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Leveraging phenotypic variability to identify
genetic interactions in human phenotypes
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Summary
Although thousands of loci have been associated with human phenotypes, the role of gene-environment (GxE) interactions in deter-

mining individual risk of human diseases remains unclear. This is partly because of the severe erosion of statistical power resulting

from the massive number of statistical tests required to detect such interactions. Here, we focus on improving the power of GxE tests

by developing a statistical framework for assessing quantitative trait loci (QTLs) associated with the trait means and/or trait variances.

When applying this framework to bodymass index (BMI), we find that GxE discovery and replication rates are significantly higher when

prioritizing genetic variants associated with the variance of the phenotype (vQTLs) compared to when assessing all genetic variants.

Moreover, we find that vQTLs are enriched for associations with other non-BMI phenotypes having strong environmental influences,

such as diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such as BMI can be used for GxE dis-

covery in disease phenotypes such as diabetes. A clear conclusion is that strong GxE interactions mediate the genetic contribution to

body weight and diabetes risk.
Introduction

In Cappadocia, Turkey, traces of an asbestos-like, cancer-

causing fiber was found in the materials of villagers’ homes

and was prevalent in the air. However, this alone could not

explain an epidemic where 50% of all Cappadocia villagers

died from mesothelioma, compared to only 4.6% of

asbestos miners with at least 10 consecutive years of

work.1 After nearly 3 years of living among the villagers,

Roushdy-Hammady et al. documented a Cappadocia

villager pedigree and described a highly penetrant Mende-

lian transmission of disease.2 Once the pathogenic

BAP1 mutations were found,3 follow-up experimental

studies4–6 illuminated how BAP1 and asbestos exposure

synergistically cause dangerous oncogenic effects in a

gene-environment (GxE) interaction.7

This example is one of only a few well-characterized GxE

interactions in humans, which have mostly appeared as

modulators of Mendelian disorders’ penetrance.7 In hu-

man genetics, the primary focus has been characterizing

the average relationship between individual genetic vari-

ants and a phenotype. Although researchers have identi-

fied thousands of associations across a spectrum of human

phenotypes at the single variant level,8 research in model

organisms and cell cultures has constantly shown that ge-

netic effects are context dependent.9–13 As one example,

the genetic effects governing lifespan in Drosophila mela-

nogaster within one environment do not alter lifespan
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within another environment.10 The incomplete pene-

trance for many common human diseases, such as the

APOE E4 allele on Alzheimer disease risk or smoking on

lung cancer risk, implies important genetic and environ-

mental modifiers of disease onset.14–17

Although GxE interactions are expected to be numerous,

it is debated how important these interactions are to hu-

man genetics.18–23 If they play a significant role, identi-

fying these interactions can enable more accurate genetic

prediction,12 especially at the individual level. Current

state-of-the-art prediction models use polygenic scores

(PGSs),24 which combine additive effects of genetic vari-

ants into a single risk measure. Clinical and environmental

factors are used to improvemodel prediction, but potential

interactions with genetic information are not commonly

considered. Additionally, PGSs have poor transferability

across populations,25 possibly driven by environmental

factors. If genetic effects on human phenotypes vary

from person-to-person as a result of interactions, then

more individualized prediction could be realized by first

identifying genetic interactions and estimating their

effects.

Because there is modest power to detect interactions in

large human population cohorts, efficiently identifying

the interactions remains an important statistical and

computational challenge. To address these difficulties, we

make use of a previously characterized observation that

most GxE interactions with large effect size can be revealed
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Figure 1. vQTLs could arise from a genetic interaction
(A)We refer to a genetic variant associated with the variance of the
phenotype as a variance QTL (vQTL). The orange line, represent-
ing the line of best fit, has slope close to 0 and indicates that the
mean of the phenotype does not change with a difference in
genotype.
(B) A vQTL could also arise from a genetic interaction. The dis-
played data in (B) is the same data as in (A), except the points
are colored to reflect the genotype at a second locus or the level
of an environmental variable. This second factor interacts with lo-
cus 1 to create a mean-based interaction effect, and this mean-
based interaction effect gives the appearance of a vQTL at locus
1. Data in both figures are simulated.
as a change in the variance of a quantitative phenotype

during a one-SNP-at-a-time genome-wide association

study (GWAS) (Figure 1).26–30 This insight lets us identify

strong GxE interactions associated with a given quantita-

tive trait via a two-step approach. First, we look for

genome-wide SNPs that are associated with the variance

of the trait, thus identifying what are known as variance

quantitative trait loci (vQTLs).30,31 Second, we use these

vQTLs to screen for potentially strong GxE interactions

associated with the same phenotype. Scanning for vQTLs

involves just a single test per SNP, so it provides a powerful

inroad for discovering genetic interactions by nominating

loci as promising candidates for an interaction.

In the present study, we introduce a statistical framework

to nominate SNPs for GxE interaction testing by leveraging

differences in the means (muQTLs) and the variances

(vQTLs) of a phenotype. We apply these methods to study

the genetic basis of variation in body mass index (BMI)

levels.32,33 We further explore the role for interactions

across human disease and perform in silico functional ana-

lyses for implicating relevant cell types and pathways,

providing new insights into the architecture of human

phenotypes.
Material and methods

Description and implementation of variance tests
We implemented several statistical methods to test a SNP for an as-

sociation with the variance of a quantitative phenotype within a

population dataset. First, we introduce the deviation regression

model (DRM), where a linear regression is performed between in-
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dividuals’ minor allele counts and the absolute difference between

an individual’s phenotype value and the population phenotype

medians within each genotype (after covariate adjustment). In

the DRM, each individual j with genotype i has phenotypic value

Yij. The genotype is coded as i ¼ 0, 1, or 2, determined by the mi-

nor allele count. The median phenotype value is calculated for all

individuals with categorical genotype i, ~Yi. The absolute value of

the difference between Yij and ~Yi is calculated as follows:

Zij ¼
��Yij � ~Yi

�� (Equation 1)

The Zij values for each individual j represent the deviation from

the within-genotype phenotype medians. Next, SNPs are tested

for association with Zij values via linear regression and the minor

allele counts are used as a numeric covariate. The effect size and p

values for the SNP covariate in the regression are used as proxies

for the variance effect size and significance of association with

phenotypic variance. In practice, covariates are regressed out

from Yij prior to calculating Zij.

The DRM is a similar approach to the Brown-Forsythe (BF) test,

which allows for non-linear associations through an ANOVA

model instead of a linear model.34 We note that an ANOVAmodel

requires categorical predictors, while a regression such as the DRM

can be applied to continuous predictors representing imputation-

derivedminor allele dosages. Furthermore, we note that the BF test

adjusts an individual’s phenotype values via the within-genotype

median values, while the Levene’s test (LT) uses the within-geno-

type mean values.35 The use of the median instead of the mean al-

lows the BF test to be more robust than the LT to non-normality.

The use of both approaches within genetic association studies

has been discussed previously.36

In our study, we compared the DRM to a number of other vari-

ance tests in R: the BF test,34 the LT,35 the extended Levene’s test

for generalized scale (gS),37 a two-step squared residual approach

(TSSR),38 squared residual value linear modeling (SVLM),39 the

double generalized linear model (DGLM),31 Bartlett’s test for

equality of variances40 (BT), and the Fligner-Killeen test for homo-

geneity of variances (FK).41 We omit the famLRTV method due to

the authors’ finding that there is similar performance with LT.42

We omit the Bayesian heteroscedastic linear regression model

due to the authors’ previous finding that there is decreased power

to find interaction candidates compared to LT.43

BF was implemented with the ‘‘leveneTest()’’ function with

default arguments (median-centered) from the ‘‘car’’44 package,

while LT was implemented with the ‘‘center ¼ ‘mean’’’ argument.

We implemented gS, an approach that extends BF, by using the

‘‘gJLS’’ package.37 TSSR, an easy-to-apply approach employed in

Yang et al.,38 was implemented as linear regression on the squared

mean-centered phenotype. SVLM39 is similar to TSSR, except it

also adjusts for the SNP mean effect prior to calculating the resid-

uals; this was manually implemented. The DGLM, which jointly

uses a linear model on the phenotypic means and a log-linear

model on the variances,45 was implemented with the ‘‘dglm()’’

function from the ‘‘dglm’’ package;31 the results from the variance

test are reported. BT40 and FK41 were implemented with the ‘‘bar-

tlett.test()’’ and ‘‘fligner.test()’’ functions from the ‘‘stats’’ package.
Simulations of genotypes and phenotypes for method

comparison
We compared methods for identifying variance differences by us-

ing statistical power and false positive rates (FPR) as the perfor-

mance benchmarks. In the FPR scenario, we simulated a single
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SNP with minor allele frequency (MAF) ¼ 0.4 by using a

W �Binom(2, 0.4) independent random variable. In the power

testing scenario, we simulated a SNPX1 and an environmental fac-

tor X2 by using a binomial distribution with probability of success

¼ 0.4: X1 �Binom(2, 0.4) and X2 �Binom(2, 0.4). This other factor

can also be thought of as an environmental exposure with three

levels (e.g., for physical activity: never exercise, rarely exercise,

or often exercise).

