sequencing depth. As FPKM/RPKM is incon-
sistent between samples and can be directly converted to TPM
[49, 51], we consider raw read counts or TPMs as input for the
EA methods under benchmark. Due to the different statistical
models and implementations of the EA methods (Table 1), it
is necessary to distinguish between (i) methods that work on
the list of DE genes (ORA), which can be applied without mod-
ification assuming that gene length bias is controlled for [52],
(ii) methods that distinguish between a microarray mode and
an RNA-seq mode that assumes that the raw read counts are
provided (CAMERA, ROAST and GSVA) or (iii) methods that incor-
porate sample permutation and recalculation of t-like statistics
for each gene (GSEA, SAFE, GSA, SAMGS and PADOG). Methods
of the third type require either a VST [37, 39] or incorporation
of RNA-seq tools such as voom/limma, edgeR or DESeqg2 for
calculation of the per-gene statistic in each permutation [29, 53].
Incorporation of RNA-seq tools is straightforward for the per-
mutation framework implemented in SAFE [54] as it allows one
to provide user-defined local (per-gene) and global (gene set)
test statistics. For the following assessment of EA methods, we
thus also analyze the differences of using raw counts or VST-
transformed counts as input. However, for the datasets of TCGA
RNA-seq compendium, we observe almost identical fold changes
and DE P-values when using either (i) voom/1imma on raw read
counts or TPMs or (ii) 1imma on VST-transformed counts or log
TPMs (Supplementary Tables S4 and S5).

Runtime

The average per-dataset runtime in the microarray compendium
using GO-BP gene sets (Figure 2) ranged from a minimum of 7.7
s (CAMERA) to a maximum of 32.6 min (GSEA). Closer inspection
reveals three groups of methods reflecting aspects of method-
ology and implementation (Table 1). CAMERA, ORA and GLOB-
ALTEST use simple parametric tests for gene set significance
estimation, which results in fast runtimes. The other meth-
ods are computationally more intensive as they use sample
permutation (SAFE, SAMGS, GSA, PADOG and GSEA) or Monte
Carlo sampling (GSVA and ROAST). The most computationally
expensive are GSA, PADOG and GSEA. Runtimes on the TCGA
RNA-seq compendium and when using KEGG gene sets dis-
played a similar pattern (Supplementary Figure S3). However,
we observed significantly increased runtimes when carrying out
methods with dedicated RNA-seq mode on raw read counts
(Supplementary Figure S4). This is especially apparent for the
case of incorporating RNA-seq tools in the SAFE framework,
where runtime also depends on which RNA-seq tool is used
(voom/limma < edgeR « DESeq2).
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Figure 2. Runtime. Elapsed processing times (y-axis, log-scale) when applying
the enrichment methods indicated on the x-axis to the 42 datasets of the
GEO2KEGG microarray compendium. Gene sets were defined according to GO-
BP (N = 4631). Computation was carried out on an Intel Xeon 2.7 GHz machine.
Runtimes for the TCGA RNA-seq compendium and when using KEGG gene sets
are shown in Supplementary Figure S8.

Statistical significance

Enrichment methods conduct a hypothesis test for each gene
set under investigation. The underlying null hypothesis can be
characterized as either (i) self-contained: no genes in the set
of interest are DE or (ii) competitive: the genes in the set of
interest are at most as often DE as the genes not in the set [6]. As
typically many gene sets are tested, multiple testing correction
is needed to account for type I error rate inflation [55]. Using the
popular BH method [41] for multiple testing correction and an
adjusted significance level of 0.05, we find EA methods to report
drastically different fractions of gene sets as statistically signif-
icant (Figure 3). This is tied to the type of null hypothesis tested,
with self-contained methods reporting much larger fractions of
significant gene sets. Conversely, we find several competitive
methods (SAFE, GSEA, GSA and PADOG) to frequently report not
a single significant gene set and two self-contained methods
(GLOBALTEST and SAMGS) to frequently report all gene sets
tested as significant. To ensure correct application of methods,
we applied them in a controlled set-up (Figure 4). We therefore
used the well-studied microarray dataset of [42] that contrasts
the transcriptome profiles of AML and ALL patients. By shuf-
fling sample labels (AML vs. ALL) 1000 times and assessing in
each permutation the number of GO-BP gene sets with P <
0.05, we find average type I error rates controlled at the 5%
level (Figure 4a). However, self-contained methods displayed in
certain random assignments of the sample labels substantially
elevated type I error rates. This effect was more pronounced for
KEGG gene sets, which tend to be larger (Supplementary Figure
S5). To test for a possible gene set size effect, we also applied
methods to the Golub dataset (true sample labels) with randomly
sampled gene sets of increasing size (Figure 4b). Self-contained
methods reported systematically larger fractions of significant
random gene sets, with GLOBALTEST and SAMGS displaying
a set size dependency that resulted in rendering all random
gene sets with >50 genes significant. This gene set size depen-
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Figure 3. Statistical significance. Percentage of significant gene sets (FDR < 0.05, y-axis) when applying methods to the GEO2KEGG microarray compendium (top, 42
datasets) and the TCGA RNA-seq compendium (bottom, 15 datasets). Gene sets were defined according to KEGG (left, 323 gene sets) and GO-BP (right, 4631 gene sets).
The gray dashed line divides methods based on the type of null hypothesis tested [6]. Supplementary Figure S8 shows the percentage of significant gene sets when

