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EDITOR'S NOTE:

This article is part of the special series “Applications of Bayesian Networks for Environmental Risk Assessment
and Management” and was generated from a session on the use of Bayesian networks (BNs) in environmental modeling and
assessment in 1 of 3 recent conferences: SETAC North America 2018 (Sacramento, CA, USA), SETAC Europe 2019 (Helsinki,
Finland), and European Geosciences Union 2019 (Vienna, Austria). The 3 sessions aimed at showing the state-of-the art and
new directions in the use of BN models in environmental assessment, focusing on ecotoxicology and water quality mod-
eling. This series aims at reflecting the broad applicability of BN methodology in environmental assessment across a range
of ecosystem types and scales, and discusses the relevance for environmental management.

ABSTRACT

Human activities both depend upon and have consequences on the environment. Environmental risk assessment (ERA) is a
process of estimating the probability and consequences of the adverse effects of human activities and other stressors on the
environment. Bayesian networks (BNs) can synthesize different types of knowledge and explicitly account for the proba-
bilities of different scenarios, therefore offering a useful tool for ERA. Their use in formal ERA practice has not been
evaluated, however, despite their increasing popularity in environmental modeling. This paper reviews the use of BNs in ERA
based on peer-reviewed publications. Following a systematic mapping protocol, we identified studies in which BNs have
been used in an environmental risk context and evaluated the scope, technical aspects, and use of the models and their
results. The review shows that BNs have been applied in ERA, particularly in recent years, and that there is room to develop
both the model implementation and participatory modeling practices. Based on this review and the authors’ experience, we
outline general guidelines and development ideas for using BNs in ERA. Integr Environ Assess Manag 2021;17:62-78. © 2020
The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of
Society of Environmental Toxicology & Chemistry (SETAC)
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INTRODUCTION the factors contributing to the likelihood and magnitude of

Environmental risks emerge when human activities have
adverse impacts on the environment. Societies and their
interaction with ecosystems are called social-ecological
systems (SES), which are often highly complex (Ostrom
2009). This complexity creates uncertainty about the risks.
To assess and control these risks, we need to understand
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the adverse impacts.

Environmental risk assessment (ERA) is a process of esti-
mating the probability and consequences of the potential
adverse effects of human activities on the environment
(USEPA 1998; Jardine et al. 2003; Burgman 2005). By eval-
uating the nature and extent of the uncertainties, ERA aims
to provide a plausible and justified picture of the possible
outcomes of human activities and future management
actions (Ascough et al. 2008; Fenton and Neil 2012). As
management interventions are directed toward unknown
future conditions, it is essential to identify the probable fu-
ture outcomes with tools that are robust under uncertainty
(Schindler and Hilborn 2015). An ideal ERA model should
thus allow exploring, explaining, and forecasting the re-
sponses of an environmental system to changes in natural
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and human-induced stressors in the presence of incomplete
knowledge (Mclntosh et al. 2011; Whelan et al. 2014). Al-
though the terminology, scope, and elements vary among
the existing ERA frameworks (see Cains and Henshel [this
issue]), the fundamental purpose of the ERA process is—
through risk identification, analysis, and evaluation—to find
optimal management actions under uncertainty (Figure 1).
Bayesian networks (BN) offer a useful tool for ERA be-
cause they can integrate different types of knowledge, logic,
and rules in systemic entities. In a BN model, dependencies
between the variables are represented as conditional
probability distributions, explicitly addressing uncertainty in
different parts of the analyzed system. BNs can be extended
into influence diagrams (ID) that include the different deci-
sion options and valuations of the various outcomes. These
models can be used in decision analysis to find the formally
optimal management strategies under different scenarios.
Since their first applications in environmental sciences at
the end of the 20t century (Varis and Kettunen 1988; Varis
and Kuikka 1997; Reckhow 1999), BNs have been gaining
more popularity. In 2011, Aguilera and coauthors reviewed
how BNs had been used in environmental modeling; to our
knowledge, this is the only general literature mapping study
on BNs in the field of environmental sciences so far. Envi-
ronmental BN studies have since been reviewed in the
context of climate change (Sperotto et al. 2017), water re-
source management (Phan et al. 2016), ecological risk as-
sessment for freshwater and estuarine ecosystems
(McDonald et al. 2015), and ecosystem service modeling
(Landuyt et al. 2013). Although these reviews cover many
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Figure 1. Risk assessment as a part of risk management (adapted from ISO
2018 and EPA 2018). Planning and problem formulation include setting
the scope, context, and criteria for risk assessment. Risk assessment
includes the stages of risk identification, risk analysis (the quantification of
risks), and risk evaluation (consideration and comparison of risk reduction
measures). Risk treatment includes selecting and implementing treatment
measures. The risk management process is an iterative process based on
continuous monitoring and review as well as communication.

key aspects of BN modeling, the use of BNs in ERA has not
been previously evaluated. Therefore, we conducted a sys-
tematic literature mapping study (James et al. 2016) in
Scopus and Web of Science to evaluate how BNs have been
used in ERA, based on peer-reviewed literature. The iden-
tified articles (497) were screened for relevance at the title,
abstract, and full text level using predefined inclusion cri-
teria. Through an iterative framing process, 72 studies pre-
senting BN models were included for further content
analysis to evaluate their contribution to ERA.

The present paper is structured as follows: After outlining
the properties of BNs, we provide details of the literature
search and screening procedures, followed by a description
of the data extraction protocol. In the Results section, sta-
tistics of the search and screening procedures followed by a
critical appraisal of the process are presented. In the
Discussion section, we elaborate the primary research
question on the use of BNs in an ERA context, further re-
flecting the results to our own experiences on applying
the methodology, and acknowledging also the latest
methodological advancements in the field of BN modeling.

BAYESIAN NETWORKS

Bayesian networks (BN, also called belief networks or
Bayesian belief networks), are a type of a probabilistic model
consisting of 1) a directed acyclic graph defining the condi-
tional dependencies (and, by implication, independencies)
between the variables (often called nodes), and 2) the
strength and shape of these dependencies as quantified by
conditional probabilities (Pearl 1986) (the basic principles of
BNs are illustrated in Figure S1). A directed acyclic graph
indicates that the links between the variables are directed,
that is, “arrows” from one variable to another, and acyclicity
means these arrows are not allowed to form a loop. In-
troduction to BNs in the risk assessment context is given by
Fenton and Neil (2012). Key textbooks on the method in-
clude those by Jensen and Nielsen (2007), Kjaerulff and
Madsen (2008), and Korb and Nicholson (2010).