In the FPR setting, the genetic component of the phenotype,YG,

is set to be equal to the SNP value W. In the power scenario, the

genetic component of the phenotype, YG, is equal to the product

X1 3 X2. Furthermore, the power to nominate SNPs involved

within an interactionwere contrasted betweenmean-based associ-

ation tests and variance-based association tests. In these simula-

tions, the genetic component is equal to the product X1 3 (X2 –

1). This is so that X1’s marginal association with the phenotype

is either positive or negative depending on the value of X2.

We generated final phenotype values by summing the genetic

component, YG, and random environmental noise, YE. YE was

simulated from a normal distribution or a chi-square distribution

with 4 degrees of freedom and scaled appropriately such that YG

explainsJ percentage of the variance in the phenotype and YE ex-

plains 100 – J percent as follows.

GivenJ, the percent of the variation explained by the environ-

mental component is larger than J by a factor 100- J/ J. After

calculating the population variance of the genetic component,

VG, the variance of the environmental noise, VE, can be calculated

as follows:

VE ¼VG 3
100� j

j
(Equation 2)

In practice, the normally distributed environmental noise can be

simulated as YE �N(0, VE) for normally distributed phenotypes.

Chi-square distributed noise can be simulated as the following

for chi-square distributed phenotypes:

YE ¼
ffiffiffiffiffiffi
VE

p
3 k

�
c2ð4Þ� (Equation 3)

k is the function that centers and scales the chi-square input to

have mean equal to 0 and variance equal to 1. We created the final

phenotypic values by calculating the sum YG þ YE. In all, geno-

types and phenotypes were generated for 250,000 individuals.

The association between the SNP and the variance in phenotype

was tested via the different variance methods under different

phenotype transformations: untransformed, log, reciprocal, and

rank inverse normal transformation (RINT). The log and reciprocal

transformations were applied after adding the minimum popula-

tion phenotype value to all individuals’ phenotype values such

that all values were greater than 0 prior to transformation. The

RINT uses the ranks of phenotype values and inverse transforms

the ranks into a normal distribution.

The null hypothesis (no association) was rejected when the

nominal p < 0.05. This was repeated across 1,000 simulations

with distinct genotypes and phenotypes in each iteration. The po-

wer estimates refer to the empirical proportion of simulations

where the null hypothesis was rejected in the power scenarios,

while we measured FPR by estimating the proportion of simula-

tions where the null hypothesis was rejected in the FPR scenarios.

We compared the power of the BF and SVLM methods to the po-

wer of the DRM by calculating the null hypothesis rejection rate

in simulations where the interaction explained less than or equal

to 1% variance in the phenotype (J % 1%). Significance was as-
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sessed via a paired t test of whether or not the null hypothesis

was rejected across simulations.

Linear regression was used to compare a mean-based approach

to a variance-based approach (using the DRM). A contingency ta-

ble that describes whether the muQTL method rejected the null

hypothesis of no association or the vQTL method rejected the

null hypothesis of no association was calculated from count data

across simulations. We performed a two-sided Fisher’s exact test

separately for each percent variance explained value, J, to assess

the relationship of a variance test’s power with a mean test’s

power.
UK Biobank data
Genome-wide association studies (GWASs) using mean and vari-

ance approaches were applied to UK Biobank (UKB).46 UKB data

was processed previously by the UKB team46 and accessed under

application ID 47137. The individuals and SNPs used in analysis

were limited to those in the Neale lab’s UKB analysis (see Web Re-

sources) because the same quality control criteria were adopted for

sample and genotypes in this analysis. By doing so, individuals

were removed on the basis of whether they were not used in the

UKB team’s principal-component analysis (removing related sam-

ples), not of European British ancestry, or had sex chromosome

aneuploidy, excess heterozygosity, or outlier genotype missing

rates. Genotypes were removed if INFO score < 0.8, MAF < 0.05,

or HWE p < 10�10. The full processed and quality-controlled

data contained 344,201 individuals and 6,701,215 SNPs. The var-

iants within the analysis are common polymorphisms and were

analyzed in a large population (MAF> 0.05 andN> 270,000), pro-

tecting against the potential pitfalls of variance tests in unbal-

anced data.47

Analysis was randomly split into two parts. A discovery set,

which was used for discovering associations between SNPs and

phenotypes, contained 80% of the data, selected randomly from

the full dataset. A replication set, which was used for the replica-

tion of associations identified in the discovery set, contained the

remaining 20% of the data.
GWAS in UKB
A GWAS was performed within the discovery set containing 80%

of the data. We removed individuals with BMI levels greater

than 5 standard deviations from the mean from analysis to pre-

vent a large influence from outliers, which could be driven by

non-modeled factors. BMI levels were adjusted for the following

covariates: sex, age, age 3 sex, age2, age2 3 sex, genotyping array,

and principal components 1–20. We performed this by fitting a

linear model and calculating the residuals.

Using the residuals, we performed a GWAS by using linear

regression (mean effects) and the DRM (variance effects) between

a single SNP and adjusted, untransformed BMI. The findings from

these analyses were referred to, respectively, as muQTLs and raw

vQTLs. We also applied a RINT to the residuals to reduce the cor-

relation between mean and variance effects and proceeded with

a GWAS by using the DRM and a dispersion effect test27 (DET).

The RINT generally does not remove a mean-variance relation-

ship. The DET aims to find variance effects independent of mean

effects, termed ‘‘dispersion effects.’’ We refer to the DRM and

DET outcome as RINT vQTLs and dQTLs, respectively.

All genome-wide association analyses were implemented on sets

of 5,000 SNPs and performed in parallel. Genome-wide linear

regression was performed with PLINK,48 and the DRM was
erican Journal of Human Genetics 108, 49–67, January 7, 2021 51



performed with the BEDMatrix R package (seeWeb Resources). We

implemented the DET by first using a Python-implemented heter-

oskedastic linear model27 (see Web Resources), which is based on

the DGLM test.45 The dispersion effects were then estimated via

the additive and log-linear variance effects, as described previ-

ously;27 this method is implemented in the ‘‘estimate_dispersio-

n_effects.R’’ file in the linked ‘‘hlmm’’ repository (see Web

Resources).

Results from these analyses were compared via correlations.

Significance was determined with the criterion p < 5 3 10�8 for

untransformed analyses and p < 1.0 3 10�5 for RINT results. Sig-

nificant QTLs were used as the nominated loci for identifying

gene-gene (GxG) and GxE interactions. Previous GWAS results

were downloaded from the Neale lab webpage (see Web

Resources).

Construction of a diet score
We computed a diet score to be used as an interaction factor in

GxE analysis by adapting a protocol described previously.27,49

First, we extracted 18 diet-related variables: ‘‘cooked vegetable

intake,’’ ‘‘salad/raw vegetable intake,’’ ‘‘fresh fruit intake,’’ ‘‘dried

fruit intake,’’ ‘‘bread intake,’’ ‘‘cereal intake,’’ ‘‘tea intake,’’ ‘‘coffee

intake,’’ ‘‘water intake,’’ ‘‘oily fish intake,’’ ‘‘non-oily fish intake,’’

‘‘processed meat intake,’’ ‘‘poultry intake,’’ ‘‘beef intake,’’ ‘‘lamb/

mutton intake,’’ ‘‘pork intake,’’ ‘‘cheese intake,’’ and ‘‘salt added

to food.’’ We next fit a linear model by using baseline model cova-

riates plus the 18 diet variables. These baseline model covariates

included age, sex, age2, age 3 sex, age2 3 sex, genotyping array,

and principal components 1–20.27 We fit a model to 25% of the

UKB discovery set (thus, 20% of the full dataset used in the study)

(N ¼ 68,840), and estimate b coefficients for each diet variable. In

the remaining 275,361 individuals (which include those from

both the discovery and replication sets), we used the estimated bb
coefficients for each diet variable to calculate a diet score:

Diet score¼ bbXT (Equation 4)

Above, bb is the 1 3 18 vector of coefficient estimates for diet vari-

ables and X is a 275,3613 18 matrix of diet variable values for the

275,361 individuals.

Low diet score values describe a diet predicted to be associated

with individuals with low BMI, whereas high diet score values

describe a diet predicted to be associated with individuals with

high BMI. Potential interactions with genetic polymorphisms

may describe a change in the average relationship between diet

score and BMI within the general population. This would suggest

that the effects of the different diet variables on BMI is synergisti-

cally higher or lower than expected.