using a nominal significance threshold of 0.05.

dence was also apparent for both benchmark compendia, where
self-contained methods reported larger fractions of significant
gene sets for KEGG than for GO-BP (Figure 3). Following from
the definition of the respective null hypothesis, self-contained
but not competitive methods also display dependence on the
background level of DE in a dataset (Supplementary Figure S7).
As competitive methods were highly conservative, we inspected
their nominal P-value distributions. Fraction of gene sets with
nominal P < 0.05 were constant across datasets at ~5-15%
(Supplementary Figure S8), and the effect of the multiple testing
correction was invariant to increasing the number of permuta-
tions or using the respective built-in FDR correction for GSEA and
SAFE (Supplementary Figure S9).

Phenotype relevance

Evaluations of published EA methods often conclude phenotype
relevance if there is any association between the top-ranked
gene sets and the investigated phenotype. This involves a certain
extent of cherry-picking from the enriched gene sets, where sets
with a link to the phenotype are preferentially selected. For an
impartial assessment, we propose to rather investigate pheno-
type relevance of all gene sets a priori and to subsequently quan-
tify the relevance accumulated along the gene set ranking. For
the non-trivial task of scoring the phenotype relevance of a gene
set, we build on the MalaCards disease database [33]. MalaCards
scores genes for disease relevance based on experimental evi-
dence and co-citation in the literature and summarizes per-gene
relevance across GO and KEGG gene sets (Supplementary Meth-
ods S1.3). Focusing on the diseases investigated in the datasets of
the benchmark compendia, we systematically extracted disease
genes and gene set relevance rankings from MalaCards (see
again Figure 1). As expected, disease genes and gene sets for
cancer types studied in the benchmark compendia (Supplemen-
tary Figures S11 and S12) are enriched for known cancer driver
genes and oncogenic processes [56, 57]. Relevance rankings are

also more similar within disease classes than between disease
classes (Supplementary Figure S14).

By scoring the similarity between the EA rankings and the
precompiled relevance rankings, we assess whether certain
EA methods tend to produce rankings of higher phenotype
relevance (as outlined in Figure 1 and detailed in the Phenotype
relevance 2.6 section). We observed that competitive methods
tend to rank phenotype-relevant gene sets systematically
higher than self-contained methods (Figure 5). This observation
holds for all four combinations of benchmark compendium
(GEO2KEGG and TCGA) and gene set collection (KEGG and
GO-BP), resulting in a significant overall difference between
competitive and self-contained methods (P = 1.87 - 107%,
Wilcoxon rank-sum test). Differences between competitive
methods were only moderate, with PADOG consistently return-
ing highest relevance scores. However, PADOG scores were
overall not significantly higher than ORA (P = 0.85, Wilcoxon
rank-sum test) and SAFE (P = 0.19) but significantly exceeded
the scores of GSEA (P = 0.014), GSA (P = 0.04) and CAMERA
(P = 0.002). We also confirmed that these observations largely
hold when restricting the evaluation to the top 20% of each
EA ranking (Supplementary Figure S15) and when inspecting
accumulated relevance levels for individual datasets at varying
thresholds of the MalaCards relevance score (Supplementary
Figure S16).