Both the structure and the parameters of a BN can be
defined either by using algorithms to derive them directly
from data or through expert judgment (potentially using
previous research, data, literature, etc.). Learning the struc-
ture from data is computationally challenging; the algo-
rithms need ample data and generally must rely on
heuristics or constraints to assist the structure search
(Barber 2012). Once the structure is defined, expectation
maximization algorithms (Dempster et al. 1977; Lauritzen
1995) may be used to iteratively learn the parameter values
from data, even if some data are missing.

When the BN structure is defined by experts, it usually
aims to mimic the known causal relationships in the mod-
eled system. This causal approach enables the evaluation of
cascading effects through the system and of potential fac-
tors that may increase or reduce the risks (Fenton and
Neil 2012; see the oil spill example in Supplemental Data
Figure S2). A qualitative causal representation alone can
help us understand how risks emerge and can be controlled
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(Chen and Pollino 2012; Carriger et al. 2018), making BNs a
useful tool for the risk framing and identification phase of
the ERA process (Figure 1). These models can also be
changed into IDs by augmenting them with variables enu-
merating the decision options and representing the values
related to the different outcomes (e.g., the economic losses
related to an adverse effect, or the economic or cultural
value of a healthy environment; Kjaerulff and Madsen 2008).

As probabilistic models, the result of the BNs is a dis-
tribution over the possible values of each variable, which
allows the assessment of not only the expected (average) or
most likely outcome but also the uncertainty associated with
the prediction (Fenton and Neil 2012). For example, a
model could assess the probability that a fish stock size will
collapse below a critical limit under different scenarios
(Uusitalo et al. 2012), or that an ecosystem reaches an ac-
ceptable status in terms of a set of ecological indicators
(Moe et al. 2016).

BNs can therefore be regarded as a scenario synthesis
tool, in which all possible combinations of events are taken
into account by weighting them according to how likely they
are to occur (Pihlajaméki et al. 2020). Value of information
analysis can be used to compute the expected economic
value of knowing the state of a variable before deciding
about the risk controlling strategy, if the model includes
economic values for the interest variables (Mantyniemi et al.
2009). Entropy-based sensitivity analysis, in turn, helps rec-
ognize variables that have the greatest information value
for predicting the status of the assessment endpoints
(Lehikoinen et al. 2019). This type of information can also
be used to support rational allocation of the restricted
resources for monitoring and research (Morgan 2005).

The modular nature of the BNs enables the combining of
multiple networks, supporting iterative model development.
Networks with at least 1 identical node can be interlinked to
form a more holistic system, supporting integration of
modeling work as done, for example, in separate projects.
The integration starts a 2-way information flow between the
subsystems, which may provide interesting insights on how
they are interrelated. This relationship is based on the BN
ability to support bidirectional reasoning, both predictive
from causes to effects and diagnostic from observations to
their potential causes (Korb and Nicholson 2010; Carriger
et al. 2016).

According to decision theory (Raiffa and Schlaifer 1961),
the best management action is the one that maximizes the
total expected utility while minimizing the (potential)
losses (Fenton and Neil 2012). However, sometimes the
scenario producing the highest expected utility may also
bear the greatest uncertainty concerning its output, in-
cluding the possibility of failing to meet management
objectives. At the same time, a scenario with smaller ex-
pected utility may operate through well-known mecha-
nisms, thus resulting in smaller uncertainty and a lower
probability for failure. This transparent notion of un-
certainty related to the results of risk evaluation is another
asset of BNs as a tool for ERA.

METHODS

Article screening was conducted following the protocol of
the open access online tool CADIMA (Kohl et al. 2018; www.
cadima.info), developed to assist the working of systematic
mapping and review teams. The content analysis was con-
ducted using a questionnaire developed by the authors
(Supplemental Data S4).

Search strategy

Literature searches were conducted from Web of Science
and Scopus in May-June 2019. The search strings for dif-
ferent combinations of “Bayesian,” “network,” “ecological,”
“environmental,” and “risk” (see Supplemental Data
Table S3) were used to find the studies considering the BNs
in the ERA context. The searches included titles, abstracts,
and keywords of the articles. The inclusion of gray literature
such as project reports was outside the scope of this review,
but this would be a valuable addition in the future to
evaluate the practical applications of BNs in ERA.

Study selection

Step 1: Screening of the title and abstract. After duplicate
removal, records were screened based on the titles and
abstracts, using the following preliminary inclusion criteria:

1. The record is a scientific article, published in a peer-
reviewed journal.

2. The record is said to present (develop, apply, or analyze)
a BN model.

3. The analytical question of the study relates to ERA,
wherein “environment” refers to the living environment of
humans or wildlife.

Each article was evaluated independently by 2 authors. In
a case of inconsistency between judgments of the 2 authors,
all authors discussed it and decided together whether to
exclude the paper or pass it on to the next phase.

Step 2: Full text screening. We used the following specifi-
cations for the full text screening step:

1. Concerning the definition of a BN, we decided to include
all articles presenting a model that was defined as a BN, if
it met all other inclusion criteria.

2. The article should provide at least 1 application of a BN
model, explaining its principle, structure, data, or other
sources of background information.

3. Regarding the concept of environmental risk, articles fo-
cusing on purely the occurrence of natural phenomena
(e.g., landslides, storms, floods), not considering envi-
ronmental impacts or human impact on their occurrence,
were excluded. Articles focusing only on human health
issues were not in the scope of the present analysis.

Because many of the included papers mentioned the
connection of the study to the ERA only in the abstract and
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Figure 2. Conceptual diagram of how environmental risk analysis (ERA) is considered in the present literature mapping study. ERA is thought to operationalize
when at least one of the links (arrows) connecting the human society with the ecosystems is analyzed (modeled). List of examples is not exhaustive.

introduction without actually contributing to the context in
practice, the need for a more precise definition of the ERA
concept was recognized. The outcomes of this discussion
are synthesized in Figure 2, stating that the ERA studies in
the focus of this literature mapping study analyze the likely
extent of harmful environmental effects caused by human
activities, and further on, the likely extent of impacts of
these environmental changes on the society.