Making non-diet environmental variables
We created additional environmental variables to use for GxE

analysis. We used UKB fields 21022-0.0, 22001-0.0, and 1558-0.0

for age, sex, and alcohol intake frequency. The alcohol intake fre-

quency field was re-coded in the opposite direction such that a

higher value indicates a higher alcohol intake frequency. Individ-

uals with missing data or who preferred not to answer were

removed. For smoking status, physical activity level (PA), and

sedentary behavior level (SB), we generated new variables by using

the methods described in Wang et al.28

For smoking status, we used fields 1239-0.0 (‘‘current tobacco

smoking’’) and 1249-0.0 (‘‘past tobacco smoking’’) to create a bi-

nary variable. Individuals were only coded as 0 if they do not
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currently smoke and they answered ‘‘I have never smoked’’ or

‘‘just tried once or twice’’ in regard to their past history. Individuals

were classified as 1 if they currently smoke or previously smoked

most days or occasionally. Individuals with missing data and

who could not fill the criteria were removed.

For PA, we used fields 864-0.0 (‘‘number of days/week walked

10þ minutes’’), 874-0.0 (‘‘duration of walks’’), 884-0.0 (‘‘number

of days/week of moderate physical activity 10þ minutes’’), 894-

0.0 (‘‘duration of moderate activity’’), 904-0.0 (‘‘number of days/

week of vigorous physical activity 10þ minutes’’), and 914-0.0

(‘‘duration of vigorous activity’’), which we labeled DayW, DurW,

DayM, DurM, DayV, and DurV, respectively. According to the In-

ternational Physical Activity Questionnaire analysis guideline

(see Web Resources), the total metabolic equivalent minutes

(METT) can be approximated as follows:

METT ¼ 3:3 3 DayW 3 DurW þ 4:0 3 DayM 3 DurM

þ 8:0 3 DayV 3 DurV:

(Equation 5)

Next, PA for each individual was assigned 1, 2, or 3 for low, mod-

erate, or high activity. High PA individuals were classified as hav-

ing DayV R 3 and METT R 1,500 or DayW þ DayM þ DayV R

7 and METT R 3,000. Moderate PA individuals were classified as

having DayV R 3 and DurV R 20, DayM R 5 and DurM R 30,

or DayW R 5 and DurW R 30. Low PA individuals were classified

as the remainder (not enough activity recorded to meet the other

criteria).

For SB, we used fields 1090-0.0 (‘‘time spent driving’’), 1080-0.0

(‘‘time spent using computer’’), and 1070-0.0 (‘‘time spent watch-

ing television [TV]’’). For each variable, ‘‘less than an hour a day’’

(�10) was set equal to 0 and ‘‘do not know’’ or ‘‘prefer not to

answer’’ (�1 or �3) answers were imputed with the median of

the remaining values. SB was set equal to the sum of the three col-

umns. Outlier individuals, defined as those greater than 5 standard

deviations from the mean, were removed.
Sampling random SNPs matched to QTLs
We used random SNPs to calibrate analyses with the genome-wide

expectation. We calculated the frequency of homozygous minor

genotypes (fminor), the MAF, and the count of individuals with a

non-missing genotype at each SNP (Nmiss) to match genome-

wide SNPs to QTLs. To identify the underlying null distribution

of various statistics in our study, we sampled 10 matched SNPs

for each QTL. Each matched SNP had to have an MAF and fminor

that were51%margin from theQTL’sMAF and fminor and anNmiss

within 1% of the QTL’s Nmiss count and had to be on a different

chromosome than the QTL.
Identification of genetic interactions
We tested for genetic interactions associated with untransformed

BMI. Pairwise interaction testing was performed between all SNP

candidates and with each of the seven environmental factors in

the discovery and replication sets separately. For GxE interactions

with diet, only 75% of the discovery set (60% of full UKB set) was

used for association tests because 25%was used to fit themodel for

calculating the diet score variable. GxE p values were adjusted with

false discovery rate (FDR) and significance determined by FDR <

0.1. For comparison, the GxE interaction analysis was also per-

formed for log-BMI and RINT BMI. p values from a GxG
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interaction analysis were separately adjusted via FDR, and signifi-

cance was determined at FDR < 0.1.

GxE discovery rate was compared between the QTL set and the

genome-wide matched SNP set. First, the same number of SNPs as

the QTL set were sampled from the matched SNP set. Second, the

GxE p values from the sampled genome-wide SNPs were adjusted

via FDR. Third, the discovery rate within the set was calculated as

the proportion of GxE interactions with FDR < 0.1. This was

repeated across 10,000 iterations, and the mean discovery rate

across the iterations was used as the expected probability in a

one-sided binomial test.
Statistical replication of genetic interactions
Genetic interactions discovered in the discovery cohort were

tested for replication in the replication set. Given a p value

threshold equal to x, all more significant interactions (those

with p < x) were identified. Within the replication cohort, an

interaction is considered to have been replicated if the direction

of effect was the same as in the discovery set and if the p value

in the replication set is p< 0.05. The replication rate is the propor-

tion of interactions to have replicated according to these two

criteria. We computed the genome-wide replication rate by using

the matched and randomly sampled SNPs and testing for GxE in-

teractions within both the 80% and 20% cohorts. The replication

rate was calculated at the following p value thresholds: 0.05, 0.01,

2.16 3 10�3, 0.005, 5.22 3 10�4, and 1.80 3 10�5, where 2.16 3

10�3, 5.22 3 10�4, and 1.80 3 10�5 are FDR ¼ 0.1, FDR ¼ 0.05,

and FDR ¼ 0.01 thresholds, respectively. We calculated these by

identifying the maximum GxE p values within the discovery set

that pass the respective FDR thresholds. In displays, the gray con-

fidence intervals are derived from a binomial test with rate equal to

0.025, which is the theoretical replication rate under no true

association.

The replication rates could be statistically contrasted be-

tween two GxE interaction sets (for example, the replication

rate of the GxE interactions from the QTLs versus the replica-

tion rate of the GxE interactions from the matched SNPs). One

set is specified as the background set, and the replication rate

within this background set is used as the theoretical success

rate in a one-sided exact binomial test. The other parameters

in the binomial test are taken from the other GxE set. The

number of successes is the number of replicated GxE interac-

tions, and the number of trials is the total number of GxE in-

teractions tested.
Assessing interactions at the FTO locus
We further explored themany interactions found at rs56094641 in

theFTO intronic region.A largermodelwasfitted tountransformed

BMI, which contained all FDR < 0.1 interactions and the main ef-

fects for each interacting factor. The significance values of the inter-

action estimates were assessed. Next, we determined whether

rs56094641’s variance association was diminished when consid-

ering the interactions. We took the residuals from the model and

used the DRM to estimate the variance effect. We computed the

percent change in DRM effect with the original estimate.
Analyzing the rs12996547 3 age interaction
We analyzed a SNP-by-age interaction on BMI levels (FDR < 0.01)

further by using GTEx data. The rs12996547 polymorphism in

UKB was not used in GTEx consortium analyses.50 Leveraging

the 1000 Genomes Project51 and the HaploReg database,52 we
The Am
identified a nearby SNP, rs7575617, in linkage disequilibrium

(LD) (D0 ¼ 0.89) that was used in the GTEx analyses and queried

the GTEx portal for eQTL associations. Using the GTEx v8 data

release, we correlated donor age and TMEM18 expression within

visceral adipose tissue samples. In GTEx, donor age is grouped

within 10-year bins (e.g., 40–49, 50–59), which we coded as a nu-

merical variable to perform pairwise correlation.
Screening BMI GxE interactions for pleiotropic disease

associations
To test whether GxE interactions associated with BMI are also asso-

ciated with related diseases, three binary disease phenotypes that

represent diabetes diagnosis, high blood pressure (HBP) diagnosis,

and coronary artery disease (CAD) ascertainment were assembled.

Diabetes and HBP was coded with corresponding fields 2443-0.0

and 6150-0.0, which include self-reported questionnaire informa-

tion. The diabetes phenotype represents a self-reported answer to

the question ‘‘has a doctor ever told you that you have diabetes?’’

This would represent a mix of diabetes subtypes, including type 1

and type 2 diabetes. For diabetes, values less than 0 were removed

from association testing. For HBP, a value less than 0 represented a

control individual and a value equal to 4 represented an affected

individual. CAD was specified with criteria from previous

research.24 The following individuals were listed as affected indi-

viduals: field 20002-0.0 equal to 1075; fields 41203-0.0 or 41205-

0.0 equal to 410, 4109, 411, 4119, 412, 4129; fields 41202-0.0 or

41204-0.0 equal to I21, I210, I211, I212, I213, I214, I219, I21X,

I22, I220, I221, I228, I229, I23, I230, I231, I232, I233, I234,

I235, I236, I241, I252; fields 41200-0.0 or 41210-0.0 equal to

K40, K401, K402, K403, K404, K41, K411, K412, K413, K414,

K451, K452, K453, K454, K455, K491, K492, K498, K499, K502,

K751, K752, K753, K754, K758, K759. All other individuals were

listed as the control individuals for CAD.