Discussion

This article addresses two important gaps in the literature on
GSEA. First, it implements a framework of software and data for
rapid, comprehensive benchmarking of new or refined enrich-
ment methods in a much larger and more diverse data com-
pendium than used in previous benchmarking studies (Figure 1).
Second, it applies this framework to benchmark 10 of the most
widely used methods of EA for computational runtime (Figure 2),
proportion of rejected null hypotheses (Figure 3), control of type I
error rate (Figure 4) and biological relevance of gene set rankings
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type I error rate and the red dashed line the significance level of 0.05. The gray dashed line divides methods based on the type of null hypothesis tested [6]. *Application
of CAMERA without accounting for inter-gene correlation (default: inter-gene correlation of 0.01). Supplementary Figure S5 shows type I error rates when using KEGG
gene sets. Supplementary Figure S6 shows type I error rates for all four combinations of benchmark compendium and gene set collection. (b) Percentage of significant
gene sets (P < 0.05, y-axis) when applying methods to the Golub dataset (true sample labels) and using 100 randomly sampled gene sets of defined size (x-axis). Shown
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Figure 5. Phenotype relevance. Percentage of the optimal phenotype relevance score (y-axis) when applying methods to the GEO2KEGG microarray compendium (top,
42 datasets) and the TCGA RNA-seq compendium (bottom, 15 datasets). Gene sets were defined according to KEGG (left, 323 gene sets) and GO-BP (right, 4631 gene
sets). The gray dashed line divides methods based on the type of null hypothesis tested [6]. The phenotype relevance score of a method m applied to a dataset d is the
sum of the gene set relevance scores, weighted by the relative position of each gene set in the ranking of method m (as outlined in Figure 1 and detailed in Phenotype
relevance 2.6 section).

(Figure 5). We distinguish between enrichment ‘methods’, which categories: those employing a self-contained null hypothesis
we benchmark here, and enrichment ‘tools’ which implement that no gene in the set is differentially expressed versus those
these methods. The enrichment methods benchmarked here are employing a competitive null hypothesis that genes in the set
summarized in Table 1; popular enrichment tools are summa- are no more differentially expressed than genes outside the

rized in Table 2. We discuss enrichment methods in two broad set [6]. This benchmarking provides the most comprehensive,
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data-based insight into the performance of gene set enrichment
methods to date.

Toward a gold standard for benchmarking GSEA

GSEA is among the most widely used approaches for inter-
preting transcriptomic experiments. Yet, these tools have
been developed and published based on their performance
in representative datasets that were based on microarray
technology. Thus, there is a need for quantitative justification of
the continued use of these methods, especially since the field
has moved to RNA sequencing technology. This work curates a
large and diverse benchmarking data compendium, including
microarray and RNA-seq data, with a wide range of sample sizes
and numerous outcome variables for differential expression
analysis where some ground truth is known a priori. The KEGG
and GO-BP gene set collections provide a range of biological
processes and gene set size. Together, these datasets and gene
sets provide an extensive testing ground for existing and new
GSEA methods. The data are organized and presented through a
well-documented Bioconductor [46] package GSEABenchmarkeRr,
which facilitates the analyses presented here as well as the
plugging in of different benchmarks, enrichment methods, data
and gene sets. By adopting GSEABenchmarkeR for standardized
benchmarking, the field of GSEA can ensure that any newly
proposed method provides a quantitative improvement over
existing methods. Given its straightforward application to
network-based methods, we anticipate that GSEABenchmarkeR
will also greatly aid in resolving existing controversy concerning
the effectiveness of network-based approaches when compared
to set-based approaches, where evaluation of several choices of
networks beyond pathway data in KEGG will be needed to arrive
at a robust conclusion [14, 27, 31, 47].

Applying enrichment methods to RNA-seq data

There is disagreement over whether, and how, enrichment meth-
ods originally developed for microarray data can be applied to
RNA-seq data. This disagreement is amplified by the variety of
RNA-seq expression units used at different steps of analysis.
For instance, popular tools for differential expression analysis
require the raw RNA-seq read counts as input to preserve the
sampling characteristics of the data [35, 39, 40], whereas fre-
quently used tools for transcript abundance estimation report
TPMs [49] or FPKMs/RPKMs [50] that already account for differ-
ences in gene length and sequencing depth. We found that all
enrichment methods developed for microarray data could be
directly applied to RNA-seq data provided as raw read counts
or TPMs through application of a VST and the same t-like gene-
level statistics used for microarray data. These findings simplify
the application of legacy enrichment methods to RNA-seq data
and enable use of fast and established methods.