Content analysis

To evaluate how the selected BN models had been ap-
plied in an ERA context, we developed a questionnaire to
identify both methodological and thematic attributes of the
models (Supplemental Data S4). Each paper was analyzed
by 1 author. The questionnaire includes both multiple
choice and open-ended questions concerning these points:

* The purpose of the presented analysis and model, and
their contribution to ERA
* The model building process

® Presented analytics

¢ The intended end use of the model and its results

® The pros and cons of the methodology mentioned in the
article and development ideas.

RESULTS

Article screening

The search procedure resulted in a total of 497 records
(Figure 3). Full content analysis was conducted for 72
studies. All analyzed papers are relatively recent, with more
publications on the subject in recent years (Figure 3). The
oldest publications included in the analyses based on the
inclusion criteria were from 2004.

Despite our preceding conceptual framing exercise
(Figure 2), the most difficult issue in the article selection
process was the wording “ERA context” in our research
question. A key topic was whether to include a paper that
we thought would be useful for ERA purposes, and where
some of the links of Figure 2 are covered, but where the
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Figure 3. Literature screening process for the analysis (A) and papers included in the content analysis by publication year (B).
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authors of the analyzed paper do not clearly present their
BN as a model to be used for ERA (see Tables S5 and Sé in
Supplemental Data for a list of studies and reasons for ex-
clusion). However, in some cases this was a fine line to draw
and may have resulted in variability among the analysts. The
studies excluded before content analysis consisted of
15 articles concerning human health issues and 32 with
other types of environments (e.g., built environments and
industrial risks) (Table Sé).

Scope and purpose of the analyzed models

The BN models selected for analysis came from multiple
domains, including hydrology, fisheries science, ecology,
agricultural science, environmental toxicology, and envi-
ronmental chemistry (Table 1). Given the complexity of

environmental risks, many studies were interdisciplinary,
making any classification reductionist. Water quality was
included as an assessment endpoint in 8 studies. Biological
invasions were another risk factor covered in several studies,
estimating, for example, the probability of establishment
and ecological effects of nonindigenous invasive species
(Herring et al. 2015; Lohr et al. 2017). The majority of studies
covered risks in the freshwater (24 papers) and marine
(23 papers) environments, with terrestrial and urban studies
less well represented (Table 1).

Despite the broad spectrum of environmental risks and
the case studies in the analyzed models, most of the studies
can be divided into approaches wherein the aim is to assess
1) the risk of a specific stressor to the environment in
general, 2) the risk from a variety of stressors to a specific
area, habitat, or species, or 3) both (Table 2). Many studies

Field

Ecology

Ecotoxicology and
environmental chemistry

Engineering, logistics, and
technology

Environmental management
and economics

Fisheries and aquaculture

Hydrology and earth
sciences

Table 1. Analyzed articles by principal field of science and domain

Domain

Terrestrial and urban

Freshwater

Marine, coastal, and
estuarine

Terrestrial and urban

Freshwater

Marine, coastal, and
estuarine

Terrestrial and urban
Freshwater

Marine, coastal, and
estuarine

Terrestrial and urban

Freshwater

Marine, coastal, and
estuarine

Freshwater

Terrestrial and urban

Freshwater

Marine, coastal, and
estuarine

References

Ayre and Landis (2012), Martin et al. (2015), Benjamin-Fink and

Reilly (2017), Lohr et al. (2017), Li et al. (2018), Ng et al. (2018),
Weyer et al. (2019)

Pollino et al. (2007), Roberts et al. (2013), Ayre et al. (2014), Boets et al.
(2015), Perez-Minana (2016), Shan et al. (2019)

Hamilton et al. (2007), Gibbs (2007), Ban et al. (2015), Herring et al.
(2015), Maxwell et al. (2015), Helle et al. (2016), Wooldridge et al.
(2017), Wu et al. (2018), McDonald et al. (2016), Graham et al. (2019)

Voie et al. (2010), Bayliss et al. (2012), Carriger and Newman (2012),

Tighe et al. (2013), Albuquerque et al. (2017)

Money et al. (2014), Money et al. (2012), Harris et al. (2017), Landis et al.
(2017), Johns et al. (2017)

Helle et al. (2011), Carriger and Barron (2011), Arzaghi et al. (2018),
Zhang et al. (2018), Fahd et al. (2019), Liu and Callies (2019),
Lu et al. (2019)

Shandilya et al. (2018), Malekmohammadi and Moghadam (2018)

Klemola et al. (2009), Leiger et al. (2009), Montewka et al. (2013),
Jolma et al. (2014), Lehikoinen et al. (2015), Ayele et al. (2016)

Newton et al. (2007), Grét-Regamey et al. (2013)
Barton et al. (2008), McVittie et al. (2015)

Stelzenmdiller et al. (2011), Fletcher et al. (2014), Rahikainen et al.

(2014), Helle et al. (2015)

Borsuk et al. (2006), Hines and Landis (2014), Wyman-Grothem
et al. (2018)

Nash et al. (2013), Subagadis et al. (2014), Bashari et al. (2016),
Garcia-Prats et al. (2018), Weil et al. (2018)

Mesbah et al. (2009), Pang and Sun (2014), Shenton et al. (2014),
Ahmadi et al. (2015), Van Looy et al. (2015), Maldonado et al. (2016),
O'Brien et al. (2018)

Borsuk et al. (2004)
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Table 2. Environmental risk focus of the analyzed articles with examples

Risk of

Toxic substances: contamination
and exposure

References

Albuquerque et al. (2017), Ayele et al. (2016), Bayliss et al. (2012), Fahd et al. (2019),
Harris et al. (2017), Landis et al. (2017), Liu and Callies (2019), Money et al.