GxE interactions with FDR < 0.1 and same direction of effect in

discovery and replication sets were tested for association with dia-

betes, HBP, and CAD risk. A p value of less than 0.05 in the repli-

cation cohort was not required because the limited sample size in

the replication cohort (one quarter the size of the discovery set)

may reduce power to identify interaction associations at that level

of significance and typically implies that a larger effect needs to be

observed within the smaller cohort to reach that level of signifi-

cance. (We found that only requiring direction of effect will still

show statistically significant differences in replication rate be-

tween QTLs and random genome-wide SNPs.) Finally, we tested

for the GxE interaction with disease by employing logistic regres-

sionwith identical covariates to the BMI analysis.We repeated this

with adjustment for BMI by using BMI as a covariate.
PheWAS enrichment of vQTLs using Open Targets

database queries
We tested whether raw vQTLs from our study were enriched for

certain phenotype associations compared to SNPs only associated

with mean BMI levels, which we term pure muQTLs. First, we per-

formed a phenotype-wide association study (PheWAS) by

leveraging the Open Targets database.53 For an input SNP, we iden-

tified any phenotypes within the database that have been associ-

ated with the SNP during a previous GWAS at p < 0.05. Across a

set of queried SNPs, we calculated the proportion that were associ-

ated with the phenotype. We repeated this for the set of variance

QTLs and the set of pure mean QTLs (no vQTL association). We
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trimmed the phenotypes list by using the Open Target categories

that were relevant to our study (Data S1).

Next, we developed a statistical test to determine whether a

given set of SNPs is enriched for association with a phenotype

compared to a background set. Given a test set of K SNPs in which

m of the K SNPs are associated with the phenotype and a back-

ground SNP set in which p is the proportion of SNPs associated

with the phenotype, we employ an exact binomial test withm suc-

cesses, K trials, and p hypothetical probability of success. We test

significance under a one-sided alternative hypothesis that the

observed success rate, m / K, is improbable (HA: m / K > p) given

an underlying binomial distribution with probability p. The

p values from the test were calculated for every phenotype present

in the test set. FDR correction was applied, and significance was as-

sessed at FDR < 0.1.

We applied the described PheWAS enrichment test in two set-

tings. First, we evaluated whether the test was robust for use

with the real data by randomly sampling 21 pure muQTLs and us-

ing the remaining pure muQTLs as the background set. Next, we

evaluated whether some associated phenotypes are enriched in

the vQTL set compared to in the pure muQTLs by using the

pure muQTLs as the background set.
Annotating QTLs with protein-coding genes
All protein-coding genes were downloaded from Ensembl. We

queried a QTL in the Open Targets database53 by using the applica-

tion programming interface (API), and the variant-to-gene (V2G)

scores and the Ensembl variant effect predictor (VEP) scores were

saved for all Ensembl protein-coding genes. If a queried SNP’s

VEP score for a gene was greater than zero in Open Targets (e.g.,

the variant lies within an intron, exon, or UTR region), then the

SNP was annotated with the gene with the greatest VEP score.

Otherwise (for intergenic SNPs), the gene with the highest V2G

scorewas used. If no protein-coding genes had a V2G score (because

of far proximity), the coding gene with the nearest transcription

start site was identified via the Open Targets API. Finally, if the

queried SNP was not present in Open Targets, then a SNP in LD

was identified as a proxy (Data S2). rs550990127, rs562044398,

rs772168224, and rs753789664 are four indels (3 muQTLs, 1

RINT vQTL) that were removed from functional enrichment and

PheWAS analyses because of annotation issues.
GeneMania network creation and GO enrichment

analysis
GeneMania incorporates multiple biological databases to create a

gene network, identify highly interconnected genes, and perform

gene ontology (GO) enrichment analysis. We used the browser

platformwith default settings, except for the addition of the ‘‘attri-

butes’’ databases.We separately queried the list of annotated genes

for raw vQTLs and the list of genes for pure muQTLs. We removed

major histocompatibility complex (MHC) SNPs from the analysis.
Stratified LD score regression to infer cell type relevance
Stratified LD score regression was performed with gene expression

data via the ‘‘Multi_tissue_gene_expr’’ flag and default settings.54

Summary statistics were transformed using the ‘‘munge_sumstat-

s.py’’ script. Only non-MHCHapMap3 SNPs were kept for LD score

regression analysis. Cell type enrichment p values across the 205

functional annotations were adjusted via the Benjamini-Hochberg

method for FDR.55 This was applied separately to the genome-wide
54 The American Journal of Human Genetics 108, 49–67, January 7, 2
summary statistics from the muQTL analysis and to the summary

statistics from the raw vQTL analysis.
Results

Deviation regression model discovers vQTLs that are

due to GxE interactions

To identify genetic variants associated with the variance of

quantitative phenotypes, we considered several tests (see

Material and methods),31,34,35,37–41 including our

approach that we refer to as the DRM. In the DRM, a linear

regression is performed on a single SNP and phenotype,

where the minor allele count is used as the independent

variable and the absolute difference between an individ-

ual’s phenotypic value and the phenotype medians within

each genotype is used as the dependent variable (after

covariate adjustment) (Figure 2A) (see Material and

methods). The effect sizes and p values are used to estimate

the variance effect of a SNP and assess vQTL significance,

similar to a standard GWAS.

We first used simulation to quantify the FPR for the

different variance tests. We tested the FPR by using a sce-

nario where a single SNP affects themean of the phenotype

and, thus, a variance effect should not be detected except

by random chance. We generated a SNP genotype and a

phenotype value for 250,000 individuals. Across 1,000 sim-

ulations, we tested for a variance effect, and calculated the

FPR as the proportion of simulations where the nominal p

< 0.05.We found that the FPRwas controlledwell by nearly

all variance methods when the phenotype was normally

distributed (Figure 2B). When the phenotype was non-

normal, however, the FPR was substantially elevated for

several variance tests, including the FK test41 or the

DGLM,31 but not for the DRM, BF test,34 SVLM,39 or the

gS37 (Figure 2C). Although we note that the variance of

the sample variance is inflated for distributions with excess

heteroscedasticity,56 our results demonstrate that at least a

few tests are robust to a SNP with only a mean effect in a

non-normal phenotype. Lastly, we found that transforma-

tions created false positives in simulations where SNPs

only affect the mean of the phenotype—regardless of the

variance test used (FPR ¼ 100%).

We further used simulations to test the ability of vQTLs

to reveal SNP-by-factor pairs with an interaction effect on

the phenotype. We repeated the previous FPR simula-

tions, except we generated an environmental factor that

interacts with the SNP to influence the mean of the

phenotype. As the interaction became stronger (percent

variance explained by the interaction, J, increases from

0.2% to 2%), the DRM’s power to detect an interaction ef-

fect at a SNP increased from less than 10% to nearly

100% (Figure 2D). Additionally, in non-normal traits,

we found a 10.1% and 64.1% power increase (p ¼
6.4 3 10�10 and p ¼ 1.6 3 10�110) for the DRM compared

to the BF and SVLM, respectively, at polymorphisms with

smaller interaction effects (J % 1%) (Figure 2D). The
021



Figure 2. Assessing a variance test for finding SNPs with interaction effects
(A) The DRM uses the absolute difference between an individual’s phenotype Yij (for each genotype i and individual j) (y axis) and the
within-genotype phenotype median (Yi) as a dependent variable. The absolute difference is modeled in a linear regression across geno-
types (x axis). Simulated data shown.
(B and C) False positive rates for different variance tests at SNPs with variedmean effects in a (B) normal and (C) non-normal phenotype.
Methods tested are as follows: DRM, Levene’s test (LT), Brown-Forsythe test (BF), Bartlett’s test (BT), Fligner-Killeen test (FK), double
generalized linear model (DGLM), two-step squared residual approach (TSSR), squared value linear modeling (SVLM), and extended
Levene’s test of generalized scale (gS).
(D) Power of the DRM, BF, and SVLM in non-normally distributed phenotypes. The gSmethod’s power is nearly identical to the DRM and
is not displayed.
(E) The elapsed time to perform each method on a single SNP across 1,000 simulations. The data are summarized as boxplots where the
middle line is the median, the lower and upper hinges are the first and third quartiles, and the whiskers extend from the hinge with a
length of 1.53 the inter-quartile range.
(F) vQTL test power, quantified by the DRM, stratified by whether the SNPs are detected by a muQTL test (linear regression). By using a
2-by-2 contingency table representing the counts of muQTL and vQTL test rejection across 1,000 simulations, Fisher’s exact test assessed
whether muQTL power and vQTL power show non-random association. p values are displayed.
DRM had nearly identical power across interaction effect

sizes and trait distributions to the gS (62.800% versus

62.825%; p > 0.05), but the mean time to run the gS

was 44.83 longer than the DRM (Figure 2E). Therefore,

in our simulated data, vQTLs could identify SNPs with

large effect interactions and the DRM had superior power,

improved FPR, and better computational efficiency

compared to other variance tests (Supplemental Note

S1; Figures S1 and S2).