Runtime

Runtime evaluation demonstrated moderate differences in
applicability that mainly depend on methodological aspects and
implementation. Consequently, we found simple parametric
tests (CAMERA, ORA and GLOBALTEST) to complete a routine EA
within seconds as compared to computationally more intensive
permutation methods (GSA, PADOG and GSEA) that require
several minutes. Although these runtimes are all within an
acceptable range for typical use on a standard workstation,
permutation-based methods may be inconvenient for larger
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gene set collections such as MSigDB [5]. Furthermore, the
incorporation of differential expression methods for RNA-seq
data such as edgeR or DESeq2 in permutation methods resulted
in substantially increased runtimes without meaningfully
altering results and is therefore not recommended.

Statistical properties

The earliest enrichment methods continue to be the most fre-
quently used, despite criticism of their statistical shortcom-
ings. ORA (also sometimes referred to as Fisher’s Exact Test or
Hypergeometric Test) is by far the most widely used enrich-
ment method, employed by the most popular enrichment tools
(Table 2). However, its use of the Hypergeometric Test assumes
independence between the genes identified as differentially
expressed, which is likely not the case [6, 58-61]. Furthermore,
the permutation procedure incorporated in other widely used
gene set tests has been shown to be biased [62] and inaccurate if
permutation P-values are reported as zero [63]. Recent studies
also reported non-uniform P-value distribution that is either
systematically biased toward O (false positive inflation) or 1
(false negative inflation) [64, 65]. These shortcomings can lead
to inappropriately small or large fractions of significant gene
sets and can considerably impair prioritization of gene sets in
practice. Our results demonstrate that the fraction of significant
gene sets strongly depends on whether a self-contained or a
competitive null hypothesis is tested. While the choice between
a self-contained or a competitive method should be primarily
motivated by the question at hand (testing for any associa-
tion or testing for excess of differential expression in a gene
set), it is important to keep in mind that this decision strongly
influences which and how many gene sets are identified as
enriched. Focusing on the practical implications of this analysis
decision, we demonstrated that the choice can, in extreme cases,
determine whether no gene sets (competitive) or all gene sets
(self-contained) are identified as significantly enriched for the
same dataset.

These dramatically different results require different
approaches to interpretation and a trade-off when weighing
type I versus type Il error. For competitive methods, we found the
fraction of significant gene sets to be constant across datasets
at 5-15% using a nominal significance level of 0.05. When using
competitive methods, it may thus be preferable to forego or
relax multiple testing correction, especially when considering
ranking and output of biologically plausible candidate gene
sets for further exploration to be more important than a strict
estimation of statistical significance. Such an approach is
demonstrated by the interesting example of CAMERA, which
deliberately abandons strict type I error control by default to
compensate for the apparent lack in power of competitive
methods [53, 66]. Self-contained methods, in contrast, tend to
identify too many significant gene sets for significance to be a
useful discriminating feature. Furthermore, with the exception
of GSVA and ROAST, self-contained methods display gene set
size dependency: even among random gene sets, larger gene sets
are more likely identified as significant. We thus recommend
GSVA or ROAST for analysts wanting a self-contained test.
When stating significance of gene sets by a self-contained
test, we recommend to also report the fraction of differentially
expressed genes in the dataset, since this essentially determines
the proportion of significant gene sets. However, we do note
that it is not always straightforward to categorize methods
as competitive or self-contained and that methods combining
aspects from both models might either be predominantly or
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fully competitive or self-contained depending on the execution
mode (Supplementary Discussion S2.1).