(2014, 2012), Shandilya et al. (2018), Tighe et al. (2013), Voie et al. (2010)

Project, activity, event

Biological invasion or toxicity

Ahmadi et al. (2015), Malekmohammadi and Moghadam (2018), Weyer et al. (2019),
Zhang et al. (2018)

Boets et al. (2015), Hamilton et al. (2007), Herring et al. (2015), Lohr et al. (2017),

Martin et al. (2015), Ng et al. (2018), Shan et al. (2019), Wyman-Grothem et al. (2018)

Modification of environment
Risk to

Species or communities

Bashari et al. (2016), Garcia-Prats et al. (2018), Weil et al. (2018)

Pollino et al. (2007), Ayre et al. (2014), Ban et al. (2015), Benjamin-Fink and Reilly (2017),

Hines and Landis (2014), Maxwell et al. (2015), Roberts et al. (2013), Shenton et al.
(2014), Wooldridge et al. (2017), Wu et al. (2018)

State of the environment

Ayre and Landis (2012), Fletcher et al. (2014), Graham et al. (2019), Johns et al. (2017),

Maldonado et al. (2016), McVittie et al. (2015), O'Brien et al. (2018), Subagadis et al.
(2014), Van Looy et al. (2015)

Ecosystem services

included multiple endpoints and risk sources, and the divi-
sion presented here is not exhaustive.

A large number of the studies concerned risks posed by
toxic substances, evaluating notably the risk of environ-
mental contamination from the pollution source to the en-
vironment (Landis et al. 2017) or the probability of the
exposure and its effects on the environment (Helle
et al. 2016) (Table 2).

Only a small number of models analyzed here addressed
the risk arising from specific events or activities (Table 2).
These risk factors from specific sources included risks arising
from aquaculture development (Gibbs 2007), accidents
(Zhang et al. 2018), dam construction (Ahmadi et al. 2015;
Malekmohammadi and Moghadam 2018), and mine site
rehabilitation (Weyer et al. 2019). Some of these studies also
assessed risk to specific environmental components, and
many studies addressing toxicity risks also account for ac-
cidents when evaluating the probability of the release of
contaminants.

More than 80% of the analyzed papers used BNs for risk
analysis (Figure 4). Risk identification was addressed in 38
studies and risk evaluation in 36 studies, often combined
with risk analysis (terms explained in Figure 1). We identified
27 studies in which BN was seen to be used to address
all 3 steps of the ERA process, from risk identification to
evaluation (Figure 4, Table S7).

Model implementation

To evaluate the technical implementation of BN models in
the ERA context, we analyzed both the applied methods
and parties involved in different stages of modeling: model
framing and variable selection, defining the structure (the
arcs) between variables and their direction, and the quan-
tification of the model through probability estimates

Carriger and Barron (2011), Grét-Regamey et al. (2013), Pérez-Mifiana (2016)

(Figure 5). Full details of the properties of the models and
other results of the content analysis are given in the
Supplemental Data (Table S7).

Literature was used most often as the basis of model
framing, and in the majority of the papers the model framing
was done by the modeling team (Figure 5A). Similarly,
model structure was most often defined through the liter-
ature by modelers, or based on expert knowledge
(Figure 5). Structural learning was used in only 7 papers.
Most of these studies combined structural leamning algo-
rithms with expert judgment and modified the data learnt
network structure accordingly (Boets et al. 2015; Shan
et al. 2019).

In most studies, probability assignment was made
through a combination of expert judgment and literature, or
by data-based parameter learning (Figure 5A). External ex-
perts were involved in the probability judgments in more
than 50% of the studies, and in most the modeling team
had the main responsibility of the probability acquisition
(Figure 5B).

Model types

Most of the BNs in the analyzed studies were discrete,
with only 1 model identified as continuous, and 2 as hybrid
networks, combining continuous and discrete nodes
(Figure 6 and Table S7). Discretization was most often done
through expert judgment and literature, for example, re-
ferring to policy targets and legislative boundaries for water
quality (Maldonado et al. 2016). In more than 30% of the
papers, no information was given on the discretization
method and selection of variable states. Spatial application
of the risk model was reported in 14 of the studies, either to
map out the geographic extent of risk or to make use of
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Figure 4. Contribution of the analyzed models to different phases of ERA.

spatial data for as predictor variables in the model (Bashari
et al. 2016; Ng et al. 2018).

Use of the BN models

The analytical focus of most models was on inference
(Figure 6C), that is, predicting the values of the variables of
interest by computing posterior probabilities given new evi-
dence. Comparison to other existing models was the vali-
dation method most used (Figure 6D), followed by sensitivity

(A)

Model framing

Link definition

analysis and cross-validation. We note, however, that in the
majority of the studies using entropy reduction and sensitivity
analysis, these procedures were used as an analytical tool to
evaluate the effect of external variables on the variable of
interest. The aim has therefore been to map out the main
factors contributing to the level and likelihood of the studied
risk factor, instead of using them to validate the model.
Decision analytical elements (decision or utility nodes)
were included in the BN in 18 of the 72 models. More than

Probability aqcuisition

Literature
Expert judgment
Data learning

Stakeholders |
Other

No information

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
(B)
Modelers
Stakeholders - .
No informationt - -
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Number of papers

Figure 5. Methods (A) and participants (B) involved in the different stages of model building in the analyzed papers.

Integr Environ Assess Manag 2021:62-78 wileyonlinelibrary.com/journal/ieam

© 2020 The Authors



Bayesian Networks in ERA—Integr Environ Assess Manag 17, 2021

69

(A)

Other M Hybrid M Continuous M Discrete

Network type ~ Unclear

(C) Analytical use of the model
Inference:
Characterization

Other

Classification

Regression

o

20 40 60
Number of papers

(B)

Data & literature analysis

Discretization method

Unclear-

Expert judgment:

Other-

Data leamning

Equal-distance interval

(D)

o
o
@
5

20
Number of papers
Validation method

Sensitivity analysis
Expert evaluation
Previous models:
Cross Validation
Train & Test

Goodness of fit-

Other

No validation
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Figure 6. Technical properties of the analyzed BN models: (A) BN types, (B) variable discretization methods, (C) presented analytics, and (D) validation methods

in the analyzed BN models.

half these studies (10 of 18) included both, whereas the rest
of the papers included only decision nodes (6) or utility
nodes (2). Interestingly, many of the papers that included
both decision and utility nodes focused on oil spill risks
(Carriger and Barron 2011; Helle et al. 2015). Other topics
included pesticide risk management (Carriger and
Newman 2012), nonindigenous species management
(Herring et al. 2015), and river basin management (Barton
et al. 2008).