Finally, we contrasted the use of vQTLs for identifying

SNPs involved in an interaction with the use of mean-
The Am
associated loci (muQTLs, as first identified via linear

regression). Using a similar testing procedure, we simu-

lated SNP-by-factor interactions where the direction of

the SNP effect changes depending on the interacting

factor (Material and methods). Across 1,000 simulations,

we found that muQTL test power and vQTL test power

were not positively correlated. For example, a vQTL

test’s power at non-muQTLs in non-normal traits was

54.7% when J ¼ 0.15%, compared to 6.0% at muQTLs

(Figure 2F). Our results show that positive and negative ef-

fects from a single SNP due to an interaction can remove a
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muQTL signal (such as shown in Figure 1), yet vQTL

methods are robust to this phenomenon, therefore

providing a complementary approach to discovering in-

teractions. Finally, although the muQTL approach had

increased power to detect the causal SNPs compared to

the vQTL approach (Figure S1D), we note that muQTL ap-

proaches will pick up variants that directly impact the

trait but that are not involved in an interaction (leading

to a high FPR). Therefore, our vQTL approach can identify

SNPs involved in GxE interactions with higher specificity

than using muQTLs.

Performing GWASs in UKB

Hundreds of variants have been associated with BMI,

highlighting that diverse pathways, from immune system

activation to leptin signaling to the central nervous system,

regulate body weight.32,33 Furthermore, environmental in-

fluences and lifestyle choices such as diet, exercise, and gut

microbiome composition57 also have a major influence on

BMI. Therefore, we hypothesized that there may be strong

GxE interactions that regulate BMI, and these interactions

may appear as a change in the BMI variance at a SNP. In

275,361 unrelated British European individuals from UKB,

we searched for genetic variants associated with the means

(muQTLs) and variances (vQTLs) in untransformed BMI

values (p < 53 10�8) (Figure 3A; Supplemental Note S2).

We discovered a strong correlation between mean and

variance effects, which we refer to as the ‘‘mean-variance

relationship’’ (Figures 3B and 3C). The mean-variance rela-

tionship could be explained in a number of ways. Because

the sample means and sample variances are correlated in

non-normal distributions and BMI is non-normally distrib-

uted, variance effects could be a consequence of a SNP’s

mean effect and, therefore, any observed associations

with phenotypic variance are not indicative of underlying

interactions27 (Supplemental Note S3). Alternatively, we

hypothesized that a SNP associated with the mean value

of a phenotype is also more likely to be involved within in-

teractions, thus creating the correlationwe observe. Biolog-

ically, SNPs with amain effect (directly impacting the stud-

ied trait) may have a greater likelihood of having an

interaction effect. Statistically, variance estimates have

larger standard errors than mean estimates in a population

sample; thus, interactions must have large effect sizes to

detect a change in variance (Supplemental Note S4;

Figure S3). Consequently,marginalmean SNP effectsmight

be detected as well because of large effect interactions.

Therefore, a correlation betweenmean and variance effects

might be due to both real biological and statistical causes.

To disentangle the mean-variance relationship, Young

et al. described how analysis of a phenotype with a RINT

helps reduce the correlation between mean and variance

effects27 and proposed a dispersion effect test to identify

differences in variances not driven by the mean effects

(known as dispersion effects). We sought to find SNPs asso-

ciated with both the variance and dispersion of BMI after a

RINT. We used the DRM to identify variance effects and
56 The American Journal of Human Genetics 108, 49–67, January 7, 2
Young et al.’s dispersion effect test to discover dispersion

effects. We identified SNP associations by using a less-con-

servative p< 10�5 threshold to produce an expanded set of

SNPs because these analyses resulted in conservative p

value distribution (Figures 3D–3G; Figure S4; Supplemental

Notes S5 and S6).

We discovered 448 SNPs associated with the mean of un-

transformed BMI values (which we refer to as ‘‘muQTLs’’),

21 SNPs associated with the variance of untransformed

BMI values (‘‘raw vQTLs’’), 27 SNPs associated with the

variance of transformed BMI values (‘‘RINT vQTLs’’) and

26 SNPs associated with the dispersion of transformed

BMI values (‘‘dQTLs’’) (Figure 3H). As expected, the correla-

tion with mean effects decreases from raw vQTLs to RINT

vQTLs to dQTLs; for example, 18 of 21 raw vQTLs are

also muQTLs, 4 of 27 RINT vQTLs are muQTLs, and 3 of

26 dQTLs are muQTLs. We combined the muQTLs, raw

vQTLs, RINT vQTLs, and dQTLs into a set of 502 unique

QTLs.We next proceeded to the second step of our sequen-

tial GxE discovery framework where we searched for pair-

wise interactions between the 502 unique QTLs and with

age, sex, and five environmental factors: smoking status,

diet, physical activity, sedentary behavior, and alcohol

intake frequency (the details of these factors are described

within the Material and methods).

Discovery and replication of GxE interactions

To identify GxE interactions potentially affecting BMI, we

used the same set of 275,361 unrelated European individ-

uals. Using the 502 unique QTLs and seven factors (age,

sex, smoking status, diet, physical activity, sedentary

behavior, and alcohol intake frequency), we tested for

3,514 GxE interactions by applying 3,514 distinct linear

models containing a single interaction term. Overall, we

identified 78 significant GxE interactions associated with

untransformed BMI in the discovery set (FDR < 0.1)

(Figure 4A), a 1553 greater discovery rate over interaction

testing based on a genome-wide-sampled set of SNPs (2.2%

versus 0.014%; p ¼ 9.83 10�140) with no expected FPR in-

crease (Figures 4B and 4C; Materials and methods; Supple-

mental Notes S7 and S8; Figures S5A–S5D). In contrast, we

failed to identify significant GxG interactions influencing

BMI levels (Supplemental Notes S9 and S10; Figure S6).

We used an independent and randomly selected replica-

tion set of 68,840 unrelated British European individuals

from UKB to evaluate our findings in the discovery cohort

(Figure 3A). We refer to effect size estimates and p values

from the discovery set as bD and pD and those from the

replication set as bR and pR. We considered an interaction

to be replicated if the direction of effect was the same in

both discovery and replication sets [ sign(bD) ¼ sign(bR) ]

and pR < 0.05. Overall, 21.1% of significant GxE interac-

tions (FDR< 0.1) replicated, compared to 7.8%of GxE inter-

actions at similar nominal pD values based on genome-wide

SNPs (2.7-fold enrichment, p ¼ 2.2 3 10�4) (Figures 4F and

4G). The estimated replication rate increased as the signifi-

cance threshold became stricter: all nine FDR < 0.01
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Figure 3. GWAS of body mass index levels in UK Biobank
(A) Data for imputed genotypes and BMI in unrelated British European individuals were split into a discovery set, representing 80% of
the data, and a replication set, representing 20% of the data. Within the discovery set, a GWAS was performed on the means (muQTLs)
and variances (raw vQTLs) of untransformed BMI and on the variances (RINT vQTLs) and dispersion (dQTLs) of RINT BMI.
(B–H) Across SNPs, the effect sizes (B) and p values (C) were highly correlated betweenmuQTLs and raw vQTLs. The RINT reducedmean-
variance correlation (D) and identified a set of RINT vQTLs with smaller muQTL effects (E). Dispersion effects had the least correlation
with mean effects (F), and all dQTLs were not the most significant muQTLs (G). In (B)–(G), the red line represents the line of best fit.
Points are colored by the –log10 p value of the y axis analysis, and purple represents significance (p < 5 3 10�8 with raw BMI, p <
10�5 with RINT BMI). The GWAS results are summarized in (H), broken down into by the number of QTLs passing the different criteria
(indicated by the red coloring and gray counts).