Phenotype relevance

A critical objective of EA is to rank relevant gene sets higher
than other gene sets. Quantitative benchmarking of this ability
in experimental data, however, is difficult. We used aggregated
relevance scores to determine whether certain methods tend to
accumulate gene sets of high relevance toward the top of the
ranking (for example, gene sets containing more known cancer-
driving genes, established separately from the datasets used for
benchmarking). This analysis demonstrated that competitive
methods tend to rank relevant gene sets systematically higher
than self-contained methods. PADOG consistently returned
the highest relevance scores, which consolidates and extends
previous assessments on microarray data that used a single
target KEGG pathway per dataset [25, 26]. Although PADOG
accumulated higher relevance scores than GSEA, we found ORA
to provide equivalent relevance levels as PADOG. This underpins
the usefulness of ORA as a fast and effective enrichment method,
which might also explain its unbroken popularity [8, 67] despite
methodological criticism [6, 58]. This is also in agreement
with several previous assessments that demonstrated similar
or better performance for conceptually simple enrichment
methods [26, 27, 29, 59]. However, extrapolation to other ORA
implementations than the one used here should be done
with care, as results can differ depending on which genes are
considered as differentially expressed and which genes are
chosen as the background (Supplementary Discussion S2.2;
[11, 66]). In the absence of a perfect gold standard with
established ground truth, our evaluation of phenotype relevance
generalizes human evaluation through biological reasoning
based on associations reported in the literature. The evaluation
thereby remains approximate, and further extension is war-
ranted. This includes (i) replication of our findings on datasets
not predominantly focusing on cancer types, (ii) to resolve cases
where the relation between dataset and pre-defined relevant
gene sets is not clear-cut and (iii) addressing limitations of
the relevance rankings concerning their completeness and
discriminatory power between related diseases (Supplementary
Discussion S2.3). Such an extension to additional datasets and
more fine-grained relevance rankings is straightforward in our
benchmarking framework and will provide further important
steps toward a gold standard for benchmarking of methods for
GSEA.

Guidelines

For the exploratory analysis of simple gene lists, we recommend
ORA given its ease of applicability, fast runtime and evident
relevance of resulting gene set rankings, provided that input
gene list and reference gene list are chosen carefully and remem-
bering ORA’s propensity for type I error rate inflation when
genes tend to be co-expressed within sets. For the analysis of
pre-ranked gene lists accompanied by gene scores such as fold
changes, alternatives to ORA such as pre-ranked GSEA [60] or
pre-ranked CAMERA [66] exist (Supplementary Table S3). For
expression-based EA on the full expression matrix, we recom-
mend providing normalized log2 intensities for microarray data
and logTPMs (or logRPKMs/logFPKMs) for RNA-seq data. When
given raw read counts, we recommend to apply a VST such as
voom [39] to arrive at library-size normalized logCPMs. If the
question of interest is to test for association of any gene in the

set with the phenotype (self-contained null hypothesis), we rec-
ommend ROAST or GSVA that both test a directional hypothesis
(genes in the set tend to be either predominantly up- or down-
regulated). Both methods can be applied for simple or extended
experimental designs, where ROAST is the more natural choice
for the comparison of sample groups and also allows one to test
a mixed hypothesis (genes in the set tend to be differentially
expressed, regardless of the direction). The main strength of
GSVA lies in its capabilities for analyzing single samples. If the
question of interest is to test for excess of differential expression
in a gene set relative to genes outside the set (competitive null
hypothesis), which we believe comes closest to the expectations
and intuition of most end users when performing GSEA, we
recommend PADOG, which is slower to run but resolves major
shortcomings of ORA, and has desirable properties for the ana-
lyzed criteria and when compared to other competitive meth-
ods. However, PADOG is limited to testing a mixed hypothesis
in a comparison of two sample groups, optionally including
paired samples or sample batches. Therefore, we recommend
the highly customizable SAFE for testing a directional hypothesis
or in situations of more complex experimental designs such as
comparisons between multiple groups, continuous phenotypes
or the presence of covariates.

Key Points

¢ The GSEABenchmarkeR R/Bioconductor package imple-
ments standards for reproducible benchmarking of
enrichment methods.

® A VST of RNA-seq data unlocks enrichment methods
originally developed for microarray data.

¢ The type of null hypothesis tested has strong implica-
tions for gene set testing in practice and can determine
whether no gene sets or all gene sets are identified as
enriched for the same dataset.

¢ Self-contained methods identify gene sets as enriched
containing a single differentially expressed gene, a con-
dition that is almost always true for larger gene sets and
in datasets with higher levels of differential expression;
ROAST and GSVA are recommendable for testing a self-
contained null hypothesis.

® Competitive methods are more restrictive by testing
for excess of differential expression in the gene set
when compared to the background level, coming closer
to the intuition of an enrichment and tend to rank
relevant gene sets systematically higher than self-
contained methods; ORA (simple gene list) and PADOG
(full expression matrix) are recommendable for testing
a competitive null hypothesis.
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