In models including decision and utility nodes, the ex-
pected losses and benefits of alternative decisions were
obtained in a range of ways, yet often this distinction was
not clearly indicated. Methods for defining decision and
utility nodes included analysis of existing literature and ex-
pert knowledge (Carriger and Barron 2011; Arzaghi
et al. 2018), previous models (Klemola et al. 2009), or
|learned or model-based data (Helle et al. 2015).

End users of the model were not clearly specified in most
of the studies and were typically interpreted to be either the
model developers or decision makers (Supplemental Data
Table S7). Decision makers were explicitly mentioned as end
users of the model in one-third of the papers examined.
Stakeholders aside from decision makers were generally
not mentioned. End users of model results were more
specifically identified, including again decision makers,
other scientists, and model developers. Here, too, other
stakeholders remained unmentioned. In general, it is not
stated explicitly who the decision makers are and how the
models can be, or are intended to be, used. Among the
analyzed papers, 2 studies reported that the developed BN
model was already in use at the time of publication of the
paper (Martin et al. 2015; Wyman-Grothem et al. 2018).
Several models had, however, been designed for specific

case studies together with environmental managers and
other stakeholders (Fletcher et al. 2014; O'Brien et al. 2018).

DISCUSSION

Application of BNs in environmental risk assessment studies

Human activities affect the environment in a variety of
ways, resulting in diverse environmental risks. Con-
sequently, the scientific articles identified in our literature
mapping study included studies on various types of risks
from multiple fields, highlighting the flexibility of BNs in
environmental modeling and their broad application to risk
modeling.

What is notable is that any BN—even a single pair of
parent and child nodes—contains the key elements of risk,
the probability of an event and its consequences, and could
thus be used for risk analysis. For this reason, many pub-
lished BN applications not included in this analysis could
support some stages of ERA, but as they do not explicitly
mention risk, they were not caught by our searches. The
variety of existing ERA frameworks potentially hinders the
usage of the term, especially in ecological studies, and
many BN models contributing to ERA are not framed
through the term risk but instead refer to environmental
impacts and stressors (Allan et al. 2012; Ban et al. 2014) or
to predicting the ecological status of specific habitats (Moe
et al. 2016; Molina-Navarro et al. 2020). Furthermore, as a
result of the complex definitions of both the terms “risk” and
“environment,” our analysis of the papers is subjective and
open to interpretation.

In line with the limited use of ERA terminology, the ana-
lyzed studies rarely referred to the phases of ERA or specific
frameworks. Only a few articles explicitly evaluated the ERA

Integr Environ Assess Manag 2021:62-78

DOI: 10.1002/ieam.4332

© 2020 The Authors



70

Integr Environ Assess Manag 17, 2021—L Kaikkonen et al.

process (Bayliss et al. 2012; Landis et al. 2017; Arzaghi
et al. 2018), whereas most papers contributed to specific
parts of ERA (Figure 1). BNs analyzed here focused on risk
analysis, and accordingly used the BN as a tool for inferring
values of a small number of target variables, instead of a
more holistic evaluation of the risks within a studied system.
An important feature in many articles was the identification
of key factors contributing to the magnitude and probability
of the studied adverse effects, which was typically based on
sensitivity analysis.

Not surprisingly, many studies considered toxic risks and
environmental contamination. A focus of many ERA models
on contamination risks, toxicity, or biological invasion was to
assess the probability of the undesirable event, assessing
the probability that a specific area will be contaminated, an
invasive species will settle in an area, or a species will be
affected by a specific environmental stressor. In addition,
many studies included multiple endpoints, risk factors, in-
cluding socioeconomic variables within the assessment
(Malekmohammadi and Moghadam 2018), making use of
the integrative properties of BNs. The use of cumulative risk
assessments was, however, less common.

As a result, the use of BN models in ERA in addressing
risks arising from projects and other specific activities was
not well represented. With increasing expectations on the
scientific rigor of environmental impact assessments (EIA),
ERA is increasingly included in the EIA process for projects
of different scale, although it is not a statutory requirement
for many human activities (Suter 2016). Although a number
of papers in our review addressed the impacts of point-
source contamination from oil spills (Arzaghi et al. 2018) and
other contaminants (Harris et al. 2017), none of the studies
used BNs for predictive risk assessments that included a
comprehensive view of the risks and could inform further
use in EIA. We appreciate, however, that the lack of practical
applications of BNs in ERA may be a result of our search
strategy. A further reason for the poor representation of
cumulative risk assessments may be that assessing multiple
stressors from human activities is challenging, and handling
the multidimensionality of complex BNs requires particular
attention during expert elicitation. Methods for reducing the
number of conditional probabilities required for nodes with
multiple parents have been reviewed by Zhang and Thai
(2016), among others. These knowledge engineering
methods merit further attention in future research, as many
projects could benefit from more transparency and quanti-
tative estimates in the ERA processes. The use of BNs would
answer the call of better communicating uncertainty in ERAs
within EIA (Tenney et al. 2006), yet this review indicates that
BNs are not yet being applied for this purpose.

Implications of currently used methodologies

A general framework for BN modeling consists of defining
the aim of the model, building the model from the available
information, and model validation, all of which can be per-
formed in many different ways. Several papers, which are
not comprehensively discussed here, already cover the

technical aspects and good practice of BN modeling (Chen
and Pollino 2012). Instead, we focus the implementation of
BN models in respect to the ERA process and the potential
implications of current methodologies for their practical use.

Model implementation and technical aspects

Given the flexibility of BN modeling, the studied models
represented a crosscut of possible technical implementation
of models. The majority of the studies used BNs as expert
systems, and the model structure was often defined based
on existing models, literature, and expert and stakeholder
knowledge. Even the studies that applied structural learning
algorithms to learn the BN structure from data relied on
expert views for refining the model structure, which is in line
with the complexity of environmental issues, recognizing
that the view of what is causing the risk and what is at risk are
largely subject to individual values and preferences (Slovic
et al. 2004). To be comprehensive, it is often useful for
ERAs to incorporate stakeholder values and management
objectives in addition to quantitative data.