The American Journal of Human Genetics 108, 49–67, January 7, 2021 57



Figure 4. Discovery and replication of GxE interactions
(A) Heatmap of all QTLs with an FDR < 0.1 GxE interaction in the discovery set. Each box colored by significance level in the discovery
set. Raw vQTL SNPs are highlighted in orange. Smok, smoking status; SB, sedentary behavior level; PA, physical activity level; Alc,
alcohol intake frequency.
(B–E) Quantile-quantile plots for all GxE interactions across environmental factors and (B) 5,016 matched genome-wide SNPs, (C) 502
QTLs, (D) 448muQTLs that are not raw vQTLs, or (E) 21 raw vQTLs. The x axis shows the –log10 p values under the null distribution, and
the y axis shows the observed –log10 p values, where each point represents a different GxE interaction. The red line represents the expec-
tation under the null with intercept ¼ 0 and slope ¼ 1.
(F–I) Replication rates of GxE interactions, as quantified by those with the same direction of effect in both discovery and replication sets
and pR < 0.05. Given a threshold x (x axis), the replication rate (y axis) is calculated for all interactions with pD < x. (F) GxE interactions
using 5,016 matched genome-wide SNPs. (G) GxE interactions using all 502 QTL-nominated SNPs. (H) GxE interactions using 448
muQTLs that are not raw vQTLs. (I) GxE interactions using 21 raw vQTLs. In (F)–(I), the confidence interval over replication rates is
shown in gray and the expected replication rate under random observations (2.5%) is shown in red. Red points are FDR < 0.1, <
0.05, and < 0.01 cut-offs. In (G) and (I), there are no FDR < 0.1 associations.
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Table 1. GxE interactions with FDR < 0.01

SNP Gene E bD pD bR pR pmean praw pRINT pdisp

rs539515 SEC16B alc �0.045 1.1 3 10�5 �0.065 1.6 3 10�3 10�44 10�8 0.26 0.42

rs56094641 FTO alc �0.058 8.6 3 10�12 �0.072 2.1 3 10�5 10�172 10�53 10�11 0.01

rs56094641 FTO SB 0.025 2.5 3 10�6 0.011 0.26 10�172 10�53 10�11 0.01

rs56094641 FTO PA �0.103 2.0 3 10�10 �0.077 0.02 10�172 10�53 10�11 0.01

rs56094641 FTO diet 0.078 9.6 3 10�8 0.091 3.5 3 10�4 10�172 10�53 10�11 0.01

rs58084604 MC4R diet 0.084 7.2 3 10�7 0.049 0.10 10�73 10�19 10�4 0.21

rs7132908 FAIM2 SB 0.030 8.4 3 10�9 0.008 0.44 10�30 10�11 10�3 0.14

rs12467692 UBE2E3 alc 0.040 6.8 3 10�6 0.031 0.08 10�10 10�3 0.26 0.96

rs12996547 TMEM18 age �0.007 1.8 3 10�5 �0.006 0.07 10�16 10�7 10�3 0.05

From left to right: the SNP name, annotated gene (based on evidence in the Open Targets database, see Material and methods), environmental factor (Smok ¼
smoking status; SB ¼ sedentary behavior level; PA ¼ physical activity level; Alc ¼ alcohol intake frequency), estimated effect size and p values in the discovery
cohort, estimated effect size and p values in the replication cohort, and p values from the four QTL studies: muQTLs, raw vQTLs, RINT vQTLs, and dQTLs. Summary
statistics for all available QTLs are available in Data S9.
interactions replicated effect direction and four of the nine

passed pR < 0.05 significance. We note that the replication

rate is low because of the much smaller sample size in the

replication set, which creates difficulty achieving statistical

significance at pR < 0.05. (The rate is 73.7% when requiring

only the same direction of effect.) Our data suggest that in-

teractions with the 502 unique QTLs had significantly

greater replication rates compared to interactions from

genome-wide SNPs, despite similar nominal pD values (Sup-

plemental Note S11; Figure S5E).

We found that the increased discovery and replication

rates are driven by raw variance effects. 14.2% of tested

GxE interactions with raw vQTLs were significant (FDR <

0.1), a 10.0-, 8.6-, and 7.7-fold higher GxE discovery rate

than muQTLs, RINT vQTLs, and dQTLs, respectively, in the

absence of a significant raw vQTL association (1.4%, 1.7%,

and 1.9% respective discovery rates, p < 10�12 for each; Fig-

ures 4D and 4E; Figures S5E–S5I). Raw vQTLs drove the GxE

discovery rate, regardless of transformation to BMI (Supple-

mental Note S12; Tables S1 and S2). Similarly, the interac-

tions from vQTLs (FDR < 0.1) had a 2.8-fold higher replica-

tion rate compared to muQTLs that were not raw vQTLs

(38.1%versus13.5%;p¼4.3310�3) (Figures4Hand4I; Sup-

plemental Note S13). Lastly, we found that the GxE effects

correlated best with the raw vQTL effects compared to the

muQTL, RINT vQTL, or dQTL effects (Figure S7). Hence, we

found that the ability to discover and replicate GxE interac-

tions was primarily driven by a single SNP’s marginal associ-

ation with untransformed BMI variance.

Large GxE interactions influence BMI

The most significant interaction identified with respect to

BMI was between the FTO intronic region and alcohol

intake frequency (p ¼ 8.6 3 10�12). The FTO intron region

harbors the strongest muQTL (p¼ 1.33 10�172), raw vQTL

(p ¼ 5.4 3 10�53), and RINT vQTL (p ¼ 3.7 3 10�11) asso-

ciation with BMI (rs56094641), has been functionally

implicated as a key obesity regulator inmouse experiments
The Am
and CRISPR-Cas9 editing of human samples,58,59 and was

recognized as a GxE interaction hotspot in previous

studies.49 At this locus, we identified additional interac-

tions (FDR < 0.1) with sedentary behavior (pD ¼ 1.2 3

10�6), physical activity (pD ¼ 2.0 3 10�10), diet (pD ¼
7.9 3 10�7), age (pD ¼ 1.1 3 10�4), and smoking behavior

(pD ¼ 9.6 3 10�4) but not with sex (pD ¼ 0.39) (Table 1;

Figure 5A). Using BMI as the response, we fit a model con-

taining each significant interaction with rs56094641 (plus

all main effects) and found a significant effect for each GxE

term (p < 0.05), suggesting that each interaction is inde-

pendent (Table S3). Furthermore, modeling the interac-

tions reduced the estimated variance effect by 20.1%.

The most significant GxE interaction identified outside

the FTO region was between the rs7132908 variant and

sedentary behavior level (pD ¼ 8.4 3 10�9). This variant

lies in the 30-UTR of FAIM2, with selective and functional

constraint (as estimated by SiPhy60 and GERP61), 30

different bound proteins in ENCODE ChIP-seq experi-

ments,62 and a high prevalence of enhancer histone marks

and DNase sites across tissue types in the Roadmap Epige-

nomics Consortium.52,63 FAIM2 encodes an anti-apop-

topic protein and exhibits a brain-specific gene expression

pattern across human tissues.50 Previously, it has been

shown that FAIM2 expression is regulated by dietary expo-

sures64 and FAIM2 promotor methylation is regulated by

sedentary behavior.65 Furthermore, the rs7132908 variant

has another significant GxE interaction (FDR < 0.1) with

alcohol intake frequency on BMI (pD ¼ 1.7 3 10�4).

The four other FDR < 0.01 GxE interactions we discov-

ered were between rs58084604 (near MC4R) and diet

(pD ¼ 7.2 3 10�7), rs539515 (SEC16B) or rs12467692

(UBE2E3) and alcohol intake frequency (pD ¼ 1.1 3 10�5

and pD ¼ 6.8 3 10�6, respectively), and rs12996547

(TMEM18) and age (pD ¼ 1.8 3 10�5). All nine FDR <

0.01 interactions replicated with the same direction of ef-

fect, and four of the nine had pR < 0.05 (Table 1; Table

S4). MC4R gain-of-function mutations protect against
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Figure 5. GxE interactions across environmental factors, human phenotypes, and cell types
(A) The estimated marginal BMI effect of the rs56094641 G allele conditioned on the different environmental co-variates. For visuali-
zation, age, sedentary behavior values, and diet (bottom 20%, middle 60%, upper 20%) were grouped and ’’rarely’’ or ‘‘never’’ answers
for alcohol intake frequency were combined. Significant GxE interactions are highlighted with an asterisk (FDR < 0.1), and nominal p
values are shown.
(B) Estimated GxE effects in BMI within the 80% discovery set (x axis) from linear regression were correlated with estimated GxE effects
on diabetes risk within the 20% replication set (y axis) from logistic regression. Each data point represents a different SNP 3 co-factor
interaction. BMI GxE interactions appear predictive of diabetes GxE interactions.
(C and D) The estimated marginal effect of the rs4743930 T allele on (C) BMI and (D) diabetes risk, conditioned on physical activity
levels. Estimated diabetes risk effect is in terms of the relative odds ratio (OR). In (A), (C), and (D), the estimate is shown by the black

(legend continued on next page)
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obesity risk66 and have been functionally validated in

obesity in mice,67 while Sec16b knockout mice carry

decreased cholesterol levels with higher body weight.68

We found that age and the rs12996547 haplotype are asso-

ciated with increased TMEM18 expression in visceral adi-

pose GTEx tissue50 (age, r ¼ 0.22, p ¼ 4.4 3 10�5; SNP,

b ¼ 0.155, p ¼ 3 3 10�4), which may be one mechanism

to jointly reduce BMI levels. Previously, Tmem18 germline

loss in mice led to increased body weight, whereas overex-

pression resulted in weight loss by regulating appetite and

energy balance.69 Our findings in UKB and GTEx lend

further evidence to support the role of TMEM18 in BMI.
GxE interactions have pleiotropic effects over BMI and

diabetes risk

We aimed to determine whether GxE interactions influ-

encing BMI levels exhibit pleiotropic effects and are shared

across human diseases, possibly by jointly influencing BMI

and disease risk (Figure S8A). From the set of 78 significant

GxE interactions above (FDR < 0.1), we identified a set of

58 GxE interactions associated with the same direction of

effect on BMI in both discovery and replication sets. We

then screened these GxE interactions against three addi-

tional medical diagnoses: CAD, diabetes, and HBP diag-

nosis (Material and methods).

We found that GxE effects on BMI estimated in the dis-

covery cohort significantly correlated with GxE effects on

diabetes risk within the held-out set (r ¼ 0.59, p ¼ 1.3 3

10�6) (Figure 5B), even after adjusting for BMI as a

confounder (r ¼ 0.38, p ¼ 3.3 3 10�3) (Figure S8B), indi-

cating that BMI GxE effects are predictive of GxE influ-

ences over diabetes risk. Furthermore, we identified one

significant disease interaction (FDR < 0.1) where physical

activity regulated the association of rs4743930 with dia-

betes risk (p ¼ 8.7 3 10�5; FDR ¼ 0.015). In a previous

UKB analysis (see ‘‘Neale lab GWAS in UK Biobank’’ in

Web Resources), this variant is marginally associated with

diabetes risk at p ¼ 0.022 and consequently would not

appear as one of the most significant findings in a hypoth-

esis-free GWAS. Within low exercise individuals, the

rs4743930 Tallele was associated with increased BMI levels

(bD ¼ 0.19 kg/m2 per T, pD ¼ 8.5 3 10�11) and increased

diabetes risk (ORD ¼ 1.10, or a 10% risk increase per T,

pD ¼ 2.7 3 10�5). Within moderate or high exercise indi-

viduals, there was a minor association with BMI levels

and no significant association with diabetes risk (Figures

5C and 5D). This interaction could be linked to decreased

BMI levels and protective diabetes effects in both discovery

and replication sets (BMI, bD ¼ �0.075, bR ¼ �0.042; dia-
dot, and the bars indicate the 95% confidence intervals. Smok, smok
Alc, alcohol intake frequency.
(E) The proportion of pure muQTLs (those with no significant raw vQ
proportion of raw vQTLs that are associated. Each point is a different
type associations significantly enriched in the raw vQTL set (FDR <
(F) The�log10(FDR) describe the partitioned enrichment of BMI mean
given cell type. Only cell-types with FDR < 0.1 in the BMI variance

The Am
betes risk, bD ¼ �0.075, bR ¼ �0.065), although pR ¼
0.25 and pR ¼ 0.09 for BMI and diabetes risk in the replica-

tion set (possibly as a result of lower sample size; Table 1

shows that more than half of the FDR < 0.01 interactions

had pR > 0.05 despite same effect direction). The observed

associations remained present after adjusting for BMI as a

confounder (bD ¼ �0.058, pD ¼ 2.5 3 10�3; bR ¼
�0.066, pR ¼ 0.09) (Figure S8C).

Leveraging the genomic (transcription start site prox-

imity), transcriptomic (eQTL studies), and epigenomic in-

formation (Promoter Capture Hi-C data) found in the

Open Targets database,53 we inferred that rs4743930

most likely regulates the BARX1 gene, which is part of

the homeobox transcription factor family integral to

anatomical development. BARX1 exhibits a noteworthy

tissue-specific gene expression pattern across human tis-

sues, with high expression in visceral adipose, esophagus,

and stomach tissue and very low expression in other

GTEx tissues50 (Figure S8D). Previous research has shown

that the BARX1 transcription factor protein is a key regu-

lator of stomach cell fate and organogenesis and Barx1�/�

knockout mice have significantly altered stomach

morphology as a result of inhibition of the Wnt signaling

pathway.70,71 As theWnt signaling pathwaymodulates the

formation of adipose tissue and regulates the sensitivity to

insulin, it has been proposed that pathwaymalfunctioning

could lead to high co-morbidities of obesity and diabetes.72

Here, we provide human genetic evidence of a pathway

regulator, BARX1, to support Wnt signaling’s proposed

pleiotropy over body weight and diabetes risk.
vQTLs are linked to environmentally influenced

pathways and phenotypes

Since SNPs associated with the variance of untransformed

BMI acted as hotspots of GxE interactions, we explored

whether certain phenotypes and pathways were more

likely to be linked to raw vQTLs compared to SNPs only

associated with the mean of BMI. These muQTLs, which

are not significant vQTLs, are referred to as ‘‘pure

muQTLs.’’

To evaluate this, we used the Open Targets database,53

which contains a large catalog of genotype-phenotype as-

sociations. We performed a (mean-based) PheWAS of 21

raw vQTLs and 448 pure muQTLs by querying all pheno-

types available in Open Targets. Using a binomial test,

we assessed whether the group of raw vQTLs were enriched

for an association with a phenotype (nominal p < 0.05)

compared to the group of pure muQTLs (nominal p <

0.05) (Material and methods).
ing status; SB, sedentary behavior level; PA, physical activity level;

TL association) associated with a phenotype were compared to the
phenotype that is included in the Open Targets database. Pheno-
0.1) are highlighted in red.
and BMI variance heritability in specifically expressed genes for a

analysis are shown. Dashed red lines drawn at FDR < 0.1.
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Table 2. PheWAS enrichment of raw vQTLs versus pure muQTLs

Phenotypes muQTL vQTL Ratio p FDR

Diabetes diagnosed by doctor 0.47 0.86 1.83 2.6 3 10�4 0.017

Diabetes mellitus 0.33 0.67 2.029 1.6 3 10�3 0.047

Diabetic retinopathy 0.05 0.33 6.318 6.85 3 10�5 0.010

Eosinophil counts 0.15 0.43 2.882 1.89 3 10�3 0.055

Hypothyroidism 0.12 0.43 3.647 3.32 3 10�4 0.020

Mean corpuscular haemoglobin 0.23 0.67 2.866 2.87 3 10�5 0.009

Neutrophil percentage 0.23 0.52 2.299 2.98 3 10�3 0.065

Osteoarthritis | non-cancer illness code, self-reported 0.17 0.57 3.310 4.36 3 10�5 0.010

Red blood cell (erythrocyte) distribution width 0.27 0.62 2.305 7.89 3 10�4 0.038

Red blood cell count 0.20 0.57 2.906 1.64 3 10�4 0.014

Reticulocyte fraction of red cells 0.18 0.62 3.536 7.18 3 10�6 0.006

Type 1 diabetes 0.09 0.33 3.861 1.40 3 10�3 0.047

Type 2 diabetes 0.41 0.71 1.762 4.13 3 10�3 0.078

Type 2 diabetes with neurological manifestations 0.06 0.38 6.619 1.24 3 10�5 0.006

Type 2 diabetes with ophthalmic manifestations 0.06 0.33 5.148 2.47 3 10�4 0.017

Ulcerative colitis | non-cancer illness code, self-reported 0.05 0.24 4.513 4.08 3 10�3 0.078

From left to right: the phenotype, the proportion of pure muQTLs and raw vQTLs that are associated with the phenotype, the ratio between the two proportions,
the binomial test p value to assess vQTL set enrichment, and the FDR corrected significance. These phenotypes represent a manually curated and incomplete list of
all significant findings presented in Data S10.
Overall, we found vQTLs were enriched for an associa-

tion with many phenotypes that have a strong environ-

mental influence (whether from diet, exercise, infection,

or microbiome). These included several diabetes-, im-

mune-, and hematological-related phenotypes (Table 2;

Figure 5E). Permutation analyses of the pure muQTLs

showed that the PheWAS-based enrichment test did not

have inflation of false positives (Figure S9A).

Next, we mapped non-MHC SNPs to single genes by us-

ing genomic proximity and Open Targets’ variant-to-gene

pipeline, queried raw vQTL gene sets or pure muQTL

gene sets in GeneMania, and performed GO enrichment

analysis of the resulting gene network (Material and

methods; Supplemental Note S14; Data S3 and S4). We

found that the network of raw vQTL genes was enriched

for G protein-coupled receptor (GPCR)-related signaling

pathways and cell growth processes (Data S5 and S6). In

contrast, the pure muQTL network was enriched for devel-

opmental processes, particularly in the central nervous sys-

tem (CNS), with no enrichment in the GPCR-related GOs

(Data S7 and S8). GPCRs transduce extracellular signals

and activate downstream a cascade of intracellular proteins

and pathways, which is essential for how cells interact

with the environment.