The context and objectives of the risk assessment define
the methods used in an ERA and to what extent they are
expert- or stakeholder driven (Burgman 2005). Although the
use of expert knowledge is widely accepted as indis-
pensable for risk assessments (Pollino et al. 2007; Kuhnert
et al. 2010), there is still room for improvement in terms of
transparency regarding the source of expert knowledge.
Information on who the experts are or how they were se-
lected to be part of the process was often missing in the
analyzed studies. To improve the legitimacy and trust in
ERA, adhering to set guidelines for expert elicitation is
recommended (O'Hagan et al. 2006; Kuhnert et al. 2010;
Martin et al. 2012).

Most studies used only discrete variables in the BN.
However, the method or criteria behind the discretization
were not often detailed. Discretization of a continuous var-
iable simplifies the probability distribution and therefore
necessarily causes some loss of information (Uusitalo 2007),
and in turn this may substantially affect the model outputs.
For this reason it is suggested that discretization be used
with caution or be avoided whenever possible (Nojavan
et al. 2017). However, it is also suggested that the deviating
patterns among differently discretized models can provide
important information about the resolution of the co-
variance among variables, as well as about the potentially
meaningful change points in the data (Lehikoinen
et al. 2019). A straightforward solution for avoiding dis-
cretization is to simply accommodate only continuous vari-
ables in the modeling framework (Qian and Miltner 2015).

Despite acknowledging the challenges of discrete net-
works, continuous networks were very rare in the analyzed
studies, as also found earlier in the review by Aguilera et al.
(2011). As environmental management and risk modeling
often require integrating both numerical and categorical
variables by including, for example, management thresholds
for the target variables, decision, or utility nodes, and
management interventions using only continuous variables

Integr Environ Assess Manag 2021:62-78

wileyonlinelibrary.com/journal/ieam

© 2020 The Authors



Bayesian Networks in ERA—Integr Environ Assess Manag 17, 2021

71

are not always ideal (Ropero et al. 2014) or even possible.
Although highlighted as a feasible solution for combining
discrete and continuous variables (Chen and Pollino 2012),
the use of hybrid networks in environmental applications,
including the studies reviewed here, is scarce. This lack is
likely a result of the history of using specific BN software
products that are designed for discrete variables or provide
only a limited selection of continuous distribution types.
Several popular BN softwares nowadays accommodate hy-
brid networks (e.g., Hugin, Analytica, AgenaRisk, bnlearn in
R), but their analytical use is still limited compared to dis-
crete models (see, however, Moe et al. 2020, for example),
and requires more statistical expertise from both the mod-
eler and the end user of the model or its results. It is also
noteworthy that although conditional probability tables of
discrete variables are able to accommodate and express
nonlinearities, step functions, and other nonparametric
functional responses between the variables, the continuous
variables are often modeled using linear functions or other
simple parametric functional forms. Therefore, not dis-
cretizing the variables might avoid information loss at that
stage, but information loss may occur in the parameter-
ization stage from the restrictions imposed by fitting these
parametric distributions. The loss of information in dis-
cretized models can be minimized through selecting class
boundaries that maximize the predictive capacity of the
model or otherwise represent relevant changes in the
system, for example, in terms of the (management) sce-
narios of interest and the potential target or limit values
already set by the society. To conclude, discretization of the
continuous variables, if applied, should be carefully con-
sidered and justified.

Compared to learning the BN structure from data, vari-
able parameterization from data was more common in the
analyzed studies (McDonald et al. 2016; Graham et al.
2019). As combining knowledge from multiple sources and
being able to operate with missing data is an important
asset of BNs and often a key reason for using them, many
studies combined data learning with expert judgment. Ex-
pert knowledge was used to quantify a large portion of the
analyzed studies, using a number of elicitation techniques.
However, a surprisingly large number of studies did not
specify the method of eliciting probabilities from experts or
other sources. Using a structured approach for the expert
elicitation ensures all parts of the modeling to be meth-
odologically robust. Several guides have been published on
the best practice of eliciting expert knowledge for BNs
(Kuhnert et al. 2010; Werner et al. 2017), which may be
consulted for improved transparency and documentation of
the parameterization process.

As also noted by Aguilera et al. (2011), a high portion of
the studies still did not validate the BN model. Among the
popular validation methods, sensitivity analysis was often
used not in the validation sense but as an analytical tool. A
large number of studies used expert or stakeholder knowl-
edge in the model building but did not report on validation
measures to check the final logic of the model outputs.

Validation thus does not seem to be the routine part of BN
modeling that it should be. Echoing previous reviews on
best practices (Aguilera et al. 2011; Chen and Pollino 2012),
we encourage model developers to select a validation
method that fits the objective of the modeling process.
Validation approaches for expert-driven BNs are presented
by Kleemann et al. (2017), as well as others.

Participatory modeling

The complex socioecological nature of environmental
risks means that problem structuring is linked with the par-
ties involved in the risk assessment process. Model framing
is often not described in the analyzed studies, although
defining the purpose and end use of the model before
modeling is important for ensuring its usefulness (Chen and
Pollino 2012). Including stakeholders throughout the
process is vital, especially in the early stages of ERA, as the
risk framing determines the rest of the process, such as who
is involved in assessing risks and how this is done (Brugnach
et al. 2011; Parviainen et al. 2019). BNs have been reported
as beneficial for participatory modeling, as they can support
open discussion between stakeholders as well as cop-
roduction and codesign of the network structure, promote
social learning (Barton et al. 2012; Henriksen et al. 2012),
and increase transparency about the model structure
(Henriksen et al. 2007).

The review, however, indicates a limited role of stake-
holders in the process in terms of framing, defining the
structure, and quantifying the models. Many of the papers
analyzed in our literature review did not specify the rationale
for model framing, variables selection, or model structure.
Model endpoints, selection of variables, and their states are
critical aspects in estimating the magnitude of the risk in
question, but they are often neglected in the reporting of
BN models.