Polygenic heritability analysis implicates stomach cell

types in regulating BMI variability

We evaluated whether the genetic contribution to the

variability around the mean of BMI, a potential proxy

for GxE interactions, might implicate different cell types
62 The American Journal of Human Genetics 108, 49–67, January 7, 2
in regulating BMI levels compared to studies only on the

mean of BMI. In Drosophila, the variability of a phenotype

can be heritable.73 Considering this, we performed parti-

tioned LD score regression on mean (muQTL) and vari-

ance (raw vQTL) GWAS summary statistics to find cell

types enriched for BMI heritability. We used 205 func-

tional annotations from GTEx50 and the Franke lab74

that describe tissue-specific genes in each cell type.

Overall, we found that estimated cell type enrichment

values were similar in both the BMI means and variances

analyses (r ¼ 0.81; p ¼ 1.4 3 10�48) (Figures S9B and

S9C). For example, the genetic signals for both were clus-

tered in genes uniquely expressed in the CNS, as described

previously.54 Notably, we discovered that the heritability

of BMI variability was significantly enriched (FDR < 0.1)

at genes with the highest expression in stomach cell types

(p ¼ 1.2 3 10�3; FDR ¼ 0.049), with no significant associ-

ation in these regions for mean BMI heritability (p ¼ 0.40)

(Figure 5F; Supplemental Note S15). This preliminarily sug-

gests that stomach cell types, in addition to CNS cell types,

have a critical role over BMI variability and regulating po-

tential GxE interactions and that this would not be discov-

ered in a mean-based analysis.
Discussion

We have identified SNPs associated with the variance of

BMI (vQTLs), which are enriched for GxE interactions

and for associations with phenotypes under strong
021



environmental influences. When functionally profiling

the annotated genes of vQTLs, we found enrichment for

GPCR-related signaling pathways, which are key to cells’

responses to the external environment. We also discovered

that SNPs clustered near genes highly expressed in stom-

ach cells are enriched for the heritability of BMI variability.

This was not revealed in an analysis of the heritability of

BMI means.54 These findings may suggest a key role for

host-gut microbiome interactions within body weight eti-

ology. Future application of our methods across pheno-

types has the potential to identify genes, pathways, or

cell types that serve as key regulators of the interplay be-

tween genetics and environment.

Additionally, we showed how GxE interactions first iden-

tified in BMI were predictive of the GxE effects on diabetes

riskwithinadistinct setof individuals.We furtherdiscovered

a BARX1 regulatory locus that significantly increases BMI

and diabetes risk in low exercise individuals but does not

havepleiotropicpopulationeffects inmoderate tohighexer-

cise individuals. This framework of screening for SNPs as

interaction candidates within quantitative phenotypes to

subsequently discover interactions influencing complex dis-

ease can be broadly applicable across the range of human

phenotypes. Methods to deconvolute case-control disease

phenotypes into a quantitative scale that re-captures disease

granularity and severity will enable the application of vQTL

testing directly to the disease phenotype of interest.

We explored multiple approaches to decouple mean and

variance effects, evaluate the relationship between the two,

and find GxE interactions. It can be hypothesized that the

mean-variance relationship is due to either true underlying

interactions or to artifacts of scaling of non-normal distri-

butions. While Young et al.27 introduced a test for identi-

fying SNPs associated with the variance of a phenotype in-

dependent of amean effect (whichwe referred to as dQTLs),

we found that the strongest GxE signal came from the SNPs

associatedwith the variance of BMI prior to statistical trans-

formations (raw vQTLs). Although important to the discov-

ery of interactions, we forewarn that raw vQTLsmost likely

describe differences in variability, not variance, as the asso-

ciation could be removed by transformation75 (only seven

of 21 vQTLs on untransformed BMI were also found in

the analysis on RINT BMI). Thus, settling whether the

mean-variance relationship is a consequence of widespread

interactions or of scale phenomena may be difficult

throughonly analysis ofobservational data.Understanding

the underlying causalmechanisms in putative GxE interac-

tions will be required. If raw vQTLs are a robust footprint of

interactions and estimated raw vQTL effects correlated

strongly with mean-based effects, then this suggests that

any SNP directly impacting BMI may be more likely to

have its BMI effect modified by another factor.

GWAS type testing is not the only approach to limiting

the number of potential interactions to explore. Other pre-

viously used approaches for reducing vast genomic data are

filtering SNPs on the basis of prior biological information76

or combining SNPs into higher-order gene-level data.77 A
The Am
significant drawback of these methods is that they will

not be a hypothesis-free genome-wide approach. Prior in-

formation is biased to prior knowledge, and gene-level

data limit the search space for potential interactions.

Alternatively, new statistical advances (such as

LEMMA78 or StructLMM79) identify broad interactions at

single SNPs by simultaneously testing for an interaction

with large numbers of environmental variables. LEMMA

combines many factors into a single environmental score,

whereas StructLMM employs a variance component test to

model the environmental similarity between individuals.

However, previous application of these multivariate

methods to BMI missed key interactions.78,79 For example,

LEMMA did not find the FTO locus where we found six sig-

nificant interactions (Figure 5A) and StructLMM did not

identify the SEC16B locus where we found three signifi-

cant interactions78 (Figure 4A; Figure S10). We found

many instances where variants that were not discovered

via the multivariate approaches only interacted with a sin-

gle environmental factor (Figure 4A).78,79 In cases where a

SNP has a unique GxE interaction profile, a simple interac-

tion model may be the more robust model to use. None-

theless, there now exists a promising opportunity to

explore broad interactions between many vQTLs and

extensive environmental risk factors within complex traits

through combining vQTL tests withmultivariate methods.

Although the DRM vQTL approach that was applied in

these analyses has advantages in power, any detection of

interaction effects will have lower power than tests of

main effects. It is anticipated that the increasing sample

sizes of GWASs will enable more sensitive detection of sig-

nificant loci and more precise estimation of their variance

effects. This will in turn improve the sensitivity of a vari-

ance test in detecting underlying GxE interactions. We

note that a limitation of the DRM is that relatedness is

not accounted for within a linear mixed model, unlike

the Young et al. suite of methods.27 The test statistics could

still be adjusted for inflation (due to relatedness) with LD

score regression or genomic control,80 but how this post-

analysis adjustment might compare to a within-analysis

adjustment for relatedness (via linear mixed models) in

vQTL analysis is unclear. Recent work has also shown

that modeling the variance effects can improve the infer-

ence of single SNP mean effects.81

Furthermore, replication of GxE interactions require spe-

cial attention. Here, we split UKB individuals into two

mutually exclusive groups, but this approach is not the

same as performing tests on two completely independent

population samples. There may be unmeasured confound-

ing factors in the UKB samples that drive spurious associa-

tions. Interactions will need to be independently repli-

cated in other cohorts to weed out spurious signals,

although any lack of replication could be due to differences

in allele frequencies, cultural behavior, and other environ-

mental variables. For our purposes, we used the study

design to allow a comparison of replication rates between

two sets of GxE interactions.
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One future research area is the evaluation of polygenic

scores that consider interaction effects. Polygenic scores

are currently based on only marginal additive effects, and

our research identified strong GxE interactions influencing

BMI variability. For example, variants in the FTO intron

region (the strongest genetic regulators of obesity) are associ-

ated with a nearly double BMI increase in low exercise

individuals compared to high exercise individuals (Fig-

ure 5A). Interactions can perturb each individual from the

expectationgivena singlegenotype, and the ideal individual

prediction would accommodate these interaction effects.

Perhaps themost important requisite to improve our un-

derstanding of GxE interaction in humans is the collection

of accurate, high-quality measurements of relevant envi-

ronmental variables. Specialized wearable tracking devices

and improvements in biomarker data are being explored,

and the hope is that these will deliver a quantum improve-

ment in the availability and accuracy of environmental

data. In these settings, vQTLs can provide a promising

approach to reduce dimensionality of genetic data and in-

crease statistical power to detect GxE interactions. Overall,

our work highlights the ability to discover significant envi-

ronmental influences that modulate the genetic contribu-

tion to human phenotypes.
Data and code availability

UK Biobank data was accessed under application number

47137. Code to run a DRM on any genome-wide associa-

tion study data is available at https://github.com/

drewmard/DRM. Computer code to reproduce the analyses

is available at https://github.com/drewmard/ukb_vqtl.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.11.016.
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BEDMatrix, https://github.com/QuantGen/BEDMatrix
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Deviation regression model, https://github.com/drewmard/DRM

GeneMania, https://genemania.org/

GTEx, https://www.gtexportal.org/home/

HaploReg, https://pubs.broadinstitute.org/mammals/haploreg/

haploreg.php

Heteroscedastic linear mixed model and dispersion effect test,

https://github.com/AlexTISYoung/hlmm

International Physical Activity Questionnaire analysis guide-

line, https://www.academia.edu/5346814/Guidelines_for_Data_

Processing_and_Analysis_of_the_International_Physical_Activity_

Questionnaire_IPAQ_Short_and_Long_Forms_Contents

Linkage Disequilibrium Score Regression, https://github.com/

bulik/ldsc
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