BNs can be developed into an ID by including decision
and utility nodes, but the results demonstrate the use of
these decision analytical elements is limited. Further, how
the nodes were determined is not always clear. As decision
makers were often mentioned as the potential end users of
the model results, their inclusion in also identifying the de-
cision and utility nodes would be important in terms of
making models more meaningful and useful for the end
users. Although expert judgment was used in some cases,
the results indicate that other stakeholders were not in-
cluded in the process of determining the decision-analytical
elements.

Pros and cons of BNs in ERA

To understand the perceived benefits and restrictions of
BNs in ERA, we took a note of any pros and cons of BNs
mentioned in the reviewed papers. The most common ad-
vantages related to the use of BNs in ERA in the reviewed
studies include the explicit treatment of uncertainty, the
ability of BNs to integrate knowledge from different sources,
and the means to easily update the models as new knowl-
edge becomes available. Although mentioned in only a few
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of the papers, BNs can also be applied to integrate socio-
economic data in addition to purely environmental or eco-
logical data (Fletcher et al. 2014). Combining BNs with
spatial data was seen to support the spatial assessment of
risks as well as to improve the user experience (Jolma
et al. 2014). Some of the papers also highlighted BNs as a
useful tool in adaptive management (Ayre and Landis 2012;
Shenton et al. 2014).

The modular nature of BNs enables building large entities
piece by piece by adding new variables or connecting whole
BN models with each other to form a larger entity (Van Looy
et al. 2015). BNs are seen as advantageous in supporting
continuous leaming processes: the method enables building
large entities piece by piece by adding new variables or
connecting whole BN models with each other to form a
larger entity (Van Looy et al. 2015). This method allows long-
term development of holistic assessments that can be ex-
panded, fine tuned, and modified as new needs or in-
formation arise. For example, an assessment focusing on
estimating the probability of a harmful event, such as con-
tamination of a watershed, can be later complemented with
more environmental and socioeconomic endpoints, alter-
native risk control measures, and their costs, to be com-
pared. Within a series of studies on the risks of mercury in
the South River (Virginia), the assessment first focused on the
ecological risks of mercury in the river environment, and the
BNs were later applied to compare different management
options and to assess risks to human health (Harris et al.
2017; Johns et al. 2017; Landis et al. 2017). Similarly, studies
assessing oil spill risks in the Baltic Sea used previous oil spill
risk BN models as building blocks to develop new models to
compare different management options (Montewka et al.
2013; Helle et al. 2015; Lehikoinen et al. 2015).

Graphical representation of BNs is helpful in stakeholder
involvement in the ERA process. Visual presentation of
problem structuring and the quantitative results can support
consensus building among stakeholder parties (Henriksen
et al. 2007; Laurila-Pant et al. 2019). As the performance of
even rather complex BNs is relatively rapid, large packages
of “what-if” questions can be tested and compared within a
reasonable time, which also allows for efficient working in
terms of risk communication (Figure 1) to stakeholders.

Many of the papers lacked discussion on the challenges of
applying BNs specifically in the ERA context. However, the
acyclic nature of BNs, and the lack of temporal scale, were
the 2 disadvantages most commonly mentioned. Temporal
dynamics can, however, be modeled in BNs if the temporal
dimension is built into the model explicitly through time
steps. Building each of the time steps into the model
through their own set of variables increases the size of the
model and makes it visually less appealing, but enables the
temporal feedback loops to be clearly articulated.

Expert elicitation was also considered as a challenge,
particularly in terms of ensuring the reliability of the elicited
knowledge and avoiding biases. As reflected by the limited
use of validation techniques in the analyzed studies, model
validation methods were often cited as a challenge in model

development. The aforementioned limitations and chal-
lenges of BNs for ERA have been discussed in length by
several authors (Uusitalo 2007; Phan et al. 2016; Sperotto
et al. 2017). Further challenges in the use of BNs in an ERA
context largely depend on the successful implementation of
the models in management processes, which we discuss in
the following sections.

End use: Making models useful for decision making

Despite following best modeling practices, decision
makers may still be reluctant to use the model and its out-
puts to inform risk management. Ensuring that the models
created for ERA actually deem themselves useful can, how-
ever, be improved through a number of measures that also
apply to other types of decision support models (Addison
et al. 2013). These measures include not only improving
model development but also further engagement with
policy making and the objectives of the risk assessment.

Stakeholder objectives and concerns provide the basis for
value-focused decisions that are fundamental for environ-
mental management (Gregory and Keeney 1994). In general,
participatory modeling is resource intensive, requiring an
extensive amount of time and funding, and it may be un-
realistic to expect wider stakeholder participation in ERA. In
comparison to some other types of participatory modeling
(PM) methods that require intensive participation and com-
mitment from the researchers and the stakeholders involved,
Davies et al. (2015) suggest BN, if used in isolation, have a
low potential to integrate social values and promote social
learing to address wicked socioenvironmental problems.
The level of stakeholder participation needed in each ERA
process requires case-specific consideration, after which the
potential of the BN as a method to support it can be eval-
uated. In terms of integrating social values into ERA, creative
technical approaches and practical solutions could be more
actively shared within the BN modeling community.

Participatory processes in the model building may, how-
ever, improve the knowledge base and social acceptance of
model results and facilitate better management outcomes.
Active involvement of the end users improves chances that
the model will meet their needs in terms of problem framing
and the questions to be answered (Laniak et al. 2013). If the
end users do not agree with the data, assumptions, logic, or
the methods used for the modeling, they can hardly be
expected to subscribe to the results. Stakeholder dialogue
can be particularly useful when ensuring the model rele-
vance in the validation step, as it helps ensure that the users
of the modeling results agree that the model represents an
accurate picture of reality based on the available knowledge
(Benjamin-Fink and Reilly 2017), and are thus more likely to
trust the model outputs.

The transparency and flexibility of BNs make them an
attractive tool for potential end users. The ease of use may
also be seen as a caveat, as it brings about a high risk of
making erroneous interpretations for unsupervised use. In
addition to knowing the model, the user must be familiar
with at least the basics of the Bayesian inference and
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probability calculus. Interactive workshops are a feasible
option for improving the end use of the BN-ERA applica-
tions, in which the model developers act as facilitators by
conducting the asked runs, interpreting and explaining the
results, as applied in a number of studies analyzed in this
review (Fletcher et al. 2014; McVittie et al. 2015).

Although the actual use of BNs requires substantial
knowledge from the users, models and their outputs may be
made available to stakeholders and managers by combining
them with other tools and user interfaces. Piffady et al. (this
issue) developed a web-based tool coupled to a BN to as-
sess the spatial risk of pesticide contamination in French
rivers. The tool, which enables the users to run the model
without coding experience, was developed in cooperation
with stakeholders.

Hart and Pollino (2008) argued that all risk assessment
models should be as quantitative as possible. Although
presenting uncertainty in probabilistic terms is a major im-
provement from traditionally vague risk assessments, it is
important to consider on what occasions quantitative as-
sessments are useful for analyzing risks within socio-
ecological systems. As suggested by Carriger et al. (2018),
even purely qualitative IDs can improve understanding of
policy interventions and enhance transparency. A relevant
question is whether risk assessment models should also be
seen as a basis for reflection and discussion rather than
simply tools for quantifying risks? In the case of “wicked”
socioenvironmental decision-making problems with no un-
ambiguously best solution (Rittel and Webber 1973), a
transparent systemic model such as BN could reveal among
what aspects we are actually choosing.

Future development ideas and guidelines for use in ERA

To increase the performance, usability, and practical ap-
plication of BN models, in this section we summarize a

number of development ideas for their future use in ERA
(Table 3). Drawing on our own experience and the analyzed
studies, we further outline general guidelines for using BNs
in ERA.

A central challenge in developing practical BN applications
has long been the limited capacity of BNs to account for a
sufficient spatial resolution and to flexibly incorporate local
data and additional precision (Maxwell et al. 2015). Building
an application for the finer scale spatial analysis calls for the
integration of BNs with geographic information systems (GIS),
so that spatial data may either be incorporated into the BN,
or vice versa. Several studies, including those analyzed here,
already make use of integrating spatial data to a BN to
estimate the spatial extent of risk (Bashari et al. 201¢;
Helle et al. 2016).

In addition to spatial modeling tools, Marcot and Penman
(2019) provide an extensive review of how BNs can be
joined with other tools and model frameworks for a variety
of environmental assessment and management purposes.
These uses include BNs to explore system dynamics (e.g.,
agent-based BNs, hybrid BNs, object-orientated BNs) and
BNs to aid decision making (e.g., Bayesian decision net-
works, dynamic decision networks, and quantum Bayesian
networks).

Many of the reviewed papers included comparison of
different management measures to reduce risks, but specific
decision-analytical nodes were rarely applied. The review
suggests that expanding BNs to influence diagrams and the
use of decision or utility nodes could be further explored.

BNs provide a valid tool for participatory environmental
modeling, but as the review demonstrates, decision makers
and other societal stakeholders are generally not included in
the modeling process, or the stakeholders are involved only
in specific parts of the modeling but not throughout the
process. Further, as most of the models focus on ecological

Table 3. Summary of some key development ideas for improving use of Bayesian networks (BNs) in environmental risk assessment (ERA)
with references to studies acknowledging them

Topic

Spatial applications

Recognized needs discussed in the analyzed articles

Building and updating universal models with regional, local specific data

(Subagadis et al. 2014; Pérez-Mifiana 2016; Harris et al. 2017).

BN extensions

Integrated modeling

Explore use of hybrid BNs, dynamic BNs, and quantum Bayesian networks.

Making further use of the modular properties of BNs and combining them to several types

of modeling and methods (Stelzenmdiller et al. 2011; Carriger and Newman 2012;

Martin et al. 2015).

Improved validation

Increasing validation of models and improving validation methods for strength of

evidence, for example (Pollino et al. 2007).

Participatory modeling

Explore potential of further engagement with external experts and stakeholders in model

building (Stelzenmiiller et al. 2011; Subagadis et al. 2014; Li et al. 2018).

Comprehensive models

Developing holistic assessments in terms of including a broader variety of variables types

and processes for model endpoints, analyzed measures.

Transparency of methodology

Detailing methods used, data sources, participants in model framing, variable selection,

and probability acquisition.

Improved monitoring and evaluation

Monitor and report results of risk management measures (Hines and Landis 2014).
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risks, research on the socioeconomic or cultural impacts of
risks is lacking. The idea of objective science largely domi-
nates in natural sciences and the potential model end users,
such as managers and decision makers, may prefer “exact”
advice rather than probability distributions, particularly
when assessing chemical risks in ecotoxicology, where de-
fining thresholds for the risk quotient is often the focus of
risk assessments (Carriger and Barron 2020). Therefore,
communicating uncertainty to decision makers and stake-
holders remains a key challenge (see also Rahikainen
et al. 2014).

As models alone cannot solve policy problems, ERA
models should ideally encourage knowledge exchange by
combination of scientific models and social values (Borsuk
et al. 2004). Further attention should also be paid to
whether BNs can support the integration of social values in
ERA (Davies et al. 2015) and promote learning and capacity
building needed for adaptive management of socio-
ecological risks (Nyberg et al. 2006; Henriksen and
Barlebo 2008). In addition to highlighting the uncertainty
related to the expected outcomes of management actions,
using probabilistic approaches invites managers and deci-
sion makers to be aware of and transparent with their risk
attitudes.

CONCLUSIONS

In this review, we examined to what extent BNs have been
used in the ERA context. We found that although BNs have
been applied in various fields, including several types of risk
factors and contexts, the method is still not very commonly
used by the ERA research community. The analyzed ERA
BNs mostly contributed to assessing contamination risks and
ecological risks, with only a minor part of the studies ad-
dressing socioeconomic risks. We suggest the approach has
potential for more holistic ERA analyses from risk identi-
fication, through risk analysis, to risk evaluation, than that for
which it has been used. To advance the use of BNs in sup-
porting real-life risk management and risk communication,
we highlight the importance of transparency in all stages of
modeling and considering novel and creative ways to apply
BNs in participatory modeling. In conclusion, the current use
of BNs in ERA context still has strong potential for im-
provement, calling further attention to how BNs could
support adaptive management of complex environmental
risks.
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